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Motivating Application

The particular motivation for this research is the detection of defects in the
insulating foam on the space shuttle fuel tanks in order to help eliminate the
separation of foam during shuttle ascent.
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Our Contributions
• Gap Detection Inverse Problem
• Modeling Hetereogeneous Materials

• Distributions of Dielectric Properties
• Homogenization
• Microstructure Modeling

• 2D Aspects
• Knit Lines
• Oblique Angles
• Focusing
• Obstacles
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Outline

• Damage Detection Problem for SOFI
• Difficulties
• Simplifications
• Some Computational Results
• Continuing Directions
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Voids in Foam

The foam on the space shuttle is sprayed on in layers
(thus the acronym SOFI). Voids occur between layers.
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Cured Layer

As the top of each layer cures, a thin knit line is formed which is of higher
density (i.e., is comprised of smaller, more tightly packed polyurethane cells).
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SOFI Under 20X Magnification

• Wavelength is on the order of 1mm; microstructure is smaller.
• Most loss in the material is due to scattering from faces.
• Numerical representation of cellular structure in an inverse problem is infeasible.
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Picometrix T-Ray Setup

• Step-block can be turned upside down to sample varying gap sizes.
• Receiver and transmitter can be repositioned at various angles.
• Signal can be focused or collimated.
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THz Through Foam
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THz signal recorded after passing through foam of varying thickness, in a
pitch-echo experiment.
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Time-of-flight

Bitmap of time-of-flight recordings from step-block foam. Method clearly
shows steep boundaries between foam and voids.

• Shows contrast, but does not accurately characterize damage.
• Less effective on horizontal discontinuities.
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Difficulties

• Microstructure smaller than wavelength
• Domain is very large compared to wavelength
• Voids are only a few wavelengths large
• Index of material is close to air
• Ringing masks reflection information
• Scattering effects not well understood
• Obstacles
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Microstructure

• Homogenization (Periodic Unfolding Method)
• In collaboration with D. Cioranescu, et al.
• Can give an effective permittivity based on

microstructure
• Model random microstructures

• Based on Appollonius tesselation of “random
raindrops”

• Distributions of statistical parameters yields
heterogeniety

• Can be used with constant wave speed.
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Apollonius Graph
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Apollonius graph on a close packing of disks generated by a “random raindrop” algorithm. The
knit line is modelled using smaller drops.
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Model of SOFI Microstructure

Apollonius graph is truncated and stretched, then edges are given a thickness and discretized to
result in an indicator matrix as shown in the bitmap.
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Simplifications
• Assume single-cycle pulse of fixed frequency

• Possibly only tracking peak frequency
• Possibly solving broadband problem in

parallel
• Maxwell’s equations reduce to wave equation

• Assume homogenized material
• For low frequency, microstructure is

negligible
• For fixed frequency, single wave speed
• Possibly from homogenization method

• Assume 2D (uniformity in third)
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2D Problem Outline

• Model
• Equations
• Boundary Conditions

• Computational Methods
• Sample Forward Simulations
• Inverse Problems

• Without Obstacle
• With Obstacle
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Sample Domain with Void
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Dashed lines represent knit lines, dot-dash is foam/air interface. Elliptical
pocket (5 mm) between knit lines is a void. “+” marks the signal receiver.
Back wall is perfect conductor.
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2D Wave Equation
We assume the electric field to be polarized in the z

direction, thus for ~E = (0, 0, E) and ~x = (x, y)

ε(~x)
∂2E

∂t2
(t, ~x) −∇ ·

(

1

µ(~x)
∇E(t, ~x)

)

= −
∂Js

∂t
(t, ~x)

where ε(~x) and µ(~x) = µ0 are the dielectric
permittivity and permeability, respectively.

Js(t, ~x) = δ(x)e−((t−t0)/t0)
4

,

where t0 = tf/4 when tf is the period of the
interrogating pulse.
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Boundary Conditions
Consider Ω = [0, 0.1] × [0, 0.2]

• Reflecting (Dirichlet) boundary conditions (right)

[E]x=0.1 = 0

• First order absorbing boundary conditions (left)

∂E

∂t
−

√

1

ε(~x)µ0

∂E

∂x

∣

∣

∣

∣

∣

x=0

= 0

• Symmetric boundary conditions (top and bottom)
[

∂E

∂y

]

y=0,y=0.2

= 0

We use homogeneous initial conditions E(0, ~x) = 0.
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Modeling Knit Lines/Void
• The speed of propagation in the domain is

c(~x) =
c0

n(~x)
=

√

1

ε(~x)µ0
,

where c0 is the speed in a vacuum and n is the
index of refraction.

• We may model knit lines or a void by changing
the index of refraction, thus effectively the speed
in that region.
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2D Numerical Discretization

• Second order (piecewise linear) FEM in space

• Second order (centered) FD in time

• Linear solve (sparse)
• Preconditioned conjugate-gradient

(matrix-free)
• LU factorization
• Mass lumping (explicit)

• Stair-stepping for non-vertical interfaces
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Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03.
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Plane Wave Signal
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Interrogating signal simulates a sine curve truncated after one half period.
Reflections off void are shown in inset.
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Picometrix T-Ray Setup

Note the non-normal incidence and ability to focus.
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Oblique Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03, but raised to collect center of
plane wave reflection.
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Oblique Plane Wave Signal
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Nearly all of original signal returns even with an oblique angle of incidence.
(Note: last knit line removed.)
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Focused Wave Simulation

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03. Note top and bottom
boundary conditions are now absorbing.
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Focused Wave Signal
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Although reflections off of void are larger, the total energy that returns is less
than the plane wave simulation.
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Oblique Focused Wave

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03, but raised to collect
center of focused wave reflection.
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Oblique Focused Wave Signal
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void is similar in magnitude to normal incidence focused wave.
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2D Void Inverse Problem
• Assume we have data, Êi at times ti and x = x

+

• Given the width of an elliptical void w, we can
simulate the electric field

• Estimate void width w by solving an inverse
problem:

Find w ∈ Qad such that the following objective
function is minimized:

J1(w) =
1

2S

S
∑

i=1

|E(ti,x
+; w) − Êi|

2.

Location of x
+ is crucial.
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Intensity of Data Collected

Intensity of data received from non-normally incident, plane wave
interrogating material with a void. (Note: knit lines are ignored, dashed line is
shown merely to highlight location of void.)
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Data Collected at High Intensity
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Shown is the difference between data received from non-normally incident,
plane wave interrogating material with and without a void when receiver
placed in high intensity region. (Note: original signal peak is shown for
reference.)
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Objective Function On Domain

Shown is a surface plot of the objective function at w = 0. Cross denotes the
location of least intensity in signal received. Note that it correlates with region
of greatest contrast between material with void and without.

AIP 2007 – Vancouver, Canada – p. 34



Data Collected at Low Intensity
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Shown is the difference between data received from non-normally incident,
plane wave interrogating material with and without a void when receiver
placed in low intensity region. Amplitude of difference is doubled.
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Domain with Obstacle

Consider a domain with an opaque obstacle in front of a void.
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Intensity of Data Collected

Intensity of data received from interrogating a material with an obstacle in
front of a void. Locations for receiver that were considered are directly above
black area, and directly below (i.e., (.03,.1)).
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Data Collected Below
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Shown is the difference between data received from non-normally incident,
plane wave interrogating material with and without a void when receiver
placed below the invisible region. (Note: original signal peak is shown for
reference.)
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Objective Function On Domain

Shown is a surface plot of the objective function at w = 0. The cross denotes
the location directly above the invisible region. Note that it correlates with
region of greatest contrast between material with void and without.
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Data Collected Above
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Shown is the difference between data received from non-normally incident,
plane wave interrogating material with and without a void when receiver
placed above invisible region. Amplitude of difference is two orders of
magnitude larger.

AIP 2007 – Vancouver, Canada – p. 40



J – Objective Function
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Inverse Problem Results
• Without obstacles, receiver placement should be

in region of low intensity for highest contrast
(intensity is low due to void).

• With obstacles, receiver placement should be at
interface between regions of low and high
intensity for highest contrast (intensity is low due
to obstacle).

• With proper placement of receiver, LM converges
to minimum of J after 12 iterations

• Each forward solve is 1.5 hours
• This does not incorporate noise (SNR ≈ 100:1)
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Concluding Remarks

With current power sources and detection devices,
reflections from the front surface, voids, and knit lines
are difficult to detect. Thus, for now, information is
collected from the total reflection off the aluminum
backing. More work needs to be done to match
simulations to this data, including adding attenuation
due to scattering and using data to generate the
simulated source.
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Continuing Directions
• Modeling Approaches

• Microscale scattering model
• Match attenuation observed in data

• Computational Methods
• Edge elements
• ABC/PML
• Faster time-marching (time-splitting)

• Quantify Robustness wrt Uncertainty
• Material properties
• Geometry
• Interrogating signal
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