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Motivating Application

The particular motivation for this research is the detection of defects in the
insulating foam on the space shuttle fuel tanks in order to help eliminate the
separation of foam during shuttle ascent.
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Our Contributions

• Gap Detection Inverse Problem

• Modeling Hetereogeneous Materials
• Distributions of Dielectric Properties
• Homogenization

• 2D Aspects
• Knit Lines
• Oblique Angles
• Focusing
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Outline 1D Gap Detection

• Model
• Numerical Methods
• Inverse Problem

• Computational Results
• Standard Error Analysis
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Gap Detection Problem
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Model
µ0ε0εrË + µ0IΩP̈ + µ0σIΩĖ − E ′′ = −µ0J̇s in Ω ∪ Ω0

τ Ṗ + P = ε0(εs − ε∞)E in Ω

[Ė − cE ′]z=0 = 0

[E]z=1 = 0

E(0, z) = Ė(0, z) = 0

P (0, z) = 0
where

Js(t, z) = δ(z)sin(ωt)I[0,tf ](t)

and
εr = (1 + (ε∞ − 1)IΩ).
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Numerical Discretization
• Second order FEM in space

• piecewise linear splines

• Second order FD in time
• Crank-Nicholson (P )
• Central differences (E)
• en → pn → en+1 → pn+1 → · · ·

• E equation implicit, LU factorization used
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Finite Element Method in Space
The resulting system of differential equations in
semi-discrete form can be written

M1ë + M2ė + M3e + λ2p̄ = η0J (1)
˙̄p + λp̄ = εdλMΩe. (2)

where η0=
√

µ0/ε0, εd=εs − ε∞, λ=1/cτ , e and p are
vectors representing the approximate values of E and
P respectively at the nodes zi.

p̄=MΩp where MΩ is the mass matrix integrated only
over Ω.
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Finite Difference in Time (p)
Our finite difference approximation for (2) is

p̄n+1 = p̄n +
λ∆t

1 + λ∆tθ
(εdM

Ωen+θ − p̄n) (3)

where [en]j=E(tn, zj), [p̄n]j=MΩP (tn, zj), zj=jh.

The value en+θ=θen + (1 − θ)en+1 is a weighted
average of en and en+1 for relaxation to help with
stability of the method.

Note: we take θ = 1/2.
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Finite Difference in Time (e)
Applying second order central differencing with
averaging to (1) gives

A1en+2 = A2en+1 + A3en + ∆t2η0Jn+1 − λ2∆t2p̄n+1.
(4)

As p̄n+1 depends explicitly on en and en+1, we could
substitute (3) here and have one implicit equation for
the update of e.

Note: we use LU factorization as A1 does not change
over time.
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Sample Problem
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Signal at t=0.189122 ns

Computed solutions at different times of a windowed
electromagnetic pulse at f=100GHz incident on a
Debye medium with a crack δ=.0002m wide located
d=.02m into the material.
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Sample Problem (Cont.)
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Reflected signal received at z=0.
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Sample Problem (Cont.)
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Close up look at reflected signal received at z=0
Shows “important” parts of the signal.
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Gap Detection Inverse Problem
• Assume we have data, Êi, recorded at z=0

• Given d and δ we can simulate the electric field
• Estimate d and δ by solving an inverse problem:

Find q=(d, δ) ∈ Qad such that the following
objective function is minimized:

J1(q) =
1

2S

S
∑

i=1

|E(ti, 0; q) − Êi|2.
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J1(q) Surface Plot
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Surface plot of the Ordinary Least Squares objective
function demonstrating peaks in J1, and exhibiting
many local minima.
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Improved Objective Function

Consider the following formulation of the Inverse
Problem:
Find q=(d, δ) ∈ Qad such that the following objective
function is minimized:

J2(q) =
1

2S

S
∑

i=1

∣

∣

∣
|E(ti, 0; q)| − |Êi|

∣

∣

∣

2

.
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J2(q) Surface Plot
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Close up surface plot of our Modified Least Squares
objective function demonstrating lack of peaks in J2,
but still exhibiting many local minima.
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Check Point Method
The diagonal “trench” occurs approximately along the
line

d = − 1√
ε0

(δ − δ∗) + d∗.

Also, the minima occur every λ
4m along this line.

Therefore, if our optimization routine detects a local
minima, we test λ

4 on either side of the local minima
to see if there is a smaller minima nearby. If so, we
restart our optimizer at the new smallest point.
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Levenberg-Marquardt Method
We re-write the objective function as

J(q) =
1

2S
RTR

where Ri=(|E(ti, 0; q)| − |Êi|) is the residual. To
update our approximation to q we make the
Gauss-Newton update step q+=qc + sc where

sc = −
(

R′(qc)
TR′(qc) + νcI

)−1
R′(qc)

TR(qc).

is the step, qc is the current approximation, and q+ is
the resulting approximation. The value νc is called the
Levenberg-Marquardt parameter.
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Final Estimates (d)
δ

d .0002 .0004 .0008

.02 (N=1024) .0200022 .0200006 .0200002

.04 (N=2048) .0399974 .0400005 .0399999

.08 (N=4096) .0799987 .0800006 .0800003

.1 (N=8192) .0999974 .1 .0999999

.2 (N=16384) .200005 .2 .200001

OSU Math Colloquium – p. 20



Final Estimates (δ)
δ

d .0002 .0004 .0008

.02 (N=1024) .000196754 .000398642 .00079707

.04 (N=2048) .000203916 .000394204 .000793622

.08 (N=4096) .000202273 .000395791 .000794401

.1 (N=8192) .000203876 .000396203 .000795985

.2 (N=16384) .000191808 .00040297 .00080129
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Random Noise
We add random noise to the data signal in order to
more closely simulate the experimental process in
data collection. We define

Êi = Ei + βνrηi,

where
ηi ∼ N (0, 1).

The coefficient β=maxi Êi/10 is just a scaling factor
(to aid in comparison to relative noise), and νr is what
we call the noise level.
Note that the variance σ2=β2ν2

r is constant.
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Standard Error Analysis
As Ns → ∞, we have that

q̂OLS ∼ N2

(

q0, σ
2
0

[

ET (q0)E(q0)
]−1

)

where E(q̂)=∂|E|
∂q (q̂) is an Ns × 2 matrix. Also, the

scale parameter σ2
0 is approximately given by

σ2
0 =

1

Ns − 2

Ns
∑

i=1

(

|E(ti, 0; q0)| − |Êi|
)2

and q0 denotes the theoretical “true” value for the
system which is being observed (generally unknown).
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Estimating Covariance
Since q0 is unknown, we approximate our covariance
matrix using our estimate q̂OLS:

C = σ2
OLS

[

ET (q̂OLS)E(q̂OLS)
]−1

,

where

σ2
OLS =

1

Ns − 2

Ns
∑

i=1

(

|E(ti, 0; q̂OLS)| − |Êi|
)2

.

The standard errors for qk are then given by
√

Ckk.
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Computing Covariance
In order to compute the partial derivatives with
respect to d and δ in E we employ finite differencing,
which requires an additional forward simulation for
each qj. For example:

Ei1 =
∂|E|
∂q1

(ti, 0; q̂)

≈ |E (ti, 0; [q̂1, q̂2])| − |E(ti, 0; [(1 − hd)q̂1, q̂2])|
hdq̂1

and similarly for each Ei2.
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Confidence Intervals Example
In the case of d∗=.02, δ∗=.0002 and with νr=.01 our
covariance matrix is

C =

[

2.37122 × 10−15 −4.43815 × 10−15

−4.43815 × 10−15 9.1829 × 10−15

]

,

which results in the confidence intervals

d ∈ (2.00004 ± 4.86952 × 10−6) × 10−2

δ ∈ (1.9941 ± 0.000958274) × 10−4.
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Confidence Intervals for d (νr = 0)

δ d∗ = .02 (N = 2048)

.0002 (2.00005 ± 9.30284 × 10−7) × 10−2

.0004 (2.00001 ± 6.50411 × 10−7) × 10−2

.0008 (2.00001 ± 4.91232 × 10−7) × 10−2

δ d∗ = .04 (N = 4096)

.0002 (4.00013 ± 1.62162 × 10−6) × 10−2

.0004 (4.00001 ± 1.19064 × 10−6) × 10−2

.0008 (4.00002 ± 9.05240 × 10−7) × 10−2

Confidence intervals for the OLS estimate of d when the data is
generated with no noise (i.e., νr=0.0).
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Confidence Intervals for d (νr = .1)

δ d∗ = .02 (N = 2048)

.0002 (2.00000 ± 4.72903 × 10−5) × 10−2

.0004 (2.00003 ± 3.39327 × 10−5) × 10−2

.0008 (2.00003 ± 2.79911 × 10−5) × 10−2

δ d∗ = .04 (N = 4096)

.0002 (4.00014 ± 5.48283 × 10−5) × 10−2

.0004 (4.00002 ± 3.87474 × 10−5) × 10−2

.0008 (4.00003 ± 3.19526 × 10−5) × 10−2

Confidence intervals for the OLS estimate of d when the data is
generated with noise level νr=0.1.
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Confidence Intervals for δ (νr = 0)

δ d∗ = .02 (N = 2048)

.0002 (1.99272 ± 0.000182978) × 10−4

.0004 (4.00035 ± 0.000201885) × 10−4

.0008 (7.99833 ± 0.000136586) × 10−4

δ d∗ = .04 (N = 4096)

.0002 (1.98142 ± 0.000317616) × 10−4

.0004 (4.00737 ± 0.000369841) × 10−4

.0008 (8.00332 ± 0.000251291) × 10−4

Confidence intervals for the OLS estimate of δ when the data is
generated with no noise (i.e., νr=0.0).
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Confidence Intervals for δ (νr = .1)

δ d∗ = .02 (N = 2048)

.0002 (2.00017 ± 0.00932701) × 10−4

.0004 (4.00070 ± 0.0105331) × 10−4

.0008 (7.99698 ± 0.00778563) × 10−4

δ d∗ = .04 (N = 4096)

.0002 (1.97674 ± 0.0107203) × 10−4

.0004 (4.01229 ± 0.0120445) × 10−4

.0008 (8.00361 ± 0.00886925) × 10−4

Confidence intervals for the OLS estimate of δ when the data is
generated with noise level νr=0.1.
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Comments on 1D Gap Problem
• Our modified Least Squares objective function

“fixes” peaks in J
• Can test on both sides of detected minima to

ensure global minimization
• We are able to detect a .2mm wide crack behind

a 20cm deep slab
• Even adding random noise (equivalent to 20%

relative noise) does not significantly hinder our
inverse problem solution method, and only
slightly broadens the confidence intervals in a
sensitivity analysis
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2D Problem Outline
• Motivation
• Model
• Parameter Identification

• Clausius-Mossotti
• Experimental Data

• Computational Methods
• Simulations
• Inverse Problem
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Voids in Foam

The foam on the space shuttle is sprayed on in layers
(thus the acronym SOFI). Voids occur between layers.
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Cured Layer

As the top of each layer cures, a thin knit line is formed which is of higher
density (i.e., is comprised of smaller, more tightly packed polyurethane cells).
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SOFI under 20X magnification

As the knit lines are on the order of 1 mm thick, they are generally ignored.
But, what effect (if any) do the knit lines actually have on the interrogating
signal? on detecting voids?
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Sample Knit Lines with Void
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Dashed lines represent knit lines, dot-dash is foam/air interface. Elliptical
pocket (5 mm) between knit lines is a void. “+” marks the signal receiver.
Back wall is perfect conductor.
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2D Wave Equation
We assume the electric field to be polarized in the z

direction, thus for ~E = (0, 0, E) and ~x = (x, y)

ε(~x)
∂2E

∂t2
(t, ~x) −∇ ·

(

1

µ(~x)
∇E(t, ~x)

)

= −∂Js

∂t
(t, ~x)

where ε(~x) and µ(~x) = µ0 are the dielectric
permittivity and permeability, respectively.

Js(t, ~x) = δ(x)e−((t−t0)/t0)
4

,

where t0 = tf/4 when tf is the period of the
interrogating pulse.
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Boundary Conditions
Consider Ω = [0, 0.1] × [0, 0.2]

• Reflecting (Dirichlet) boundary conditions (right)

[E]x=0.1 = 0

• First order absorbing boundary conditions (left)

∂E

∂t
−

√

1

ε(~x)µ0

∂E

∂x

∣

∣

∣

∣

∣

x=0

= 0

• Symmetric boundary conditions (top and bottom)
[

∂E

∂y

]

y=0,y=0.2

= 0

We use homogeneous initial conditions E(0, ~x) = 0.
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Modeling Knit Lines
• The speed of propagation in the domain is

c(~x) =
c0

n(~x)
=

√

1

ε(~x)µ0
,

where c0 is the speed in a vacuum and n is the
index of refraction.

• We model knit lines by changing the index of
refraction, thus effectively the speed in that
region.

• Note that we currently ignore attenuation,
focusing our attention on loss due to scattering
from knit lines.
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Clausius-Mossotti Equation
In order to relate the observed index of refraction of
the entire foam, ne, to the index in the low density
region, n1, we may apply the Clausius-Mossotti
equation to get

n2
e − 1

n2
e + 2

= 2(νβ + 1 − ν)
n2

1 − 1

n2
1 + 2

,

where ν is the volume fraction of the foam occupied
by the knit lines and β = ρ2

ρ1
represents the increase in

density. Thus, if ne is estimated via “time of flight”
experiments, n1 can be determined with reasonable
values of ν and β.
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Experimental Data

0 1 2 3 4 5 6 7
2.9

2.91

2.92

2.93

2.94

2.95

2.96
x 10

8

Number of knit lines

V
el

oc
ity

 (
m

/s
)

Velocity of zero knit line foam is 2.94638e+08 m/s, i.e., n=1.0172

Applying linear regression we estimate that n1 = 1.0172. (Clausius-Mossotti
gives n1 = 1.0150.) Using ne = (1 − ν)n1 + νn2, where ν = 0.05 (.5mm
knit line), we have the index in the knit line to be n2 = 1.1869.
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2D Numerical Discretization

• Second order (piecewise linear) FEM in space

• Second order (centered) FD in time

• Linear solve (sparse)
• Preconditioned conjugate-gradient
• LU factorization
• Mass lumping (explicit)

• Stair-stepping
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Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03.
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Plane Wave Signal
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Interrogating signal simulates a sine curve truncated after one half period.
Reflections off void are shown in inset.
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Picometrix T-Ray Setup

Note the non-normal incidence and ability to focus.
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Oblique Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03, but raised to collect center of
plane wave reflection.
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Oblique Plane Wave Signal
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Nearly all of original signal returns even with an oblique angle of incidence.
(Note: last knit line removed.)
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Focused Wave Simulation

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03. Note top and bottom
boundary conditions are now absorbing.
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Focused Wave Signal
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Although reflections off of void are larger, the total energy that returns is less
than the plane wave simulation.
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Oblique Focused Wave

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03, but raised to collect
center of focused wave reflection.
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Oblique Focused Wave Signal
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Data received from non-normally incident, focused wave. Reflection from
void is similar in magnitude to normal incidence focused wave.
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2D Void Inverse Problem
• Assume we have data, Êi at times ti and x = x

+

• Given the width of an elliptical void w, we can
simulate the electric field

• Estimate void width w by solving an inverse
problem:

Find w ∈ Qad such that the following objective
function is minimized:

J1(w) =
1

2S

S
∑

i=1

|E(ti,x
+; w) − Êi|2.
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J1 – Objective Function
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Location of the initial guess is crucial to minimizing with a gradient-based
method.
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J1 – Objective Function
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If we had only sampled the landscape with five points, we would have chosen
poorly.
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Improved Objective Function
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J2(w) =
1
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∣

∣

∣
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Improved Objective Function
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Better representation of overall agreement of signals; more forgiving in
chosing initial guess.
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Inverse Problem Example
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Low resolution example: using w0 = .008, “optimal”
value after 12 iterations is w = .01, exact value is
w = .01.
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Concluding Remarks
With current power sources and detection devices, reflections
from the front surface, voids, and knit lines are difficult to detect.
Thus, for now, information is collected from the total reflection
off the aluminum backing. More work needs to be done to match
simulations to this data, including adding attenuation and using
data to generate the simulated source.

OSU Math Colloquium – p. 58



Future Directions

• Modeling Approaches
• Scattering mechanism
• Match attenuation observed in data

• Computational Methods
• Higher order FE methods
• No stair-stepping
• Faster time-marching
• ABC/PML
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Picometrix T-Ray Setup

Step-block can be turned upside down to sample varying gap sizes.
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THz through foam
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THz signal recorded after passing through
foam of varying thickness, in a pitch-echo ex-
periment.
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Time-of-flight

Bitmap of time-of-flight recordings from step-block foam. Method clearly shows steep
boundaries between foam and voids.
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Relative vs Constant Variance
Noise
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Relative Noise vs Constant Variance

Relative Noise
Constant Variance

The difference between data with relative noise added and data with constant variance noise
added is clearly evident when E is close to zero or very large.
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