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Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear IVP

ẏ + ky = g , y(0) = y0

with
k = k(ξ) = ξ, ξ ∼ N (0, 1), g(t) = 0.

We can represent the solution y as a Polynomial Chaos (PC) expansion in
terms of (normalized) orthogonal Hermite polynomials Hj :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ).

Substituting into the ODE we get

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.
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Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)(jφj−1(ξ) + φj+1(ξ)) = 0.
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Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

In order to approximate y we wish to find a finite system for at least the
first few αi .
We take the weighted inner product with the ith basis, i = 0, . . . , p,

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

where

〈f (ξ), g(ξ)〉W :=

∫
f (ξ)g(ξ)W (ξ)dξ.

By orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p.
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Polynomial Chaos

Deterministic ODE system

Let ~α represent the vector containing α0(t), . . . , αp(t).
Assuming α−1(t), αp+1(t), etc., are identically zero, the system of ODEs
can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The degree p PC approximation is y(t, ξ) ≈ yp(t, ξ) =

∑p
j=0 αj(t)φj(ξ).

The mean value E[y(t, ξ)] ≈ E[yp(t, ξ)] = α0(t).
The variance Var(y(t, ξ)) ≈

∑p
j=1 αj(t)2.
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Polynomial Chaos

Figure: Convergence of error with Gaussian random variable by Hermitian-chaos.
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Polynomial Chaos

Generalizations

Consider the non-homogeneous IVP

ẏ + ky = g(t), y(0) = y0

with
k = k(ξ) = σξ + µ, ξ ∼ N (0, 1),

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system is

~̇α + (σM + µI )~α = g(t)~e1.

Note that the initial condition for the PC system is ~α(0) = y0 ~e1.
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Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp
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Polynomial Chaos

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [a, b]
uniform Legendre [a, b]

Note: lognormal random variables may be handled as a non-linear function
(e.g., Taylor expansion) of a normal random variable.
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Electromagnetics
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Electromagnetics Maxwell’s Equations

Maxwell’s Equations

∂B

∂t
+∇× E = 0, in (0,T )×D (Faraday)

∂D

∂t
+ J−∇×H = 0, in (0,T )×D (Ampere)

∇ ·D = ∇ · B = 0, in (0,T )×D (Poisson/Gauss)

E(0, x) = E0; H(0, x) = H0, in D (Initial)

E× n = 0, on (0,T )× ∂D (Boundary)

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂Ω
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Electromagnetics Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

where ε = ε0ε∞ and µ = µ0µr .
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Electromagnetics Dispersive Media

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.
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Electromagnetics Dispersive Media

Dry skin data
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Figure: Real part of ε(ω), ε, or the permittivity [GLG96].
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Electromagnetics Dispersive Media
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Electromagnetics Dispersive Media

Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [ε∞, εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)
q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)1−α
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Electromagnetics Dispersive Media

Dispersive Media
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Figure: Debye model simulations.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 20 / 97



Electromagnetics Maxwell-Debye

Outline

1 Polynomial Chaos

2 Electromagnetics
Maxwell-Debye
Maxwell-Random Debye
Maxwell-PC Debye
PC-Debye FDTD
PC-Debye FDTD
Conclusions

3 Reservoir Operations
Problem formulation
Sources of uncertainty and assumptions
Stochastic representation of the solutions
Robust optimization
Future work

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 21 / 97



Electromagnetics Maxwell-Debye

Maxwell-Debye System

Combining Maxwell’s Equations, Constitutive Laws, and the Debye model,
we have

µ0
∂H

∂t
= −∇× E, (1a)

ε0ε∞
∂E

∂t
= ∇×H− ε0εd

τ
E +

1

τ
P− J, (1b)

τ
∂P

∂t
= ε0εdE− P. (1c)
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Electromagnetics Maxwell-Debye

Assuming a solution to (1) of the form E = E0exp(i(ωt − k · x)), the
following relation must hold.

Debye Dispersion Relation

The dispersion relation for the Maxwell-Debye system is given by

ω2

c2
ε(ω) = ‖k‖2

where the complex permittivity is given by

ε(ω) = ε∞ + εd

(
1

1 + iωτ

)
Here, k is the wave vector and c = 1/

√
µ0ε0 is the speed of light.
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Electromagnetics Maxwell-Debye

2D Maxwell-Debye Transverse Electric (TE) curl equations

For simplicity in exposition and to facilitate analysis, we reduce the
Maxwell-Debye model to two spatial dimensions (we make the assumption
that fields do not exhibit variation in the z direction).

µ0
∂H

∂t
= −curl E, (2a)

ε0ε∞
∂E

∂t
= curl H − ε0εd

τ
E +

1

τ
P− J, (2b)

τ
∂P

∂t
= ε0εdE− P, (2c)

where E = (Ex ,Ey )T ,P = (Px ,Py )T and Hz = H.

Note curl U =
∂Uy

∂x −
∂Ux
∂y and curl V =

(
∂V
∂y ,−

∂V
∂x

)T
.
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Electromagnetics Maxwell-Debye

Stability Estimates for Maxwell-Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (Li2010)

Let D ⊂ R2, and let H, E, and P be the solutions to (the weak form of)
the 2D Maxwell-Debye TE system with PEC boundary conditions. Then
the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd

P(t)

∥∥∥∥2

2

and ‖ · ‖2 is the L2(D) norm.
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Electromagnetics Distribution of Parameters

Motivation for Distributions

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

Debye is efficient to simulate, but does not represent permittivity well

Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the known
existence of multiple physical mechanisms: multi-pole debye (like
stair-step approximation)

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]

Empirical measurements suggest a log-normal or Beta distribution
[Wagner1913] (but uniform is easier)

Using Mellin transforms, can show Cole-Cole corresponds to a
continuous distribution
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Electromagnetics Fit to dry skin data with uniform distribution
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Figure: Real part of ε(ω), ε, or the permittivity [REU2008].
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].
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Electromagnetics Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider
the following polydispersive DRF

h(t, x; F ) =

∫
Q

g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x; F ) =

∫ t

0
h(t − s, x; F )E(s, x)ds.
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Electromagnetics Distribution of Parameters

Random Polarization

Alternatively we can define the random polarization P(t, x; τ) to be the
solution to

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x; F ) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Electromagnetics Maxwell-Random Debye

Maxwell-Random Debye system

In a polydispersive Debye material, we have

µ0
∂H

∂t
= −∇× E, (3a)

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
− J (3b)

τ
∂P
∂t

+ P = ε0εdE (3c)

with

P(t, x; F ) =

∫ τb

τa

P(t, x; τ)dF (τ).
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Electromagnetics Inverse Problem Numerical Results
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Electromagnetics Inverse Problem Numerical Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−9

−80

−60

−40

−20

0

20

40

60

80

100

t

E

Comparison, noise = 0.1, refinement = 1, perturb = −0.8

 

 
Data
Initial J=983.713
Optimal J=1.25869
Actual J=1.25879

Comparison of simulations to data.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 34 / 97



Electromagnetics Inverse Problem Numerical Results

Theorem (G., 201X)

The dispersion relation for the system (3) is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ

]
.

Again, k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

Note: for a uniform distribution on [τa, τb], this has an analytic form since

E
[

1

1 + iωτ

]
=

1

ω(τb − τa)

[
arctan(ωτ) + i

1

2
ln
(
1 + (ωτ)2

)]τ=τa

τ=τb

.
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Electromagnetics Inverse Problem Numerical Results

Proof: (for 2D)

Letting H = Hz , we have the 2D Maxwell-Random Debye TE scalar
equations:

µ0
∂H

∂t
=
∂Ex

∂y
− ∂Ey

∂x
, (4a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂Px

∂t
, (4b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂Py

∂t
, (4c)

τ
∂Px
∂t

+ Px = ε0εdEx (4d)

τ
∂Py
∂t

+ Py = ε0εdEy . (4e)
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Electromagnetics Inverse Problem Numerical Results

Proof: (cont.)

We assume plane wave solutions of the form

V = Ṽ ei(k·x−ωt)

where x = (x , y)T and k = (kx , ky )T . We have, for example,

P̃x = E[P̃x ] = ε0εd ẼxE
[

1

1 + iωτ

]
.

The rest is algebra.

The proof is similar in 1 and 3 dimensions.

The exact dispersion relation will be compared with a discrete
dispersion relation to determine the amount of dispersion error.
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Electromagnetics Inverse Problem Numerical Results

We introduce the Hilbert space VF = (L2(Ω)⊗ L2(D))2 equipped with an
inner product and norm as follows

(u, v)F = E[(u, v)2],

‖u‖2
F = E[‖u‖2

2].

The weak formulation of the 2D Maxwell-Random Debye TE system is(
∂H

∂t
, v

)
2

=

(
− 1

µ0
curl E, v

)
2

, (5)

(
ε0ε∞

∂E

∂t
,u

)
2

= (H, curl u)2 −
(
∂P

∂t
,u

)
2

, (6)

(
∂P
∂t
,w

)
F

=
(ε0εd

τ
E,w

)
F
−
(

1

τ
P,w

)
F

, (7)

for v ∈ L2(D), u ∈ H0(curl,D)2, and w ∈ VF .
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Electromagnetics Well-posedness

Stability Estimates for Maxwell-Random Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (G., 201X)

Let D ⊂ R2, and let H, E, and P be the solutions to the weak form of the
2D Maxwell-Random Debye TE system with PEC boundary conditions.
Then the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd
P(t)

∥∥∥∥2

F

.
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Electromagnetics Well-posedness

Proof: (for 2D)

By choosing v = H, u = E, and w = P in the weak form, and adding all
three equations into the time derivative of the definition of E2, we obtain

1

2

dE2(t)

dt
=−

(
curl E,H

)
2

+
(

H, curl E
)

2
−
(ε0εd

τ
E,E

)
F

+
(1

τ
P,E

)
F

+
(1

τ
E,P

)
F
−
( 1

ε0εdτ
P,P

)
F

=− ε0εd

(1

τ
E,E

)
F

+ 2
(1

τ
P,E

)
F
− 1

ε0εd

(1

τ
P,P

)
F

=
−1

ε0εd

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

.

dE(t)

dt
=

−1

ε0εdE(t)

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

≤ 0.
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Electromagnetics Maxwell-PC Debye

Polynomial Chaos

Apply Polynomial Chaos (PC) method to approximate each spatial
component of the random polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = τrξ + τm

resulting in
(τrM + τmI )~̇α + ~α = ε0εdE ê1

or
A~̇α + ~α = ~f .

The electric field depends on the macroscopic polarization, the expected
value of the random polarization at each point (t, x), which is

P(t, x ; F ) = E[P] ≈ α0(t, x).

Note that A is positive definite if τr < τm since λ(M) ∈ (−1, 1).
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Electromagnetics Maxwell-PC Debye

Maxwell-PC Debye

Replace the Debye model with the PC approximation. In two dimensions
we have the 2D Maxwell-PC Debye TE scalar equations

µ0
∂H

∂t
=
∂Ex

∂y
− ∂Ey

∂x
, (8a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂α0,x

∂t
, (8b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂α0,y

∂t
, (8c)

A~̇αx + ~αx = ~fx , (8d)

A~̇αy + ~αy = ~fy . (8e)

where ~fx = ε0εdEx ê1 and ~fy = ε0εdEy ê1.
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Electromagnetics FDTD

Finite Difference Time Domain (FDTD)

We now define a discretization of the Maxwell-PC Debye model. Note that
any scheme can be used independent of the spectral approach in random
space employed here.

The Yee Scheme

In 1966 Kane Yee originated a set of finite-difference equations for the
time dependent Maxwell’s curl equations in freespace.

The finite difference time domain (FDTD) or Yee scheme solves for
both the electric and magnetic fields in time and space using the
coupled Maxwell’s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.

Approximates first order derivatives very accurately by evaluating on
staggered grids.
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Yee Scheme in One Space Dimension

Staggered Grids: The electric field/flux is evaluated on the primary
grid in both space and time and the magnetic field/flux is evaluated
on the dual grid in space and time.

The Yee scheme is

H|n+ 1
2

`+ 1
2

− H|n−
1
2

`+ 1
2

∆t
= − 1

µ

E |n`+1 − E |n`
∆z

E |n+1
` − E |n`

∆t
= −1

ε

H|n+ 1
2

`+ 1
2

− H|n+ 1
2

`− 1
2

∆z

-�h

tn+ 1
2

tn+1

� � � � � �

v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2
. . .
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Electromagnetics FDTD

This gives an explicit second order accurate scheme in time and space.

It is conditionally stable with the CFL condition

ν :=
c∆t

h
≤ 1√

d

where ν is called the Courant number and d is the spatial dimension,
and h is the (uniform) spatial step.

The initial value problem is well-posed and the scheme is consistent
and stable. The method is convergent by the Lax-Richtmyer
Equivalence Theorem.

The Yee scheme can exhibit numerical dispersion.

Dispersion error can be reduced by decreasing the mesh size or
resorting to higher order accurate finite difference approximations.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 47 / 97



Electromagnetics Debye FDTD

Extensions of the Yee Scheme to Dispersive Media

The ordinary differential equation for the polarization is discretized
using second order centered differences and an averaging of zero order
terms.

The resulting scheme remains second-order accurate in both time and
space with the same CFL condition, c∞∆t ≤ h/

√
d , except that

c∞ = 1/
√
µ0ε0ε∞ is the fastest wave speed.

However, the Yee scheme for the Maxwell-Debye system is now
dissipative in addition to being dispersive.
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Electromagnetics Debye FDTD

Yee Scheme for Maxwell-Debye System (in 1D)

µ0
∂H

∂t
= −∂E

∂z

ε0ε∞
∂E

∂t
= −∂H

∂z
− ∂P

∂t

τ
∂P

∂t
= ε0εdE − P

become

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z

ε0ε∞
E
n+ 1

2
j − E

n− 1
2

j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

P
n+ 1

2
j − P

n− 1
2

j

∆t

τ
P
n+ 1

2
j − P

n− 1
2

j

∆t
= ε0εd

E
n+ 1

2
j + E

n− 1
2

j

2
−

P
n+ 1

2
j + P

n− 1
2

j

2
.
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Electromagnetics Debye FDTD

Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the
Maxwell-Debye, the discrete dispersion relation can be written

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) = ε∞ + εd

(
1

1 + iω∆τ∆

)
with discrete (mis-)representations of ω and τ given by

ω∆ =
sin (ω∆t/2)

∆t/2
, τ∆ = sec(ω∆t/2)τ.
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Electromagnetics Debye FDTD

Discrete Debye Dispersion Relation (cont.)

The quantity K∆ is given by

K∆ =
sin (k∆z/2)

∆z/2

in 1D and is related to the symbol of the discrete first order spatial
difference operator by

iK∆ = F(D1,∆z).

In this way, we see that the left hand side of the discrete dispersion relation

ω2
∆

c2
ε∆(ω) = K 2

∆

is unchanged when one moves to higher order spatial derivative
approximations [Bokil-G,2012] or even higher spatial dimension
[Bokil-G,2013].
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Electromagnetics PC-Debye FDTD

The discretization of the PC system

A~̇α + ~α = ~f

is performed similarly to the deterministic system in order to preserve
second order accuracy. Applying second order central differences at
~αn
j = ~α(tn, zj):

A
~α
n+ 1

2
j − ~αn− 1

2
j

∆t
+
~α
n+ 1

2
j + ~α

n− 1
2

j

2
=
~f
n+ 1

2
j + ~f

n− 1
2

j

2
. (9)

Couple this with the equations from above:

ε0ε∞
E
n+ 1

2
j − E

n− 1
2

j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

α
n+ 1

2
0,j − α

n− 1
2

0,j

∆t
(10a)

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z
. (10b)
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Electromagnetics Stability Analysis

Let τEx
h , τ

Ey

h , τHh be the sets of spatial grid points on which the Ex , Ey ,
and H fields, respectively, will be discretized. The discrete L2 grid norms
are defined as

‖V‖2
E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Vx

`+ 1
2 ,j
|2 + |Vy

`,j+ 1
2

|2
)
, (11)

‖U‖2
H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2
,j+ 1

2
|2, (12)

with corresponding inner products. Each component of αk is discretized

on τEx
h × τ

Ey

h with discrete L2 grid norm

‖~α‖2
α =

p∑
k=0

‖αk‖2
E ,

with a corresponding inner product

(~α, ~β)α =

p∑
k=0

(
αk , βk

)
E
.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 54 / 97



Electromagnetics Stability Analysis

Energy Decay and Stability

Energy decay implies that the method is stable and hence convergent.

Theorem (G., 201X)

For n ≥ 0, let Un = [Hn− 1
2 ,En

x ,E
n
y , α

n
0,x , . . . , α

n
0,y , . . .]

T be the solutions of
the 2D Maxwell-PC Debye TE FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
c∞∆t ≤ h/

√
2, then there exists the energy decay property

En+1
h ≤ Enh

where the discrete energy is given by

(Enh )2 =
∣∣∣∣∣∣√µ0H

n
∣∣∣∣∣∣2
H

+ ||
√
ε0ε∞En||2E +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

~αn

∣∣∣∣∣∣∣∣2
α

.

Note: ‖P‖2
F = E[‖P‖2

2] = ‖E[P]2 + Var(P)‖2
2 ≈ ‖~α‖2

α.
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Electromagnetics Stability Analysis

Energy Decay and Stability (cont.)

Proof.

First, showing that this is a discrete energy, i.e., a positive definite
function of the solution, involves recognizing that

(Enh )2 = µ0‖H
n‖2

H + ε0ε∞(En,AhEn)E +
1

ε0εd
(~αn − E ê1,A

−1(~αn − E ê1))α

with Ah positive definite when the CFL condition is satisfied, and A−1 is
always positive definite (eigenvalues between τm − τr and τm + τr ).

The rest follows the proof for the deterministic case [Bokil-G, 201X] to
show

En+1
h − Enh

∆t
= −

(
2

En+1
h + Enh

)
1

ε0εd

∥∥∥∥ε0εdE
n+ 1

2 ê1 − ~α
n+ 1

2

∥∥∥∥2

A−1

. (13)
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Electromagnetics Dispersion Analysis

Theorem (G., 2013)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
in (9) and (10) is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete expected complex permittivity is given by

ε∆(ω) := ε∞ + εd êT1 (I + iω∆A∆)−1 ê1

and the discrete PC matrix is given by

A∆ := sec(ω∆t/2)A.

The definitions of the parameters ω∆ and K∆ are the same as before.
Recall the exact complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ
.

]
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Electromagnetics Dispersion Analysis

Proof: (for 1D)

Assume plane wave solutions of the form

V n
j = Ṽ ei(ωn∆t−kj∆z)

and
αn
`,j = α̃`e

i(ωn∆t−kj∆z)

Substituting into (9) yields

Aα̃

(
2i

∆t
sin(ω∆t/2)

)
+ cos(ω∆t/2)α̃ = ε0εd cos(ω∆t/2)Ẽ ê1 (14)

which implies
α̃0 = êT1 (I + iω∆A∆)−1 ê1ε0εd Ẽ . (15)

The rest of the proof follows as before.

Note that the same relation holds in 2 and 3D as well as with higher order
accurate spatial difference operators.
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Electromagnetics Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (16)

where the numerical wave number k∆ is implicitly determined by the
corresponding dispersion relation and kEX is the exact wave number for
the given model.

We wish to examine the phase error as a function of ω∆t in the
range [0, π]. ∆t is determined by hττm, while ∆x = ∆y determined
by CFL condition.
We note that ω∆t = 2π/Nppp, where Nppp is the number of points
per period, and is related to the number of points per wavelength as,
Nppw =

√
ε∞νNppp.

We assume a uniform distribution and the following parameters which
are appropriate constants for modeling aqueous Debye type materials:

ε∞ = 1, εs = 78.2, τm = 8.1× 10−12 sec, τr = 0.5τm.
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Figure: Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right
column) τr = 0.9τm, using hτ = 0.01.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 61 / 97



Electromagnetics Dispersion Analysis

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PC−Debye dispersion for FD with h
τ
=0.001, r=0.5τ, θ=0

ω ∆ t

Φ

 

 

M=0

M=1

M=2

M=3

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PC−Debye dispersion for FD with h
τ
=0.001, r=0.9τ, θ=0

ω ∆ t

Φ

 

 

M=0

M=1

M=2

M=3

M=4

M=5

M=6

Figure: Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right
column) τr = 0.9τm, using hτ = 0.001.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 62 / 97



Electromagnetics Dispersion Analysis

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.01, r=0.5τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.01, r=0.9τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

M=4

M=5

M=6

Figure: Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.01. Legend indicates degree
M of the PC expansion.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 63 / 97



Electromagnetics Dispersion Analysis

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.001, r=0.5τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.001, r=0.9τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

M=4

M=5

M=6

Figure: Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.001. Legend indicates
degree M of the PC expansion.

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 64 / 97



Electromagnetics Conclusions

Outline

1 Polynomial Chaos

2 Electromagnetics
Maxwell-Debye
Maxwell-Random Debye
Maxwell-PC Debye
PC-Debye FDTD
PC-Debye FDTD
Conclusions

3 Reservoir Operations
Problem formulation
Sources of uncertainty and assumptions
Stochastic representation of the solutions
Robust optimization
Future work

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 65 / 97



Electromagnetics Conclusions

Conclusions/Future Work

We have presented a random ODE model for polydispersive Debye
media

We described an efficient numerical method utilizing polynomial
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We have shown (conditional) stability of the scheme via energy decay
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Reservoir Operations Problem formulation

Reservoir Operations

The broad context of the problem of interest is a PDE-constrained optimal
control problem with uncertainty. In particular, one must

meet electrical demand with hydro-power production

mitigate flooding

preserve ecological conditions

possibly maximize revenue

etc.

all without perfect knowledge of the system, the inflows, the demand, or
prices.
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Reservoir Operations River system and modeling equations

Simple River System

Consider this simple network system

Unknowns: flow discharge upstream Qu and downstream Qd , water depth
downstream yd for each reach i = 1, . . . , 8.
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Reservoir Operations River system and modeling equations

Simulation of Unsteady Flows

Most free surface flows are unsteady and nonuniform.

Unsteady flows in river systems are typically simulated using 1D models.

Saint-Venant equations: PDEs representing conservation of mass and
momentum for a control volume:

B
∂y

∂t
+
∂Q

∂x
= 0, (17)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂y

∂x
+ Sf − S0

)
= 0, (18)

where x is a distance along the channel in the longitudinal direction, t is time,
y is a water depth, Q is a flow discharge,
B is a width of the channel, g is an acceleration due to gravity,
A is a cross-sectional area of the flow, Sf is a friction slope, S0 is a river bed slope.

Initial and boundary conditions are required to close the system.
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Reservoir Operations River system and modeling equations

System of Equations to Solve

At each time step we need to guarantee

Continuity at each node ∑
Qin =

∑
Qout

Compatibility at each node

WSEupstream reach = WSEdownstream reach

Conservation of mass at each reach

(Total Inflow− Total Outflow)∆t = Change in Storage∆t
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Hydraulic and Volume Performance Graphs

The Hydraulic Performance Graph (HPG) of a channel reach
summarizes the dynamic relation between the flow through and the
depth at the ends of the reach under gradually varied flow conditions.

The Volume Performance Graph (VPG) of a channel reach
summarizes the corresponding storage.

The HPG and VPG are unique to a channel reach with a given
geometry and roughness.

They can be pre-computed, in high resolution, decoupled from
unsteady reach boundary conditions by solving the PDE system for all
feasible conditions in the reach.

The performance graphs can be interpolated for use with different
reach boundary conditions.

The performance graphs approach is built into the OSU-Rivers
software, and greatly reduces computational time.
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Hydraulic and Volume Performance Graphs. Examples

Example of the HPG and the VPG for a mild-sloped channel.
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Sources of Uncertainty

Hydrological conditions (particularly inflows) and power demand (and
price) are the main sources of uncertainties.

Chosen approach

Parametrization of the uncertain inputs, such as stream inflows

Stochastic representation of the solutions - discharge and water depth

Robust optimization

Assumptions on the uncertain inputs

We have M predictions, M > 1, of the inflow function Qu1 , forecast
for the same points in time {tj}nj=1.

The logarithm of the inflow function Qu1 can be represented as a
Gaussian process.
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Reservoir Operations Parametrization of the uncertain inputs

Parametrization of the Stream Inflow

Li (tj) = ln Qu1,i (tj) is the value of the logarithm of the ith inflow at tj .

Expectation of the log stream inflow L̄ and its covariance C (tj , tk),

L̄(tj) =
1

M

M∑
i=1

Li (tj), j = 1, . . . , n,

C (tj , tk) =
1

M − 1

M∑
i=1

(L(tj)− L̄(tj))(Lu1,i (tk)− L̄(tk)).

Qu1 (t) can be represented as

Qu1 (t) = exp

(
L̄(t) +

∞∑
k=1

√
λkψk(t)ξk

)
.

(λk , ψk): λψ(t) =

∫
C (s, t)ψ(s)ds.

{ξ}∞k=1 is a sequence of standard normal random variables.
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Reservoir Operations Parametrization of the uncertain inputs

Parametrization of the Stream Inflow

Truncation of infinite series representation

We use

QN
u1

(t) = exp

(
L̄(t) +

N∑
k=1

√
λkψk(t)ξk

)
.

Number of terms N can be chosen in different ways:

Use
∑∞

k=1 λk =
∫

C (t, t)dt = 1 to choose N such that
∑N

k=1 λk > c ,
0 < c < 1.

Assume λ1 ≥ λ2 ≥ λ3 · · · and choose N such that λk > cλ1, k = 1, . . . ,N,
0 < c < 1.

Sensitivity of the solution, e.g., Qd , to the distribution of the random
variables {ξk}Nk=1

DSE [ρ, ρ2](Qd) =
‖Eρ(Qd)− Eρ2 (Qd)‖

d(ρ, ρ2)
,

where Eρ(Qd) is a quantity of interest associated with Qd (mean or variance)
with respect to the probability density ρ; ρ2 is a perturbation of the density
ρ1; d(ρ1, ρ2) is a measure of distance between two densities, e.g. L1 norm.N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 80 / 97
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Numerical Experiments. Stochastic Parametrizations

Experiment 1: 5 predictions
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Reservoir Operations Parametrization of the uncertain inputs

Numerical Experiments. Stochastic Parametrizations

Experiment 2 (mixture distribution): 10 predictions, p = 0.8
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Numerical Experiments. Stochastic Parametrizations

Experiment 2 continued (k-means clustering)
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Numerical Experiments. Stochastic Parametrizations

Experiment 2 continued (k-means clustering)
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Reservoir Operations Stochastic representation of the solutions

Polynomial Chaos Representation of the Solutions

Goal: Given the parametrization of the uncertain inputs, provide the stochastic
representation of the solutions.

Approach: Generalized Polynomial Chaos (gPC) Expansion.

Consider a flow discharge at the most downstream reach, Qd8 . Its representation
in terms of a degree p polynomial expansion

Qp
d8

(t, ~ξ) =

Mp∑
i=0

vi (t)φi (~ξ), (19)

~ξ = (ξ1, ξ2, . . . , ξN) are r.v. in the representation of Qu1

{φi}
Mp

i=0 are the N-variate orth. polynomial functions of degree up to p

if {ξk} are i.i.d. N(0, 1), {φi}
Mp

i=0 are chosen as tensor products of univariate
Hermite polynomials.

Mp < (N + p)!/(N!p!) (max number of polynomial basis functions)
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Reservoir Operations Stochastic representation of the solutions

Polynomial Chaos Representation of the Solutions

Each gPC expansion coefficient can be represented via a projection

vi (t) = E[Qd8 (t, ~ξ)φi (~ξ)] =

∫
Γ

Qd8 (t, z)φi (z)ρ(z)dz. (20)

Γ =
∏N

k=1 Γk , Γk = ξk(Ω), where (Ω,F ,P) is a probability space

ρ(z) is a joint probability density of the random vector ~ξ

One could derive the coupled PDE system for these coefficients, but this would be
intrusive as it changes the system we would like to solve (not good, especially
since we have pre-computed solutions).

Instead, the computation of the coefficients vi , i = 0, . . . ,Mp can be done
non-intrusively with the use of the stochastic collocation method.

Combined with the performance graphs approach, the stochastic solutions are

computed very efficiently.
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Reservoir Operations Stochastic representation of the solutions

Stochastic Collocation and gPC

Choose a set of collocation points zj = (zj,1, zj,2, . . . , zj,N) ∈ Γ and weights
wj , j = 1, . . . ,Ncp.

For each j = 1, . . . ,Ncp evaluate the inflow function Qu1,j(t) = Qu1 (t, zj).

Simulate deterministically the corresponding downstream flow Qd8,j(t).

Approximate the gPC expansion coefficients using Gaussian Quadrature

vi (t) = E[Qd8 (t, ~ξ)φi (~ξ)] ≈
Ncp∑
j=1

wjQd8 (t, zj)φi (zj). (21)

Construct the N-variate, pth-order gPC approximation, if necessary

Qp
d8

(t, ~ξ) =

Mp∑
i=0

vi (t)φi (~ξ). (22)

Or just use E[Qd8 (t, ~ξ)] ≈ v0(t), Var[Qd8 (t, ~ξ)] ≈
Mp∑
i=1

vi (t)2.
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Reservoir Operations Examples of objective and constraints

Objective and Constraints

Let Qt denote a turbine flow of a dam and y a depth of reservoir.

Let P be a price, and E be a produced (surplus) hydro-power energy, then
R = P · E is a revenue.

Objective:
max
Qt

R,

Subject to constraints:

0 < Qt < Qcrit ,

0 <

∣∣∣∣dQt

dt

∣∣∣∣ < Q̇max,

ymin < y < ymax.
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Reservoir Operations Theory and mathematical formulation

Robust Optimization Under Uncertainty

Robust optimization captures two design concepts:

Robustness of an engineered system is the insensitiveness of the
system performance to noises from all possible sources, including both
external noises and control variable variations.

Reliability of an engineered system is the ability to fulfill its design
purpose for some specified time. In a narrow sense, reliability is the
probability that a system will not exceed a specified limit state
(ultimate or serviceability) within the specified operating time frame.

With respect to optimization under uncertainty,

robustness is achieved by considering both the mean and variance of
the original objective function.

reliability is achieved by considering the constraints to be
probabilistic.
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Reservoir Operations Theory and mathematical formulation

Mathematical Formulation

The deterministic constrained optimization problem can be formulated as

find max
q

R(q), (23)

subject to y(x , t; q) ≤ ycrit(x), (24)

where q is a control.

We assume the inflows are random and reformulate our problem as follows

find max
q

(
E [R(q)]− rVar[R(q)]

)
, (25)

subject to P(y(x , t; q) > ycrit(x)) ≤ α, (26)

where r is a risk tolerance coefficient, α is a reliability level the decision maker
wishes to achieve.

The mean and variance can be computed directly from the PC expansion of R.
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Algorithm for the Estimation of the Probability of Failure

Probabilistic constraints

Associated probability can be quite small (MC method would require many
samples).

Sampling of the system is expensive.

Given x fixed, let y(x , t) = y(t).

1 Assume we have computed values of y(t) at the chosen collocation points zj ∈ Γ,

j = 1, . . . ,Ncp. Obtain yp(t, ~ξ), the gPC representation of y(t) in terms of r.v.
{ξk}Nk=1.

2 For the purpose of comparison sample the gPC representation yp(t) by MC
method for the first estimate of the failure probability.

3 Find ~ξMPP , the most probable point (MPP), the point closest to the origin such

that yp(t, ~ξMPP) = ycrit (constrained optimization subproblem).

4 Sample the system to get y(t, ~ξMPP). Update the surrogate model.

5 Find the next approximation of the failure probability by MC sampling the updated
surrogate model.

6 Repeat steps (3)-(5) N more times, where N is dim(Γ).

N. L. Gibson (OSU) Uncertainty in PDEs OSU MATH 2013 93 / 97



Reservoir Operations Estimation of the probability of failure

Algorithm for the Estimation of the Probability of Failure

Now we have the system values y(t) evaluated at (N + 1) candidate MPP points.

7 Using only the last (N + 1) data points construct a linear approximation

ylin(t, ~ξ) of the system, e.g., plane in the case N = 2.

8 Find the MPP ~ξMPP of the new surrogate model ylin.

9 Sample the system to get y(t, ~ξMPP).

10 Among the last (N + 2) points find the best (N + 1) points in terms of the
exact value of y(t). Update the surrogate model ylin by using the best
(N + 1) points.

11 Find the next approximation of the failure probability by MC sampling the
updated surrogate model.

12 Compare the previous and current estimates of the probabilities.

13 Stop if the difference between the estimates is smaller than a prescribed
tolerance; otherwise repeat steps (7)-(12).
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Reservoir Operations Future work

Future Work

Multi-objective and multi-constraint robust optimization of the
multi-reservoir river systems.

Additional sources of uncertainty: price, demand forecast, wind
generated power.

Demonstration with actual historical data.

Optimization-based domain decomposition
(for parallel implementation).
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