Polynomial Chaos Approach for Simulations in Dispersive Media

N. L. Gibson V. A. Bokil

Department of Mathematics Oregon State University

September 9, 2010

N. L. Gibson (OSU)

Polynomial Chaos for Stochastic Polarization

- Karen Barrese and Neel Chugh (REU 2008)
- Anne Marie Milne and Danielle Wedde (REU 2009)
- Erin Bela and Erik Hortsch (REU 2010)

Outline

- Description
- Polarization Models
- Distribution of Relaxation Times
- Polynomial Chaos
 - Stochastic Polarization
 - Galerkin Projection

Discretization

- The Yee Scheme
- Time Discretization of PC Solution
- Stability Analysis
- Numerical Simulations

Maxwell's Equations

$$\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} = \nabla \times \mathbf{H} \quad \text{(Ampere)}$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \quad \text{(Faraday)}$$
$$\nabla \cdot \mathbf{D} = \rho \qquad \text{(Poisson)}$$
$$\nabla \cdot \mathbf{B} = 0 \qquad \text{(Gauss)}$$

- **E** = Electric field vector
- H = Magnetic field vector B =
 - $\rho =$ Electric charge density
- **D** = Electric displacement
 - **B** = Magnetic flux density

$$J = Current density$$

With appropriate initial conditions and boundary conditions.

N. L. Gibson (OSU)

Polynomial Chaos for Stochastic Polarization

Constitutive Laws

Maxwell's equations are completed by constitutive laws that describe the response of the medium to the electromagnetic field.

$$\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$$
$$\mathbf{B} = \mu \mathbf{H} + \mathbf{M}$$
$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_s$$

- **P** = Polarization Electric permittivity $\epsilon =$
- $M = Magnetization \mu = Magnetic permeability$

 $J_{c} =$ Source Current $\sigma =$ Electric Conductivity

Complex permittivity

 $\bullet\,$ We can define ${\bf P}$ in terms of a convolution

$$\mathbf{P}(t,\mathbf{x}) = g * \mathbf{E}(t,\mathbf{x}) = \int_0^t g(t-s,\mathbf{x};\mathbf{q})\mathbf{E}(s,\mathbf{x})ds,$$

where g is the dielectric response function (DRF).

- In the frequency domain $\hat{\mathbf{D}} = \epsilon_0 \epsilon(\omega) \hat{\mathbf{E}}$, where $\epsilon(\omega)$ is called the complex permittivity.
- $\epsilon(\omega)$ described by the polarization model (and conductivity)
- We are interested in ultra-wide bandwidth electromagnetic pulse interrogation of dispersive dielectrics, therefore we want an accurate representation of $\epsilon(\omega)$ over a broad range of frequencies.

Dispersive Media

Figure: Debye model simulations.

Dry skin data

N. L. Gibson (OSU)

Dry skin data

N. L. Gibson (OSU)

Sample models

• Debye model [1929] $\mathbf{q} = [\epsilon_d, \tau]$

$$g(t, \mathbf{x}) = \epsilon_0 \epsilon_d / \tau \ e^{-t/\tau}$$

or $\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0 \epsilon_d \mathbf{E}$
or $\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + i\omega\tau}$

with $\epsilon_d := \epsilon_0 (\epsilon_s - \epsilon_\infty)$.

Sample models

• Debye model [1929] $\mathbf{q} = [\epsilon_d, \tau]$

$$g(t, \mathbf{x}) = \epsilon_0 \epsilon_d / \tau \ e^{-t/\tau}$$

or $\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0 \epsilon_d \mathbf{E}$
or $\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + i\omega\tau}$

with $\epsilon_d := \epsilon_0(\epsilon_s - \epsilon_\infty)$. • Cole-Cole model [1936] (heuristic generalization) $\mathbf{q} = [\epsilon_d, \tau, \alpha]$ $\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + (i\omega\tau)^{1-\alpha}}$

Motivation

- Broadband wave propagation suggests time-domain simulation.
- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.
- Better fits to data are obtained by taking linear combinations of Debye models (discrete distributions), idea comes from the known existence of multiple physical mechanisms.
- An alternative approach is to consider the Debye model but with a (continuous) distribution of relaxation times [von Schweidler1907].
- Empirical measurements suggest a log-normal distribution [Wagner1913], but uniform is easier.

Figure: Real part of $\epsilon(\omega)$, ϵ , or the permittivity [REU2008].

Figure: Imaginary part of $\epsilon(\omega)/\omega$, σ , or the conductivity [REU2008].

Distributions of Parameters

To account for the effect of possible multiple parameter sets \mathbf{q} , consider

$$h(t,\mathbf{x};F) = \int_{\mathcal{Q}} g(t,\mathbf{x};\mathbf{q}) dF(\mathbf{q}),$$

where Q is some admissible set and $F \in \mathfrak{P}(Q)$. Then the polarization becomes:

$$\mathbf{P}(t,\mathbf{x}) = \int_0^t h(t-s,\mathbf{x};F) \mathbf{E}(s,\mathbf{x}) ds.$$

The inverse problem for F given time domain electric field data is well-posed [BG05, BG06].

We define the stochastic polarization $\mathcal{P}(t, \mathbf{x}; \tau)$ to be the solution to

$$\tau \dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 \epsilon_d \mathbf{E}$$

where τ is a random variable with PDF $f(\tau)$, for example,

$$f(\tau) = \frac{1}{\tau_b - \tau_a}$$

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take to be the expected value of the stochastic polarization at each point (t, \mathbf{x})

$$\mathbf{P}(t,\mathbf{x}) = \int_{ au_a}^{ au_b} \mathcal{P}(t,\mathbf{x}; au) f(au) d au.$$

We can apply the generalized Polynomial Chaos method [XK03] to the *random ordinary differential equation* (at each point in space and each dimension independently)

$$au\dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 \epsilon_d E, \quad au = au(\xi) = au_\sigma \xi + au_\mu$$

where $\xi \sim U(-1, 1)$, for example.

We apply a Polynomial Chaos expansion in terms of orthogonal polynomials $\phi_i(\xi)$ to the solution \mathcal{P} :

$$\mathcal{P}(t,\xi) = \sum_{j=0}^{\infty} lpha_j(t) \phi_j(\xi).$$

The RODE becomes

$$(\tau_{\sigma}\xi + \tau_{\mu})\sum_{j=0}^{\infty}\dot{\alpha}_{j}(t)\phi_{j}(\xi) + \sum_{j=0}^{\infty}\alpha_{j}(t)\phi_{j}(\xi) = \epsilon_{d}E.$$

$$(\tau_{\sigma}\xi + \tau_{\mu})\sum_{j=0}^{\infty}\dot{\alpha}_{j}(t)\phi_{j}(\xi) + \sum_{j=0}^{\infty}\alpha_{j}(t)\phi_{j}(\xi) = \epsilon_{d}E$$

We can eliminate the explicit dependence on ξ by using the triple recursion formula for orthogonal polynomials

$$\xi\phi_j = a_j\phi_{j-1} + b_j\phi_j + c_j\phi_{j+1}$$

(with $\phi_{-1} = 0$), for example, for Legendre polynomials

$$(2j+1)\xi\phi_j = j\phi_{j-1} + (j+1)\phi_{j+1}.$$

In general, the RODE becomes

$$\begin{aligned} \tau_{\sigma} \sum_{j=0}^{\infty} \dot{\alpha}_{j}(t) (a_{j}\phi_{j-1} + b_{j}\phi_{j} + c_{j}\phi_{j+1}) + \tau_{\mu} \sum_{j=0}^{\infty} \dot{\alpha}_{j}(t)\phi_{j} \\ + \sum_{i=0}^{\infty} \alpha_{j}(t)\phi_{j} = \epsilon_{d}E. \end{aligned}$$

We take the weighted inner product with each basis $\{\phi_j\}_{j=0}^p$ for a fixed *p* resulting in the approximating system

$$(\tau_{\sigma}M + \tau_{\mu}I)\dot{\vec{\alpha}} + \vec{\alpha} = \epsilon_{d}E\vec{e_{1}},$$

where $\vec{\alpha} = [\alpha_0(t), \dots, \alpha_p(t)]^T$ and

or, more simply,

$$A\vec{lpha} + \vec{lpha} = \vec{g}.$$

The macroscopic polarization is taken to be the expected value of the stochastic polarization at each point (t, \mathbf{x}) , for each dimension

$$P(t,\mathbf{x}) = \mathcal{E}[\mathcal{P}(t,\mathbf{x})] \approx \alpha_0(t,\mathbf{x}).$$

Exponential convergence

- Any set of orthogonal polynomials can be used in the truncated expansion, but there may be an optimal choice.
- If the polynomials are orthogonal with respect to weighting function f(ξ), and k has PDF f(k), then it is known that the PC solution to the ODE converges exponentially in terms of p.
- In practice, approximately 4 are generally sufficient.

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution	Polynomial	Support	
Gaussian	Hermite	$(-\infty,\infty)$	
gamma	Laguerre	$[0,\infty)$	
beta	Jacobi	[a, b]	
uniform	Legendre	[a, b]	

Note: log-normal random variables may be handled as a non-linear function (e.g., Taylor expansion) of a normal random variable.

Existence of PC Solutions

Theorem (REU2010)

For the beta-Jacobi chaos (including uniform-Legendre), there exists solutions to the system

$$A\vec{lpha} + \vec{lpha} = \vec{g}$$

for any p.

Proof.

Relies on the fact that the invertibility of A requires $\tau_{\mu} > \tau_{\sigma}$. This is physically reasonable as to disallow negative relaxation times.

- Assume uniformity in the *x*-direction.
- Assume that the electric field is polarized to oscillate only in the *y* direction.
- Evolution equations involving E, H, D, B, P and J:

$$\frac{\partial D}{\partial t} + J = \frac{\partial H}{\partial z}$$
$$\frac{\partial B}{\partial t} = \frac{\partial E}{\partial z}$$

Constitutive laws:

$$B = \mu H$$
$$D = \epsilon E + P$$
$$J = \sigma E + J_s$$

Applying the central difference approximation, based on the Yee scheme, our one dimensional equations

$$\epsilon \frac{\partial E}{\partial t} = -\frac{\partial H}{\partial z} - \sigma E - \frac{\partial P}{\partial t}$$

and

∂H		∂E
$\mu \overline{\partial t}$	=	$-\frac{\partial z}{\partial z}$

become

Note that while the electric field and magnetic field are staggered in time, the electric field updates simultaneously with polarization.

N. L. Gibson (OSU)

We discretize the PC system

$$A\vec{\alpha} + \vec{\alpha} = \vec{g}$$

by applying central differences to $\vec{\alpha} = \vec{\alpha}(z_k)$ for arbitrary z_k

$$A\frac{\vec{\alpha}^{n+\frac{1}{2}}-\vec{\alpha}^{n-\frac{1}{2}}}{\Delta t}+\frac{\vec{\alpha}^{n+\frac{1}{2}}+\vec{\alpha}^{n-\frac{1}{2}}}{2}=\frac{\vec{g}^{n+\frac{1}{2}}+\vec{g}^{n-\frac{1}{2}}}{2}$$

Combining like terms gives

$$(2A + \Delta tI)\vec{\alpha}^{n+\frac{1}{2}} = (2A - \Delta tI)\vec{\alpha}^{n-\frac{1}{2}} + \Delta t\left(\vec{g}^{n+\frac{1}{2}} + \vec{g}^{n-\frac{1}{2}}\right)$$

Note that we may first solve the discrete electric field equation for $E_k^{n+\frac{1}{2}}$ and plug into $\vec{g}^{n+\frac{1}{2}}$ to define a decoupled update step for $\vec{\alpha}$.

Stability Analysis

We look for plane wave solutions and assume spatial dependence of the form

$$\begin{aligned} H_{j+\frac{1}{2}}^{n+1} &= \hat{H}^{n+1}(k) \mathrm{e}^{\mathrm{i}k(j+\frac{1}{2})\Delta z} \\ E_{j}^{n+\frac{1}{2}} &= \hat{E}^{n+\frac{1}{2}}(k) \mathrm{e}^{\mathrm{i}kj\Delta z} \\ \alpha_{0,j}^{n+\frac{1}{2}} &= \hat{\alpha}_{0}^{n+\frac{1}{2}}(k) \mathrm{e}^{\mathrm{i}kj\Delta z} \\ &\vdots \\ \alpha_{p,j}^{n+\frac{1}{2}} &= \hat{\alpha}_{p}^{n+\frac{1}{2}}(k) \mathrm{e}^{\mathrm{i}kj\Delta z} \end{aligned}$$

where k is the wave number.

Substituting the above into our numerical method we obtain

$$BU^{n+1} = CU^n$$

where

$$U^{n} := [\hat{H}^{n}, \hat{E}^{n+\frac{1}{2}}, \hat{\alpha_{0}}^{n+\frac{1}{2}}, \dots, \hat{\alpha_{p}}^{n+\frac{1}{2}}]$$

Continuing:

$$BU^{n+1}=CU^n$$

where

$$B := \begin{bmatrix} B_{11} & B_{12}^T \\ B_{21} & 2A + \Delta tI \end{bmatrix} \qquad B11 := \begin{bmatrix} 1 & \gamma/\mu \\ 0 & \theta^+ \end{bmatrix}$$
$$C := \begin{bmatrix} C_{11} & B_{12}^T \\ -B_{21} & 2A - \Delta tI \end{bmatrix} \qquad C11 := \begin{bmatrix} 1 & 0 \\ -2\gamma & \theta^- \end{bmatrix}$$
$$\theta^+ := 2\epsilon + \sigma \Delta t \qquad \theta^- := 2\epsilon - \sigma \Delta t$$
$$\gamma := \frac{2i\Delta t}{\Delta z} \sin\left(\frac{k\Delta z}{2}\right)$$

Note: for p = 0, $A = \tau_{\mu}$ and we recover single Debye equations.

Stability of uniform-Legendre Chaos system

Theorem (REU2010)

The numerical polynomial chaos scheme is stable for Legendre polynomials with p = 1 if and only if the following conditions hold

 $\nu \leq 1$ $\epsilon_s \geq \epsilon_\infty$ $\tau_\mu \geq 0.$

Proof.

Direct application of Routh-Horwitz criteria

The last condition again disallows negative relaxation times.

Numerical Stability Analysis

- If the modulus of all the generalized (complex, time) eigenvalues of (*B*, *C*) are less than one, the method is stable.
- The stability polynomial given by $det(C \lambda B)$ is of degree p + 3.
- The roots depend on material and discretization parameters including: kΔz (quantifies ppw), h := Δt/τ_μ (temporal resolution), ν (relates Δz and Δt), as well as τ_σ (quantifies variance).
- We plot the largest modulus of λ as a function of kΔz in the following with all other parameters fixed.

Polynomial Chaos Debye dissipation with v=1 and h=0.1

Figure: Using parameters of dry skin data and p = 2

Figure: Using parameters of dry skin data and p = 0

Polynomial Chaos Debye dissipation with v=1 and h=0.01

Figure: Using parameters of dry skin data and p = 2

Figure: Using parameters of dry skin data and p = 0

Numerical Simulations

- Windowed 10¹⁰ Hz signal propagation in a stochastic Debye dielectric model of water.
- Time trace measured at 0.015 m inside material.
- Let $h_{\tau} := \Delta t / \tau_{\mu}$, where $\tau_{\mu} = 8.13 \times 10^{-12}$ is the measured deterministic value.
- We use Uniform-Legendre chaos expansions with, for example, $\tau \sim U[.75\tau_{\mu}, 1.25\tau_{\mu}].$

Figure: Using parameters of dry skin data with $\tau \sim U[.75\tau_{\mu}, 1.25\tau_{\mu}]$, and using p = 0, 1, 2 polynomials. Shows significant convergence after just p = 1.

Figure: Maximum Error for various values of *p* and *r*.

N. L. Gibson (OSU)

Polynomial Chaos for Stochastic Polarization

Figure: Using parameters of dry skin data with deterministic $\tau \in [.75\tau_{\mu}, 1.25\tau_{\mu}]$. Shows suggests that stochastic polarization will have slightly higher amplitude if considered as an average of these simulations.

N. L. Gibson (OSU)

Figure: Using parameters of dry skin data and p = 0. Shows $h_{\tau} = 0.01$ required for accuracy.

Figure: Using parameters of dry skin data and p = 1. Shows $h_{\tau} = 0.005$ required for accuracy. Non-zero variance implies smaller relaxation times are present.

Figure: Using parameters of dry skin data and p = 2. Shows $h_{\tau} = 0.005$ required for accuracy. As expected, including more polynomials does not reduce temporal resolution errors.

N. L. Gibson (OSU)

Conclusions

- Stochastic Polarization well suited for modeling realistic dielectric materials
- Distributions of parameters avoids fractional order derivative models
- Polynomial Chaos is a simple-to-use method for efficiently simulating stochastic polarization
- Stability properties of the numerical method are similar to deterministic case
- Stochastic polarization exhibits less dissipation for comparable discretization parameters

H. T. Banks and N. L. Gibson.

Well-posedness in Maxwell systems with distributions of polarization relaxation parameters.

Applied Math Letters, 18(4):423-430, 2005.

HT Banks and NL Gibson.

Electromagnetic inverse problems involving distributions of dielectric mechanisms and parameters.

Quarterly of Applied Mathematics, 64(4):749, 2006.

- S. Gabriel, RW Lau, and C. Gabriel.
 The dielectric properties of biological tissues: III.
 Phys. Med. Biol, 41(11):2271–2293, 1996.
- 🔋 D. Xiu and G. E. Karniadakis.

The Wiener-Askey polynomial chaos for stochastic differential equations.

SIAM Journal on Scientific Computing, 24(2):619–644, 2003.