Outline

- Unconstrained Optimization
- Newton’s Method
 - Inexact Newton
 - Quasi-Newton
- Nonlinear Least Squares
- Gauss-Newton Method
- Steepest Descent Method
- Levenberg-Marquardt Method
Unconstrained Optimization

- Minimize function f of N variables
- I.e., find local minimizer x^* such that
 \[f(x^*) \leq f(x) \text{ for all } x \text{ near } x^* \]
- Different from constrained optimization
 \[f(x^*) \leq f(x) \text{ for all } x \in U \text{ near } x^* \]
- Different from global minimizer
 \[f(x^*) \leq f(x) \text{ for all } x (\text{possibly in } U) \]
Parameter Identification

Consider

\[u'' + cu' + ku = 0; \quad u(0) = u_0; \quad u'(0) = 0 \]

(1)

where \(u \) represents the motion of an unforced harmonic oscillator (e.g., spring). We may assume \(u_0 \) is known, and data \(\{u_j\}_{j=1}^M \) is given for some times \(t_j \) on the interval \([0, T]\).

Now we can state a parameter identification problem to be: find \(x = [c, k]^T \) such that the solution \(u(t) \) to (1) using parameters \(x \) is (as close as possible to) \(u_j \) when evaluated at times \(t_j \).
Consider the following formulation of the Parameter Identification problem: Find $x = [c, k]^T$ such that the following objective function is minimized:

$$f(x) = \frac{1}{2} \sum_{j=1}^{M} |u(t_j; x) - u_j|^2.$$

This is an example of a nonlinear least squares problem.
Iterative Methods

An iterative method for minimizing a function $f(x)$ usually has the following parts:

- Choose an initial iterate x_0
- For $k = 0, 1, \ldots$
 - If x_k optimal, stop.
 - Determine a search direction d and a step size λ
 - Set $x_{k+1} = x_k + \lambda d$
Convergence Rates

The sequence \(\{x_k\}_{k=1}^{\infty} \) is said to converge to \(x^* \) with rate \(p \) and rate constant \(C \) if

\[
\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^p} = C.
\]

- **Linear**: \(p = 1 \) and \(0 < C < 1 \), such that error decreases.
- **Quadratic**: \(p = 2 \), doubles correct digits per iteration.
- **Superlinear**: If \(p = 1 \), \(C = 0 \). Faster than linear. Includes quadratic convergence, but also intermediate rates.
Theorem

Let f be twice continuously differentiable, and let x^* be a local minimizer of f. Then

$$\nabla f(x^*) = 0$$

(2)

and the Hessian of f, $\nabla^2 f(x^*)$, is positive semidefinite.

Recall a positive semidefinite means

$$x^T A x \geq 0 \quad \forall x \in \mathbb{R}^N.$$

Equation (2) is called the first-order necessary condition.
Let $f : \mathbb{R}^N \rightarrow \mathbb{R}$ be twice continuously differentiable (C^2), then

- The **gradient** of f is

\[
\nabla f = \left[\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_N} \right]^T
\]

- The **Hessian** of f is

\[
\nabla^2 f = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2}
\end{bmatrix}
\]
Sufficient Conditions

Theorem

Let f be twice continuously differentiable in a neighborhood of x^*, and let

$$\nabla f(x^*) = 0$$

and the Hessian of f, $\nabla^2 f(x^*)$, be positive semidefinite. *Then* x^* *is a local minimizer of* f.

Note: second derivative information is required to be certain, for instance, if $f(x) = x^3$.
Suppose

\[f(x) = \frac{1}{2} x^T H x - x^T b \]

then we have that

\[\nabla^2 f(x) = H \]

and if \(H \) is symmetric (assume it is)

\[\nabla f(x) = H x - b. \]

Therefore, if \(H \) is positive definite, then the unique minimizer \(x^* \) is the solution to

\[H x^* = b. \]
Newton’s Method

Newton’s Method solves for the minimizer of the *local quadratic model* of f about the current iterate x_k given by

$$m_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k)(x - x_k).$$

If $\nabla^2 f(x_k)$ is positive definite, then the minimizer x_{k+1} of m_k is the unique solution to

$$0 = \nabla m_k(x) = \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k). \quad (3)$$
Newton’s Method

Newton Step

The solution to (3) is computed by solving

\[\nabla^2 f(x_k) s_k = -\nabla f(x_k) \]

for the Newton Step \(s_k^N \). Then the Newton update is defined by

\[x_{k+1} = x_k + s_k^N. \]

Note: the step \(s_k^N \) has both direction and length. Variants of Newton’s Method modify one or both of these.
Standard Assumptions

Assume that f and x^* satisfy the following:

1. Let f be twice continuously differentiable and Lipschitz continuous with constant γ

 \[\| \nabla^2 f(x) - \nabla^2 f(y) \| \leq \gamma \| x - y \|. \]

2. $\nabla f(x^*) = 0$.

3. $\nabla^2 f(x^*)$ is positive definite.
Newton’s Method

Convergence Rate

Theorem

Let the Standard Assumptions hold. Then there exists a $\delta > 0$ such that if $x_0 \in B_\delta(x^*)$, the Newton iteration converges quadratically to x^*.

- I.e., $\|e_{k+1}\| \leq K \|e_k\|^2$.
- If x_0 is not close enough, Hessian may not be positive definite.
- If you start close enough, you stay close enough.
Newton’s Method

Problems (and solutions)

- Need derivatives
 - Use finite difference approximations
- Needs solution of linear system at each iteration
 - Use iterative linear solver like CG (Inexact Newton)
- Hessians are expensive to find (and solve/factor)
 - Use chord (factor once) or Shamanskii
 - Use Quasi-Newton (update H_k to get H_{k+1})
 - Use Gauss-Newton (first order approximate Hessian)
Recall,

\[f(x) = \frac{1}{2} \sum_{j=1}^{M} |u(t_j; x) - u_j|^2. \]

Then for \(x = [c, k]^T \)

\[
\nabla f(x) = \begin{bmatrix}
\sum_{j=1}^{M} \frac{\partial u(t_j; x)}{\partial c} (u(t_j; x) - u_j) \\
\sum_{j=1}^{M} \frac{\partial u(t_j; x)}{\partial k} (u(t_j; x) - u_j)
\end{bmatrix} = R'(x)^T R(x)
\]

where \(R(x) = [u(t_1; x) - u_1, \ldots, u(t_M; x) - u_M]^T \) is called the residual and \(R'_{ij}(x) = \frac{\partial R_i(x)}{\partial x_j} \).
Approximate Hessian

In terms of the residual R, the Hessian of f becomes

$$\nabla^2 f(x) = R'(x)^T R'(x) + R''(x)R(x)$$

where $R''(x)R(x) = \sum_{j=1}^{M} r_j(x) \nabla^2 r_j(x)$ and $r_j(x)$ is the jth element of the vector $R(x)$.

The second order term requires the computation of M Hessians, each size $N \times N$. However, if we happen to be solving a zero residual problem, this second order term goes to zero. One can argue that for small residual problems (and good initial iterates) the second order term is negligible.
Gauss-Newton Method

The equation defining the Newton step

\[\nabla^2 f(x_k) s_k = -\nabla f(x_k) \]

becomes

\[R'(x_k)^T R'(x_k) s_k = -\nabla f(x_k) = -R'(x_k)^T R(x_k). \]

We define the Gauss-Newton step as the solution \(s_k^{GN} \) to this equation.

You can expect close to \textit{quadratic} convergence for small residual problems. Otherwise, not even \textit{linear} is guaranteed.
Recall
\[u'' + cu' + ku = 0; \quad u(0) = u_0; \quad u'(0) = 0. \]

Let the true parameters be \(x^* = [c, k]^T = [1, 1]^T \). Assume we have \(M = 100 \) data \(u_j \) from equally spaced time points on \([0, 10]\).

We will use the initial iterate \(x_0 = [1.1, 1.05]^T \) with Newton’s Method and Gauss-Newton.

We compute gradients with forward differences, analytical \(2 \times 2 \) matrix inverse, and use \(\text{ode15s} \) for time stepping the ODE.
Comparison of initial iterate

Data

Initial iterate

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2011 21 / 40
<table>
<thead>
<tr>
<th>k</th>
<th>$|\nabla f(x_k)|$</th>
<th>$f(x_k)$</th>
<th>$|\nabla f(x_k)|$</th>
<th>$f(x_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.330e+01</td>
<td>7.881e-01</td>
<td>2.330e+01</td>
<td>7.881e-01</td>
</tr>
<tr>
<td>1</td>
<td>6.852e+00</td>
<td>9.817e-02</td>
<td>1.767e+00</td>
<td>6.748e-03</td>
</tr>
<tr>
<td>2</td>
<td>4.577e-01</td>
<td>6.573e-04</td>
<td>1.016e-02</td>
<td>4.656e-07</td>
</tr>
<tr>
<td>3</td>
<td>3.242e-03</td>
<td>3.852e-08</td>
<td>1.844e-06</td>
<td>2.626e-13</td>
</tr>
<tr>
<td>4</td>
<td>4.213e-07</td>
<td>2.471e-13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Parameter identification problem, locally convergent iterations. CPU time Newton: 3.4s, Gauss-Newton: 1s.
Iteration history

- Newton’s Method
- Gauss–Newton

Prof. Gibson (OSU)
Gradient-based Methods for Optimization
AMC 2011 24 / 40
Gauss-Newton Method

Search Direction

Newton’s Method
Gauss–Newton
Gauss-Newton Method

Search Direction

- **Newton’s Method**
- **Gauss–Newton**

Prof. Gibson (OSU)
Gradient-based Methods for Optimization
AMC 2011 26 / 40
Global Convergence

- Newton direction may not be a descent direction (if Hessian not positive definite).
- Thus Newton (or any Newton-based method) may increase f if x_0 not close enough. Not *globally convergent*.
- Globally convergent methods ensure (sufficient) decrease in f.
- The *steepest descent* direction is always a descent direction.
We define the *steepest descent direction* to be $d_k = -\nabla f(x_k)$. This defines a direction but not a step size.

We define the Steepest Descent update step to be $s_{SD}^k = \lambda_k d_k$ for some $\lambda_k > 0$.

We will talk later about ways of choosing λ.

Steepest Descent Method

Iteration history

Newton's Method
Gauss−Newton
Steepest Descent
Steepest Descent Method

Graph showing search direction with labeled axes and method comparisons:
- Newton’s Method
- Gauss–Newton
- Steepest Descent

Axes:
- k (vertical)
- c (horizontal)

Graph indicates the direction of search for different optimization methods.
Steepest Descent Comments

- Steepest Descent direction is best direction *locally*.
- The negative gradient is perpendicular to level curves.
- Solving for s_{k}^{SD} is equivalent to assuming $\nabla^{2}f(x_k) = I/\lambda_k$.
- In general you can only expect *linear* convergence.
- Would be good to combine global convergence property of Steepest Descent with *superlinear* convergence rate of Gauss-Newton.
Recall the objective function

\[f(x) = \frac{1}{2} R(x)^T R(x) \]

where \(R \) is the residual. We define the Levenberg-Marquardt update step \(s_k^{LM} \) to be the solution of

\[
\left(R'(x_k)^T R'(x_k) + \nu_k I \right) s_k = -R'(x_k)^T R(x_k)
\]

where the *regularization parameter* \(\nu_k \) is called the Levenberg-Marquardt parameter, and it is chosen such that the approximate Hessian \(R'(x_k)^T R'(x_k) + \nu_k I \) is positive definite.
Levenberg-Marquardt Method

Search Direction

- Newton’s Method
- Gauss–Newton
- Steepest Descent
- Levenberg–Marquardt

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2011 34 / 40
Levenberg-Marquardt Method

Search Direction

- Newton’s Method
- Gauss–Newton
- Steepest Descent
- Levenberg–Marquardt
Levenberg-Marquardt Notes

- Robust with respect to poor initial conditions and larger residual problems.
- Varying ν involves interpolation between GN direction ($\nu = 0$) and SD direction (large ν).
- See `doc lsqnonlin` for MATLAB instructions for LM and GN.
Levenberg-Marquardt Idea

- If iterate is not close enough to minimizer so that GN does not give a descent direction, increase ν to take more of a SD direction.
- As you get closer to minimizer, decrease ν to take more of a GN step.
 - For zero-residual problems, GN converges quadratically (if at all)
 - SD converges linearly (guaranteed)
Approximate Hessian may not be positive definite (or well-conditioned), increase ν to add regularity.

As you get closer to minimizer, Hessian will become positive definite (by Standard Assumptions). Decrease ν, as less regularization is necessary.

Regularized problem is “nearby problem”, want to solve actual problem as soon as is feasible.
Taylor series with remainder:
\[f(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(\xi)(x - x_k) \]

Newton:
\[m_k^N(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k)(x - x_k) \]

Gauss-Newton:
\[m_k^{GN}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T R'(x_k)^T R'(x_k)(x - x_k) \]

Steepest Descent:
\[m_k^{SD}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \frac{1}{\lambda_k} I(x - x_k) \]

Levenberg-Marquardt:
\[m_k^{LM}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T (R'(x_k)^T R'(x_k) + \nu_k I)(x - x_k) \]

