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Motivating Application

The particular motivation for this research is the detection of defects in the
insulating foam on the space shuttle fuel tanks in order to help eliminate the
separation of foam during shuttle ascent.
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Picometrix T-Ray Setup

• Step-block can be turned upside down to sample varying gap sizes.
• Receiver and transmitter can be repositioned at various angles.
• Signal can be focused or collimated.
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THz Gap
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FFT of THz Signal
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FFT of THz signal recorded after passing through foam of varying thickness,
in a pitch-echo experiment.
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THz Signal Through Foam
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pitch-echo experiment.
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Time-of-flight

Bitmap of time-of-flight recordings from step-block foam. Method clearly
shows steep boundaries between foam and voids.

• Shows contrast, but does not accurately characterize damage.
• Less effective on horizontal discontinuities.
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Outline

• 1D Gap Detection Inverse Problem
• 2D Void Detection
• Microstructure Modeling
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Outline 1D Gap Detection

• Model
• Numerical Methods
• Inverse Problem
• Computational Results
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Gap Detection Problem
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Model
µ0ε0εrË + µ0IΩP̈ + µ0σIΩĖ − E ′′ = −µ0J̇s in Ω ∪ Ω0

τ Ṗ + P = ε0(εs − ε∞)E in Ω

[Ė − cE ′]z=0 = 0

[E]z=1 = 0

E(0, z) = Ė(0, z) = 0

P (0, z) = 0
where

Js(t, z) = δ(z)sin(ωt)I[0,tf ](t)

and
εr = (1 + (ε∞ − 1)IΩ).
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Numerical Discretization
• Second order FEM in space

• piecewise linear splines

• Second order FD in time
• Crank-Nicholson (P )
• Central differences (E)
• en → pn → en+1 → pn+1 → · · ·

• E equation implicit, LU factorization used
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Sample Problem
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Signal at t=0.1182 ns
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Signal at t=0.189122 ns

Computed solutions at different times of a windowed
electromagnetic pulse at f=100GHz incident on a
Debye medium with a crack δ=.0002m wide located
d=.02m into the material.
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Sample Problem (Cont.)
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Sample Problem (Cont.)
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Shows “important” parts of the signal.
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Gap Detection Inverse Problem
• Assume we have data, Êi, recorded at z=0

• Given d and δ we can simulate the electric field
• Estimate d and δ by solving an inverse problem:

Find q=(d, δ) ∈ Qad such that the following
objective function is minimized:

J1(q) =
1

2S

S
∑

i=1

|E(ti, 0; q) − Êi|
2.
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J1(q) Surface Plot
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Surface plot of the Ordinary Least Squares objective
function demonstrating peaks in J1, and exhibiting
many local minima.
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Improved Objective Function

Consider the following formulation of the Inverse
Problem:
Find q=(d, δ) ∈ Qad such that the following objective
function is minimized:

J2(q) =
1

2S

S
∑

i=1

∣

∣

∣
|E(ti, 0; q)| − |Êi|

∣

∣

∣

2

.
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J2(q) Surface Plot
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Close up surface plot of our Modified Least Squares
objective function demonstrating lack of peaks in J2,
but still exhibiting many local minima.
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Final Estimates (d)
δ

d .0002 .0004 .0008

.02 (N=1024) .0200022 .0200006 .0200002

.04 (N=2048) .0399974 .0400005 .0399999

.08 (N=4096) .0799987 .0800006 .0800003

.1 (N=8192) .0999974 .1 .0999999

.2 (N=16384) .200005 .2 .200001
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Final Estimates (δ)
δ

d .0002 .0004 .0008

.02 (N=1024) .000196754 .000398642 .00079707

.04 (N=2048) .000203916 .000394204 .000793622

.08 (N=4096) .000202273 .000395791 .000794401

.1 (N=8192) .000203876 .000396203 .000795985

.2 (N=16384) .000191808 .00040297 .00080129
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Comments on 1D Gap Problem
• Our modified Least Squares objective function

“fixes” peaks in J

• Can test on both sides of detected minima to
ensure global minimization

• We are able to detect a .2mm wide crack behind
a 20cm deep slab

• Even adding random noise (equivalent to 20%
relative noise) does not significantly hinder our
inverse problem solution method
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2D Problem Outline

• Model
• Equations
• Boundary Conditions

• Computational Methods
• Sample Forward Simulations
• Inverse Problem
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Voids in Foam

The foam on the space shuttle is sprayed on in layers
(thus the acronym SOFI). Voids occur between layers.
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Cured Layer

As the top of each layer cures, a thin knit line is formed which is of higher
density (i.e., is comprised of smaller, more tightly packed polyurethane cells).
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Sample Domain with Void
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Dashed lines represent knit lines, dot-dash is foam/air interface. Elliptical
pocket (5 mm) between knit lines is a void. “+” marks the signal receiver.
Back wall is perfect conductor.
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Simplifications
• Assume single-cycle pulse of fixed frequency

• Possibly only tracking peak frequency
• Possibly solving broadband problem in

parallel
• Maxwell’s equations reduce to wave equation

• Assume homogenized material
• For low frequency, microstructure is

negligible
• For fixed frequency, single wave speed
• Possibly from homogenization method

• Assume 2D (uniformity in third)
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2D Wave Equation
We assume the electric field to be polarized in the z

direction, thus for ~E = (0, 0, E) and ~x = (x, y)

ε(~x)
∂2E

∂t2
(t, ~x) −∇ ·

(

1

µ(~x)
∇E(t, ~x)

)

= −
∂Js

∂t
(t, ~x)

where ε(~x) and µ(~x) = µ0 are the dielectric
permittivity and permeability, respectively.

Js(t, ~x) = δ(x)e−((t−t0)/t0)
4

,

where t0 = tf/4 when tf is the period of the
interrogating pulse.
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Boundary Conditions
Consider Ω = [0, 0.1] × [0, 0.2]

• Reflecting (Dirichlet) boundary conditions (right)

[E]x=0.1 = 0

• First order absorbing boundary conditions (left)

∂E

∂t
−

√

1

ε(~x)µ0

∂E

∂x

∣

∣

∣

∣

∣

x=0

= 0

• Symmetric boundary conditions (top and bottom)
[

∂E

∂y

]

y=0,y=0.2

= 0

We use homogeneous initial conditions E(0, ~x) = 0.
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Modeling Knit Lines/Void
• The speed of propagation in the domain is

c(~x) =
c0

n(~x)
=

√

1

ε(~x)µ0
,

where c0 is the speed in a vacuum and n is the
index of refraction.

• We may model knit lines or a void by changing
the index of refraction, thus effectively the speed
in that region.
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2D Numerical Discretization

• Second order (piecewise linear) FEM in space

• Second order (centered) FD in time

• Linear solve (sparse)
• Preconditioned conjugate-gradient

(matrix-free)
• LU factorization
• Mass lumping (explicit)

• Stair-stepping for non-rectilinear interfaces
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Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03.
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Plane Wave Signal
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Picometrix T-Ray Setup

Note the non-normal incidence and ability to focus.
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Oblique Plane Wave Simulation

Source located at x = 0, receiver at x = 0.03, but raised to collect center of
plane wave reflection.
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Oblique Plane Wave Signal
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Nearly all of original signal returns even with an oblique angle of incidence.
(Note: last knit line removed.)

OSU REU – p. 36



Focused Wave Simulation

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03. Note top and bottom
boundary conditions are now absorbing.
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Focused Wave Signal
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than the plane wave simulation.
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Oblique Focused Wave

Source modeled using scattered field formulation of point source reflected
from elliptical mirror. Receiver located at x = 0.03, but raised to collect
center of focused wave reflection.

OSU REU – p. 39



Oblique Focused Wave Signal
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2D Void Inverse Problem
• Assume we have data, Êi at times ti and x = x

+

• Given the width of an elliptical void w, we can
simulate the electric field

• Estimate void width w by solving an inverse
problem:

Find w ∈ Qad such that the following objective
function is minimized:

J1(w) =
1

2S

S
∑

i=1

|E(ti,x
+; w) − Êi|

2.
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J1 – Objective Function
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Location of the initial guess is crucial to minimizing with a gradient-based
method.
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J1 – Objective Function
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If we had only sampled the landscape with five points, we would have chosen
poorly.
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Improved Objective Function
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Improved Objective Function
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Better representation of overall agreement of signals; more forgiving in
choosing initial guess.
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2D Inverse Problem Results

• LM converges to minimum of J2 after 12
iterations

• Each forward solve is 1.5 hours
• This does not incorporate noise (SNR ≈ 100:1)
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SOFI Under 20X Magnification

• Wavelength is on the order of 1mm; microstructure is smaller.
• Most loss in the material is due to scattering from faces.
• Modeling geometry of microstructure will help understand bulk effects.
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Microstructure

Model random microstructures:
• “Random raindrops” algorithm
• Apollonius tessellation
• Constant wave speed

Note: Distributions of statistical parameters yields
heterogeneity
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Voronoi Graph
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Apollonius Graph
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Random Raindrop
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An example of the random raindrop or “drop and roll” algorithm for generating randomly close
packed disks.
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Filled-in
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Random Raindrop Algorithm Filled (55+)

The “drop and roll” algorithm filled-in with disks of diameter at least the mean value minus two
standard deviations (disks labeled 55 through 62 in decreasing order of size).
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Truncated Domain
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Apollonius graph on randomly close packed disks with a truncated domain indicated.
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Indicator Matrix
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Indicator matrix for cell wall with thickness 2h where h is the meshsize.
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Model of SOFI Microstructure

Apollonius graph is truncated and stretched, then edges are given a thickness and discretized to
result in an indicator matrix as shown in the bitmap.
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Model of SOFI with Knit Lines

Different sizes of drops are used to give different sized cells resulting in the appearance of knit
lines.
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Continuing Directions
• Modeling Approaches

• Microscale scattering model
• Match attenuation observed in data

• Computational Methods
• Edge elements
• ABC/PML
• Faster time-marching

• Quantify Robustness wrt Uncertainty
• Material properties
• Geometry
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Related Courses
• Linear Algebra
• ODEs
• PDEs
• Numerical Methods for the above
• Optimization
• Prob/Stat
• Interdisciplinary
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Upcoming Conferences
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