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Abstract. A discrete conformality for hyperbolic polyhedral surfaces is in-
troduced in this paper. This discrete conformality is shown to be computable.
It is proved that each hyperbolic polyhedral metric on a closed surface is dis-
crete conformal to a unique hyperbolic polyhedral metric with a given discrete
curvature satisfying Gauss-Bonnet formula. Furthermore, the hyperbolic poly-
hedral metric with given curvature can be obtained using a discrete Yamabe
flow with surgery. In particular, each hyperbolic polyhedral metric on a closed
surface with negative Euler characteristic is discrete conformal to a unique
hyperbolic metric.

1. Introduction

1.1. Statement of results. This is a continuation of [9] in which a discrete uni-
formization theorem for Euclidean polyhedral metrics on closed surfaces is estab-
lished. The purpose of this paper is to prove the counterpart of discrete uniformiza-
tion for hyperbolic polyhedral metrics. In particular, we will introduce a discrete
conformality for hyperbolic polyhedral metrics on surfaces and show the discrete
conformality is algorithmic.

Recall that a marked surface (S, V ) is a pair of a closed connected surface S
together with a finite non-empty subset V . A triangulation of a marked surface
(S, V ) is a triangulation of S so that its vertex set is V . A hyperbolic polyhedral
metric d on a marked surface (S, V ) is obtained as the isometric gluing of hyperbolic
triangles along pairs of edges so that its cone points are in V . It is the same as
a hyperbolic cone metric on S with cone points in V . We use the terminology
polyhedral metrics to emphasize that these metrics are determined by finite sets of
data (i.e., the finite set of lengths of edges). Every hyperbolic polyhedral metric
has an associated Delaunay triangulation which has the property that the interior
of the circumcircle of each triangle contains no other vertices.

Definition 1. (discrete conformality) Two hyperbolic polyhedral metrics d, d′ on
a closed marked surface (S, V ) are discrete conformal if there exist a sequence of
hyperbolic polyhedral metrics d1 = d, d2, ..., dm = d′ on (S, V ) and triangulations
T1, T2, ..., Tm of (S, V ) satisfying

(a) each Ti is Delaunay in di,
(b) if Ti = Ti+1, there exists a function u : V → R, called a conformal factor,

so that if e is an edge in Ti with end points v and v′, then the lengths xdi
(e)
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and xdi+1(e) of e in metrics di and di+1 are related by

sinh
xdi+1(e)

2
= eu(v)+u(v′) sinh

xdi
(e)

2
,

(c) if Ti 6= Ti+1, then (S, di) is isometric to (S, di+1) by an isometry homotopic
to the identity in (S, V ).

This definition is the hyperbolic counterpart of discrete conformality introduced
in [9]. The condition (b) first appeared in [4].

Theorem 2. Suppose d and d′ are two hyperbolic (or Euclidean) polyhedral metrics
given as isometric gluings of geometric triangles on a closed marked surface (S, V ).
There exists an algorithm to decide if d and d′ are discrete conformal.

The above theorem shows that discrete conformality is computable. This is in
contrasts to the conformality in Riemannian geometry. Indeed, it is highly unlikely
that there exist algorithms to decide if two hyperbolic (or Euclidean) polyhedral
metrics on (S, V ) are conformal in the Riemannian sense.

The discrete curvature K of a polyhedral metric d is the function defined on V
sending v ∈ V to 2π less cone angle at v. It is well known that the discrete curvature
satisfies the Gauss-Bonnet identity

∑

v∈V K(v) = 2πχ(S)+Area(d) where Area(d)
is the area of the metric d.

Theorem 3. Suppose (S, V ) is a closed connected marked surface and d is a hy-
perbolic polyhedral metric on (S, V ). Then for any K∗ : V → (−∞, 2π) with
∑

v∈V K∗(v) > 2πχ(S), there exists a unique hyperbolic polyhedral metric d′ on
(S, V ) so that d′ is discrete conformal to d and the discrete curvature of d′ is K∗.
Furthermore, the discrete Yamabe flow with surgery associated to curvature K∗

having initial value d converges to d′ exponentially fast.

In particular, on a closed connected surface S with χ(S) < 0, by choosing K∗ =
0, we obtain,

Corollary 4. (discrete uniformization) Let S be a closed connected surface of neg-
ative Euler characteristic and V ⊂ S be a finite non-empty subset. Then each
hyperbolic polyhedral metric d on (S, V ) is discrete conformal to a unique hyper-
bolic metric d∗ on the surface S. Furthermore, there exists a C1-smooth flow on
the Teichmuller space of hyperbolic polyhedral metrics on (S, V ) which preserves
discrete conformal classes and flows each polyhedral metric d to d∗ as time goes to
infinity.

1.2. Basic idea of the proof. The basic idea of the proof is similar to that of
[9]. We first introduce the Teichmüller space Thp(S, V ) of hyperbolic polyhedral
metrics on (S, V ). It is shown to be a real analytic manifold which admits a cell
decomposition by the work of [15] and [13]. Using the work of Kubota [14] on
hyperbolic Ptolemy identity and the work of Penner [19], we show that Thp(S, V ) is
C1 diffeomorphic to the decorated Teichmüller space so that two hyperbolic poly-
hedral metrics are discrete conformal if and only if their corresponding decorated
metrics have the same underlying hyperbolic structure. Using this correspondence,
we show Theorem 3 using a variational principle first appeared in [4].

Many arguments in this paper are similar to that of [9]. The major difference
between Euclidean and hyperbolic polyhedral metrics comes from the circumcircles
of triangles. Namely, the circumcircle of a hyperbolic triangle may be non-compact,
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i.e., a horocyle or a curve of constant distance to a geodesic. This creates many
difficulties when one uses the inner angle characterization of Delaunay triangula-
tions. To overcome this, we prove (theorem 9) that every triangle in a Delaunay
triangulation of a hyperbolic polyhedral metric on a compact surface has compact
circumcircle.

1.3. Organization of the paper. Section 2 deals with the Teichmüller space of
hyperbolic polyhedral metrics, its analytic cell decomposition and Delaunay trian-
gulations. In section 3, we show that there is a C1 diffeomorphism between the
Teichmüller space of hyperbolic polyhedral metrics and the decorated Teichmüller
space. Section 4 is devoted to the proof of Theorem 3. Section 5 proves theorem 2.
In the appendix, a technical lemma is proved.

1.4. Acknowledgement. The work is supported in part by the NSF of USA and
the NSF of China.

2. Teichmüller space of polyhedral metrics

2.1. Triangulations and some conventions. Take a finite disjoint union X of
triangles and identify edges in pairs by homeomorphisms. The quotient space S is a
compact surface together with a triangulation T whose simplices are the quotients
of the simplices in the disjoint union X . Let V = V (T ) and E = E(T ) be the
sets of vertices and edges in T . We call T a triangulation of the marked surface
(S, V ). If each triangle in the disjoint union X is hyperbolic and the identification
maps are isometries, then the quotient metric d on the quotient space (S, V ) is a
called hyperbolic polyhedral metric. The set of cone points of d is in V . Given a
hyperbolic polyhedral metric d and a triangulation T on (S, V ), if each triangle in
T (in metric d) is isometric to a hyperbolic triangle, we say T is geodesic in d. If T
is a triangulation of (S, V ) isotopic to a geometric triangulation T ′ in a hyperbolic
polyhedral metric d, then the length of an edge e ∈ E(T ) (or angle of a triangle at
a vertex in T ) is defined to be the length (respectively angle) of the corresponding
geodesic edge e′ ∈ E(T ′) (triangle at the vertex) measured in metric d.

Suppose e is an edge in T adjacent to two distinct triangles t, t′. Then the
diagonal switch on T is a new triangulation T ′ obtained from T by replaces e by
the other diagonal in the quadrilateral t ∪e t

′.
For simplicity, the terms metrics and triangulations in many places will mean

isotopy classes of metrics and isotopy classes of triangulations. They can be under-
stood from the context without causing confusion.

If X is a finite set, |X | denotes its cardinality and R
X denotes the vector space

{f : X → R}. For a finite vertex set W = {w1, ..., wm}, we identify R
W with R

m

by sending x ∈ R
m to (x(w1), ..., x(wm)).

All surfaces are assumed to be compact and connected in the rest of the paper.

2.2. The Teichmüller space and the length coordinates. Two hyperbolic
polyhedral metrics d, d′ on (S, V ) are called Teichmüller equivalent if there is an
isometry h : (S, V, d) → (S, V, d′) so that h is isotopic to the identity map on (S, V ).
The Teichmüller space of all hyperbolic polyhedral metrics on (S, V ), denoted by
Thp(S, V ), is the set of all Teichmüller equivalence classes of hyperbolic polyhedral
metrics on (S, V ).

Lemma 5. Thp(S, V ) is a real analytic manifold.
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Proof. Suppose T is a triangulation of (S, V ) with the set of edges E = E(T ). Let

R
E(T )
∆ = {x ∈ R

E
>0|∀ triangle t in T with edges ei, ej , ek, x(ei) + x(ej) > x(ek)}

be the convex polytope in R
E . For each x ∈ R

E(T )
∆ , one constructs a hyperbolic

polyhedral metric dx on (S, V ) by replacing each triangle t of edges ei, ej, ek by a
hyperbolic triangle of edge lengths x(ei), x(ej), x(ek) and gluing them by isometries
along the corresponding edges. This construction produces an injective map (the
length coordinate associated to T )

ΦT : R
E(T )
∆ → Thp(S, V )

sending x to [dx]. The image P (T ) := ΦT (R
E(T )
∆ ) is the space of all hyperbolic

polyhedral metrics [d] on (S, V ) for which T is isotopic to a geodesic triangulation
in d. We call x the length coordinate of dx and [dx] = ΦT (x) (with respect to T ).
In general P (T ) 6= Thp(S, V ) (see §2.1 in [9]).

Since each hyperbolic polyhedral metric on (S, V ) admits a geometric triangu-
lation (for instance its Delaunay triangulation), we see that Thp(S, V ) = ∪T P (T )
where the union is over all triangulations of (S, V ). The space Thp(S, V ) is a real an-

alytic manifold with real analytic coordinate charts {(P (T ),Φ−1
T )|T triangulations

of (S, V )}. To see transition functions Φ−1
T ΦT ′ are real analytic, note that any two

triangulations of (S, V ) are related by a sequence of diagonal switches. Therefore,
it suffices to show the result for T and T ′ which are related by a diagonal switch
along an edge e. In this case, the transition function Φ−1

T ΦT ′ sends (x0, x1, ...., xm)
to (f(x0, ..., xm), x1, ..., xm) where x0 is the length of e and f is the length of the
diagonal switched edge. Let t, t′ be the triangles adjacent to e so that the lengths
of edges of t, t′ are {x0, x1, x2} and {x0, x3, x4}. Using the cosine law, we see that
f is a real analytic function of x0, ..., x4. �

2.3. Delaunay triangulations and marked quadrilaterals. Each hyperbolic
triangle t in H2 has a circumcircle which is the curve of constant geodesic curvature
containing the three vertices of t. When the circumcircle is compact, it is a hyper-
bolic circle. When it is not compact, it is either a horocycle or a curve of constant
distance to a geodesic. We call the convex region bounded by the circumcircle the
circum-ball of the triangle t. A marked quadrilateral Q is a hyperbolic quadrilateral
together with a diagonal e inside Q. It is the same as a union of two hyperbolic
triangles t, t′ along a common edge e, i.e., Q = t∪e t

′. A hyperbolic polygon is called
cyclic if its vertices lie in a curve of constant geodesic curvature in the hyperbolic
plane. A marked quadrilateral t ∪e t

′ is cyclic if and only if the two circumecircles
for t and t′ coincide.

A geodesic triangulation T of a hyperbolic polyhedral surface (S, V, d) is said
to be Delaunay if for each edge e adjacent to two hyperbolic triangles t and t′,
the interior of the circumball of t does not contain the vertices of t′ when the
quadrilateral t ∪e t′ is lifted to H2. The last condition is sometimes called the
empty ball condition. We will call the marked quadrilateral t∪e t

′ the quadrilateral
associated to the edge e. G. Leibon [15] gave a very nice algebraic description of
empty-ball condition in terms of the inner angles.

Lemma 6 (Leibon). A geodesic triangulation T is Delaunay if and only if

(1) α+ α′ ≤ β + β′ + γ + γ′
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for each edge e, where α, β, γ, α′, β′, γ′ are angles of the two triangles in T having
e as the common edge so that α and α′ are opposite to e. Furthermore, the equality
holds for e if and only if the marked quadrilateral associated to e is cyclic.

The inequality (1) can be expressed in terms of the edge lengths as follows.

Proposition 7. A geodesic triangulation T is Delaunay if and only if
(2)

sinh2(x1/2) + sinh2(x2/2)− sinh2(x0/2)

sinh(x1/2) sinh(x2/2)
+
sinh2(x3/2) + sinh2(x4/2)− sinh2(x0/2)

sinh(x3/2) sinh(x4/2)
≥ 0

for each edge e adjacent two triangles t, t′ of edge lengths x0, x1, x2 and x0, x3, x4

respectively. Furthermore, the equality holds for an edge e if and only if t ∪e t
′ is

cyclic.

Proof. We begin with

Lemma 8. Let x1, x2, x3 be side lengths of a hyperbolic triangle and a1, a2, a3 be
the opposite angles so that ai is facing the edge of length xi. Then

2 sin
a2 + a3 − a1

2
· cosh x1

2
=

sinh2(x2/2) + sinh2(x3/2)− sinh2(x1/2)

sinh(x2/2) sinh(x3/2)
.

Proof. By the cosine law expressing xi in terms of a1, a2, a3, we have

sinh2(x2/2) + sinh2(x3/2)− sinh2(x1/2)

=
1

2
(cosh(x2) + cosh(x3)− cosh(x1)− 1)

=
1

2
[
cos a2 + cos a1 cos a3

sina1 sin a3
+

cos a3 + cos a1 cos a2
sin a1 sin a2

− cos a1 + cos a2 cos a3
sin a2 sina3

− 1]

=
1

2 sina1 sin a2 sin a3
(sin(a2 + a3)− sin a1)(cos a1 + cos(a2 − a3))

=
2 sin a2+a3−a1

2 cos a1+a2+a3

2 cos a1+a2−a3

2 cos a1−a2+a3

2

sin a1 sin a2 sin a3
.

On the other hand,

sinh2(xi/2) =
1

2
(coshxi − 1)

=
1

2
(
cos ai + cos aj cos ak

sin aj sinak
− 1)

=
1

2

cos ai + cos(aj + ak)

sin aj sin ak

=
cos

ai+aj+ak

2 cos
ai−aj−ak

2

sin aj sin ak
.
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Therefore

sinh2(x2/2) + sinh2(x3/2)− sinh2(x1/2)

sinh(x2/2) sinh(x3/2)

=
2 sin a2+a3−a1

2 cos a1+a2+a3

2 cos a1+a2−a3

2 cos a1−a2+a3

2

sin a1 sina2 sin a3

√

cos
a1+a2+a3

2 cos
a2−a1−a3

2

sin a1 sin a3

√

cos
a1+a2+a3

2 cos
a3−a1−a2

2

sin a1 sin a2

= 2 sin
a2 + a3 − a1

2
·
√

cos a1+a2−a3

2 cos a1−a2+a3

2

sin a2 sin a3

= 2 sin
a2 + a3 − a1

2
· cosh x1

2
.

In the last step above, we have used

(cosh
x1

2
)2 =

1

2
(coshx1 + 1)

=
1

2
(
cos a1 + cos a2 cos a3

sina2 sin a3
+ 1)

=
1

2

cos a1 + cos(a2 − a3)

sin a2 sina3

=
cos a1+a2−a3

2 cos a1−a2+a3

2

sin a2 sina3
.

�

Now (1) is equivalent to sin β+γ−α
2 + sin β′+γ′−α′

2 ≥ 0. By Lemma 8 applied to
triangles of lengths {x0, x1, x2} and {x0, x3, x4}, we see that Delaunay is equivalent
to (2). �

2.4. Delaunay triangulations of compact hyperbolic polyhedral surfaces.

Theorem 9. If T is a Delaunay triangulation of a closed hyperbolic polyhedral
surface (S, V, d), then each triangle has a compact circumcircle.

Proof. By Proposition 7 for Delaunay triangulations inequality (2) holds. On the
other hand, by lemma 4.2 of [9],

Lemma 10 ([9]). Suppose y : E(T ) → R>0 is a function satisfying for each edge
e0 adjacent to two triangles t, t′ of edges e0, e1, e2 and e0, e3, e4

y21 + y22 − y20
y1y2

+
y23 + y24 − y20

y3y4
≥ 0

where yi = y(ei). Then y(ei) + y(ej) > y(ek) whenever ei, ej, ek form edges of a
triangle in T .

Taking y(e) = sinh(x(e)2 ) in the above lemma and using (2), we obtain

(3) sinh(
x(ei)

2
) + sinh(

x(ej)

2
) > sinh(

x(ek)

2
).

Now theorem 9 follows from (3) and a result in [7] page 118,

Proposition 11 (Fenchel). Let C be the circumcircle of a hyperbolic triangle of edge
lengths xi, xj , xk. Then C is a (compact) hyperbolic circle if and only if sinh(xi

2 ) +

sinh(
xj

2 ) > sinh(xk

2 ).
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�

Since sinh(a+ b) > sinh(a) + sinh(b) for a, b > 0, by (3), we obtain

(4) x(ei) + x(ej) > x(ek),

whenever ei, ej, ek form edges of a triangle. This implies,

Corollary 12. Suppose x : E(T ) → R>0 is a function so that (2) holds at each
edge. Then x is the edge length function (in T ) of a hyperbolic polyhedral metric
on (S, V ).

It is highly likely that theorem 9 still holds for hyperbolic cone metrics on high
dimensional compact manifolds, i.e., empty-ball condition implies compact circum-
sphere. The work of [6] shows that it holds for decorated finite volume hyperbolic
metrics of any dimension.

The classical way of constructing many Delaunay triangulations of a polyhedral
metric d on (S, V ) is as follows. See for instance [3]. Define the Voronoi decompo-
sition of (S, V, d) to be the collection of 2-cells {R(v)|v ∈ V } where R(v) = {x ∈
S|d(x, v) ≤ d(x, v′) for all v′ ∈ V }. Its dual is called a Delaunay tessellation C(d)
of (S, V, d). It is a cell decomposition of (S, V ) with vertices V and two vertices
v, v′ jointed by an edge if and only if R(v) ∩R(v′) is 1-dimensional. By definition,
each 2-cell in the Delaunay tessellation is a convex polygon inscribed to a compact
circle in H2 whose center is a vertex of the Voronoi decomposition. By further
triangulating all non-triangular 2-dimensional cells (without introducing extra ver-
tices) in C(d), one obtains a Delaunay triangulation of (S, V, d). This Delaunay
triangulation has the property that the circumcircles of triangles are hyperbolic
circles (i.e., compact). Indeed, the centers of the circumcircles are the vertices in
the Voronoi cell decomposition. Conversely, if T is a Delaunay triangulation with
compact circumcircles for all triangles, then it is a triangulation of the Delaunay
tessellation. Combining theorem 9, we obtain part (a) of the following,

Proposition 13. (a) Suppose T is a geodesic triangulation of a compact hyperbolic
polyhedral surface (S, V, d). Then T satisfies the empty-ball condition if and only if
it is a geodesic triangulation of the Delaunay tessellation.

(b) If T and T ′ are Delaunay triangulations of a hyperbolic polyhedral metric d
on a closed marked surface (S, V ), then there exists a sequence of Delaunay trian-
gulations T1 = T , T2, ..., Tk = T ′ of d so that Ti+1 is obtained from Ti by a diagonal
switch.

(c) Suppose T is a Delaunay triangulation of a compact hyperbolic polyhedral
surface (S, V, d) whose diameter is D. Then the length of each edge e in T is at
most 2D. In particular, there exists an algorithm to find all Delaunay triangulations
of a hyperbolic polyhedral surface.

Proof. Part(b) of the proposition follows from part(a) and the well known fact
that any two geodesic triangulations of the Delaunay tessellation are related by a
sequence of diagonal switches. Indeed, any two geodesic triangulations of a convex
cyclic polygon are related by a sequence of (geodesic) diagonal switches. See for
instance [3] for a proof.

To see part (c), if e is an edge dual to two Voronoi cells R(v) and R(v′), then the
length of e is at most the sum of the diameters of R(v) and R(v′). However, the
diameters of R(v) and R(v′) are bounded by the diameter of the surface S. Thus,
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the length of e is at most 2D. It is well known that for any constant C, there exists
an algorithm to list all geodesic paths in (S, V, d) of lengths at most C joining V
to V . Therefore, we can list algorithmically all Delaunay triangulations of a given
polyhedral metric on (S, V ).

�

Note that if we remove the compactness of the space S, then there are examples
of geodesic triangulations with empty-ball condition which does not come from dual
of Voronoi cell. See [6].

For a triangulation T of (S, V ), the associated Delaunay cell in Thp(S, V ) is
defined to be

Dc(T ) = {[d] ∈ Thp(S, V )|T is isotopic to a Delaunay triangulation of d}.
Theorem 9 and corollary 12 show that Dc(T ) is defined by a finite set of real

analytic inequalities (i.e., (2)). On the other hand, Leibon showed in [15] that
Dc(T ) is a cell. Putting these together, one obtains

Theorem 14 (Hazel[13], Leibon[15]). There is a real analytic cell decomposition

Thp(S, V ) = ∪[T ]Dc(T )

invariant under the action of the mapping class group where the union is over all
isotopy classes [T ] of triangulations of (S, V ).

3. Diffeomorphism between two Teichmüller spaces

One of the main tools used in our proof is the decorated Teichmüller space theory
developed by R. Penner [19]. See also [2], [10] and [9] for a discussion of Delaunay
triangulations of decorated metrics.

Recall that S is a closed connected surface and V = {v1, ..., vn} ⊂ S and let
Σ = S − V . We assume n ≥ 1 and the Euler characteristic χ(Σ) < 0. A decorated
hyperbolic metric is a complete hyperbolic metric d of finite area on Σ together with
a horoball Hi at the i-th cusp for each vi. The decorated metric will be written as
a pair (d, w) where w = (w1, ..., wn) ∈ R

n
>0 so that wi is the length of the horocycle

∂Hi. The decorated Teichmüller space, denoted by TD(Σ), is the space of all
decorated metrics on Σ modulo isometries homotopic to the identity and preserving
decorations. For a given triangulation T of (S, V ), let ΨT : RE

>0 → TD(Σ) be the
λ-length coordinate (see [19]) and let D(T ) be the set of all decorated hyperbolic
metrics (d, w) in TD(Σ) so that T is isotopic to a Delaunay triangulation of (d, w).
See [19] or [9] for details.

Fix a triangulation T of (S, V ), we have two coordinate maps Φ−1
T : P (T ) →

R
E(T ) and ΨT : RE(T ) → TD(S, V ). Consider the smooth embedding AT : P (T ) →

TD(Σ) defined by ΨT ◦Θ ◦Φ−1
T , where Θ : RE(T ) → R

E(T ) sends (x0, x1, x2, ...) to
(sinh(x0/2), sinh(x1/2), sinh(x2/2), ...), i.e., Θ(x)(e) = sinh(x(e)/2).

Theorem 15. For each triangulation T of (S, V ), AT |Dc(T ) is a real analytic
diffeomorphism from Dc(T ) onto D(T ).

Proof. To see that AT maps Dc(T ) bijectively onto D(T ), it suffices to show that
Θ ◦ Φ−1

T (Dc(T )) = Ψ−1
T (D(T )).

The space Ψ−1
T (D(T )) can be characterized as follows. For each edge e in (S, T )

with a decorated hyperbolic metric (d, w), let a, a′ be the two angles facing e and
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b, b′, c, c′ be the angles adjacent to the edge e. Then T is Delaunay in the metric
(d, w) if and only if for each edge e ∈ E(T ) (see [19], or [10]),

(5) a+ a′ ≤ b+ b′ + c+ c′.

Let t and t′ be the triangle adjacent to e and e, e1, e2 be edges of t and e, e3, e4
be the edges of t′. Let the λ-length of e be λ0 and the λ-length of ei be λi. Recall
the cosine law for decorated ideal triangles [19] states that α = x

yz
where α is the

angle (i.e., the length of the horocyclic arc) and x, y, z are the λ-lengths so that x
faces α. Using it, one sees that (5) is equivalent to

(6)
λ0

λ1λ2
+

λ0

λ3λ4
≤ λ1

λ0λ2
+

λ2

λ0λ1
+

λ3

λ0λ4
+

λ4

λ0λ3
,

for each e ∈ E(T ).
Rearranging terms, we see (6) is equivalent to

(7) 0 ≤ λ2
1 + λ2

2 − λ2
0

λ1λ2
+

λ2
3 + λ2

4 − λ2
0

λ3λ4
,

for each e ∈ E(T ).
Therefore,

Ψ−1
T (D(T )) = {(λ0, λ1, ..., λ|E|) ∈ R

E
>0| (7) holds at each edge e ∈ E(T )}.

By Theorem 9 and proposition 7, the characterization of a hyperbolic polyhedral
metric d which is Delaunay in T in terms of the length coordinate x = Φ−1

T (d) is
as follows. Take an edge e ∈ E(T ) and let t and t′ be the triangles adjacent to e so
that e, e1, e2 are edges of t and e, e3, e4 are the edge of t′. Suppose the length of e
(in d) is x0 and the length of ei is xi, i = 1, ..., 4. Then, by Proposition 7,
(8)

0 ≤ sinh2(x1/2) + sinh2(x2/2)− sinh2(x0/2)

sinh(x1/2) sinh(x2/2)
+
sinh2(x3/2) + sinh2(x4/2)− sinh2(x0/2)

sinh(x3/2) sinh(x4/2)

holds for each edge e ∈ E(T ).
This shows that

Φ−1
T (Dc(T )) = {x ∈ R

E
>0| (8) holds for e ∈ E, and (9) holds for each triangle}

where

(9) x(ei) + x(ej) > x(ek), ei, ej , ek form edges of a triangle in T .

Now inequality (7) is the same as (8) by taking λi to be sinh(xi/2) for each i.
This shows Θ◦Φ−1

T (Dc(T )) ⊂ Ψ−1
T (D(T )). On the other hand, corollary 12 implies

that for each λ ∈ Ψ−1
T (D(T )) and a triangle of edges ei, ej , ek, we have x(ei) +

x(ej) > x(ek) where x(e) = 2 sinh−1(λ(e)), i.e., condition (9) is a consequence of

(8). Therefore Θ ◦ Φ−1
T (Dc(T )) = Ψ−1

T (D(T )).
Finally, since ΦT , ΨT and Θ are real analytic diffeomorphisms and AT = ΨT ◦

Θ◦Φ−1
T and A−1

T = ΦT ◦Θ−1◦Ψ−1
T , we see that AT is a real analytic diffeomorphism.

�
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3.1. The Ptolemy identity and diagonal switch. Let Q be a convex quadri-
lateral Q in the Euclidean plane E2, or the hyperbolic plane H2 or the 2-sphere
S2 so that its edges are a, b, a′, b′ counted cyclically and its diagonals are c, c′. We
say Q is cyclic if it is circumscribed to a circle in E2, or S2, or a curve of constant
geodesic curvature in H2. Let l(e) to be the length of an edge e.

The classical Ptolemy theorem states that a Euclidean quadrilateral Q is cyclic
if and only if the following holds

l(a)l(a′) + l(b)l(b′) = l(c)l(c′).

In the 19-th century, Jean Darboux and Ferdinand Frobenius proved that a
spherical quadrilateral Q is cyclic if and only if

sin(
l(a)

2
) sin(

l(a′)

2
) + sin(

l(b)

2
) sin(

l(b′)

2
) = sin(

l(c)

2
) sin(

l(c′)

2
).

The hyperbolic case was established by T. Kubota in 1912 [14]. He proved,

Proposition 16 (Kubota). A hyperbolic quadrilateral Q is inscribed to a curve of
constant geodesic curvature in H2 if and only if

(10) sinh(
l(a)

2
) sinh(

l(a′)

2
) + sinh(

l(b)

2
) sinh(

l(b′)

2
) = sinh(

l(c)

2
) sinh(

l(c′)

2
).

Penner’s Ptolemy identity [19] also takes the same form. Namely, if Q is a deco-
rated ideal quadrilateral in H2 so that the λ-lengths of the its edges are A,B,A′, B′

counted cyclically and its diagonal are C,C′, then

(11) AA′ +BB′ = CC′.

The most remarkable feature of these theorems is that all equations take the
same form as xx′ + yy′ = zz′ which we will call the Ptolemy identity. The Ptolemy
identity also plays the key role for cluster algebras associated to surfaces [8].

The relationship between the Ptolemy identity and the diagonal switch operation
on Delaunay triangulations is the following. If T and T ′ are two Delaunay trian-
gulations of a Euclidean (or hyperbolic or spherical) polyhedral surface (S, V, d) so
that they are related by a diagonal switch from edge e to edge e′, then the change
of the lengths from l(e) and l(e′) is governed by one of the Ptolemy identities listed
above.

Casey’s generalization of Ptolemy’s theorem is another direction where Ptolemy
identity plays a key role. Furthermore, Casey’s theorem is known to be true for
Euclidean, hyperbolic, spherical and even Minkowski planes. In [11], we will exam
the related discrete conformality in the new setting.

3.2. A globally defined diffeomorphism.

Theorem 17. Suppose T and T ′ are two triangulations of (S, V ) so that Dc(T )∩
Dc(T ′) 6= ∅. Then

(12) AT |Dc(T )∩Dc(T ′) = AT ′ |Dc(T )∩Dc(T ′).

In particular, the gluing of these AT |Dc(T ) mappings produces a homeomorphism
A = ∪T AT |Dc(T ) : Thp(S, V ) → TD(Σ) such that A(d) and A(d′) have the same
underlying hyperbolic structure if and only if d and d′ are discrete conformal.
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Proof. Suppose d ∈ Dc(T ) ∩ Dc(T ′), i.e., T and T ′ are both Delaunay in the
hyperbolic polyhedral metric d. Then by proposition 13 there exists a sequence of
triangulations T1 = T , T2, ..., Tk = T ′ on (S, V ) so that each Ti is Delaunay in d
and Ti+1 is obtained from Ti by a diagonal switch. In particular, AT (d) = AT ′(d)
follows from ATi

(d) = ATi+1(d) for i = 1, 2, ..., k − 1. Thus, it suffices to show
AT (d) = AT ′(d) when T ′ is obtained from T by a diagonal switch along an edge
e. This is the same as showing Ψ−1

T ΨT ′ = ΘΦ−1
T ΦT ′Θ−1 at the point x = Ψ−1

T ′ (d).

On the other hand, Ψ−1
T ΨT ′(x) and ΘΦ−1

T ΦT ′Θ−1(x) have the same coordinate
except at the e edge of diagonal switch. For the edge e, the two coordinates are
the same due to the Penner’s Ptolemy identity (11) (for Ψ−1

T ΨT ′) and Kubota’s

Ptolemy identity (10) (for Φ−1
T ΦT ′). These two identities differ by a change of

variable t → sinh( t
2 ) which corresponds to Θ. Therefore, AT (d) = AT ′(d).

Taking the inverse, we obtain

(13) A−1
T |D(T )∩D(T ′) = A−1

T ′ |D(T )∩D(T ′).

Lemma 18. (a) Dc(T ) ∩Dc(T ′) 6= ∅ if and only if D(T ) ∩D(T ′) 6= ∅.
(b) The gluing map A = ∪T AT |Dc(T ) : Tc → TD is a homeomorphism invariant

under the action of the mapping class group.

Proof. By (12) and (13), the maps A = ∪T AT |Dc(T ) : Tc → TD and B =

∪T A
−1
T |D(T ) : TD → Tc are well defined and continuous. SinceA(Dc(T )∩Dc(T ′)) ⊂

D(T )∩D(T ′) and B(D(T )∩D(T ′)) ⊂ Dc(T )∩Dc(T ′), part (a) follows. To see part
(b), by Penner’s result [19] that TD = ∪T D(T ), the map A is onto. To see A is in-
jective, suppose x1 ∈ Dc(T1), x2 ∈ Dc(T2) so that A(x1) = A(x2) ∈ D(T1)∩D(T2).
Apply (13) to A−1

T1
|, A−1

T2
| on the set D(T1)∩D(T2) at the point A(x1), we conclude

that x1 = x2. This shows that A is a bijection with inverse B. Since both A and
B are continuous, A is a homeomorphism. � �

Now if d and d′ are two discrete conformally equivalent hyperbolic polyhedral
metrics, then A(d) and A(d′) are of the form (p, w) and (p, w′) due to the definitions.
Indeed, if d and d′ are related by condition (b) in definition 1, then the discrete
conformality translates to the change of decoration without changing the hyperbolic
metric. (This is the same proof as in [9], lemma 3.1). If d and d′ are related by
condition (c) in definition 1, then the two triangulations Ti and Ti+1 are both
Delaunay in [d]. Therefore, in this case, A(d) = A(d′).

On the other hand, if two hyperbolic cone metrics d, d′ satisfy that A(d) and
A(d′) are of the form (p, w) and (p, w′), consider a generic smooth path γ(t) =
(p, w(t)), t ∈ [0, 1], in TD(Σ) from (p, w) to (p, w′) so that γ(t) intersects the cells
D(T )’s transversely. This implies that γ passes through a finite set of cells D(Ti)
and Tj and Tj+1 are related by a diagonal switch. Let t0 = 0 < ... < tm = 1 be a
partition of [0, 1] so that γ([ti, ti+1]) ⊂ D(Ti). Say di is the hyperbolic polyhedral
metric so that A(di) = γ(ti) ∈ D(Ti) ∩ D(Ti+1), d1 = d and dm = d′. Then by
definition, the sequences {d1, ..., dm} and the associated Delaunay triangulations
{T1, ..., Tm} satisfy the definition of discrete conformality for d, d′.

�

Theorem 19. The homeomorphism A : Thp(S, V ) → TD(Σ) is a C1 diffeomor-
phism.
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Proof. It suffices to show that for a point d ∈ Dc(T ) ∩ Dc(T ′), the derivatives
DAT (d) and DAT ′(d) are the same. Since both T and T ′ are Delaunay in d and
are related by a sequence of Delaunay triangulations (in d) T1 = T , T2, ..., Tk = T ′,
DAT (d) = DAT ′(d) follows from DATi

(d) = DATi+1(d) for i = 1, 2, ..., k − 1.
Therefore, it suffices to show DAT (d) = DAT ′(d) when T and T ′ are related by
a diagonal switch at an edge e. In the coordinates ΦT and ΨT , the fact that
DAT (d) = DAT ′(d) is equivalent to the following smoothness question on the
diagonal lengths.

Lemma 20. Suppose Q is a convex hyperbolic quadrilateral whose four edges
are of lengths x, y, z, w (counted cyclically) and the length of a diagonal is a.
Suppose A(x, y, z, w, a) is the length of the other diagonal and B(x, y, z, w, a) =

2 sinh−1( s(x)s(z)+s(y)s(w)
s(a) ) where s(t) = sinh( t2 ). If a point (x, y, z, w, a) satisfies

A(x, y, z, w, a) = B(x, y, z, w, a), i.e., Q is inscribed in a curve of constant geodesic
curvature, then DA(x, y, z, w, a) = DB(x, y, z, w, a) where DA is the derivative of
A.

Due to the lengthy proof of this lemma, we defer it to the appendix.
�

Corollary 21. For a given hyperbolic polyhedral metric d on (S, V ), the set of all
Teichmüller equivalence classes of hyperbolic metrics on (S, V ) which are discrete
conformal to d is C1-diffeomorphic to R

|V |.

4. Discrete Uniformization for Hyperbolic Polyhedral Metrics

This section proves theorem 3 which is the main result of this paper.
By Corollary 21, Theorem 3 is equivalent to a statement about the composition

map of the discrete curvature map K and (A|)−1 defined on {p}×R
n
>0 ⊂ TD(Σ) for

any p ∈ T (Σ). Here K : Thp(S, V ) → (−∞, 2π)n is the map sending a metric d to
its discrete curvatureKd. Let us make a change of variables from w = (w1, ..., wn) ∈
R

n
>0 to u = (u1, ..., un) ∈ R

n where ui = ln(wi). We write w = w(u). For a given
p ∈ T (Σ), define F to be the composition of K and (A|)−1 from R

n to (−∞, 2π)n

by

(14) F (u) = KA−1(p,w(u)).

By the Gauss-Bonnet theorem, the image F (u) lies in the open subset P = {x ∈
(−∞, 2π)n|∑n

i=1 xi > 2πχ(S)} of Rn. Theorem 3 is equivalent to that F : Rn → P

is a bijection. We will show a stronger statement that F is a homeomorphism.
For simplicity, we use s(t) to denote the function sinh( t2 ).

4.1. Injectivity of F . Since A is a C1 diffeomorphism and the discrete curvature
K : Thp(S, V ) → R

V is real analytic, hence the map F is C1 smooth.
On the other hand, we have,

Theorem 22 (Akiyoshi [1]). For any finite area complete hyperbolic metric p on
Σ, there are only finitely many isotopy classes of triangulations T so that ([p] ×
R

n
>0) ∩D(T ) 6= ∅.
Let Ti, i = 1, ..., k, be the set of all triangulations so that ({p}×R

n)∩D(Ti) 6= ∅
and {p} × R

n ⊂ ∪k
i=1D(Ti).
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Lemma 23. Let φ : Rn → {p} × R
n be φ(x) = (p, x) and Ui = φ−1(({p} × R

n) ∩
D(Ti)) ⊂ R

n and J = {i| int(Ui) 6= ∅}. Then R
n = ∪i∈JUi and Ui is real analytic

diffeomorphic to a convex polytope in R
n.

Proof. By definition, both {p} × R
n and D(Ti) are closed and semi algebraic in

TD(Σ). Therefore Ui is closed in R
n and is diffeomorphic under w = w(u) to a

semi-algebraic set. Now by definition, Y := ∪i∈JUi is a closed subset of Rn since
Ui is closed. If Y 6= R

n, then the complement R
n − Y is a non-empty open set

which is diffeomorphic under w = w(u) to a finite union of real algebraic sets of
dimension less than n. This is impossible.

Finally, we will show that for any triangulation T of (S, V ) and p ∈ T (Σ), the
intersection U = φ−1(({p} × Rn) ∩ D(T )) is real analytically diffeomorphic to a
convex polytope in a Euclidean space. In fact Ψ−1

T (U) ⊂ R
E(T ) is real analytically

diffeomorphic to a convex polytope. To this end, let b = ΨT (p, (1, 1, ...., 1)). By
definition, Ψ−1

T (U) is give by

{x ∈ R
E(T )
>0 |∃λ ∈ R

V
>0, sinh(x(e)/2) = b(e)λ(v1)λ(v2), ∂e = {v1, v2},

Delaunay condition (2) holds for x}.

We claim that the Delaunay condition (2) consists of linear inequalities in the
variable δ : V → R>0 where δ(v) = λ(v)−2. Indeed, suppose the two triangles
adjacent to the edge e = (v1, v2) have vertices v1, v2, v3 and v1, v2, v4. Let xij

(respectively bij) be the value of x (respectively b) at the edge joining vi, vj , and
λi = λ(vi) and let s(t) be the function sinh( t2 ). By definition, s(xij) = bijλiλj .
The Delaunay condition (2) at the edge e = (v1v2) says that

s(x12)
2

s(x31)s(x32)
+

s(x12)
2

s(x41)s(x42)
≤ s(x31)

s(x32)
+

s(x32)

s(x31)
+

s(x41)

s(x42)
+

s(x42)

s(x41)

It is the same as, using s(xij) = bijλiλj ,

c3
λ1λ2

λ2
3

+ c4
λ1λ2

λ2
4

≤ c1
λ2

λ1
+ c2

λ1

λ2
,

where ci is some constant depending only on bjk’s. Dividing above inequality by

λ1λ2 and using δi = λ−2
i , we obtain

(15) c3δ3 + c4δ4 ≤ c1δ1 + c2δ2

at each edge e ∈ E(T ). This shows for b fixed, the set of all possible values of δ
form a convex polytope Q defined by (15) at all edges and δ(v) > 0 at all v ∈ V .
On the other hand, by definition, the map from Q to Ψ−1

T (U) sending δ to x = x(δ)

given by x(vv′) = 2 sinh−1( b(vv′)√
δ(v)δ(v′)

) is a real analytic diffeomorphism. Thus the

result follows. �

Write F = (F1, ..., Fn) which is C1 smooth. The work of Bobenko-Pinkall-
Springborn ([4], proposition 5.1.5) shows that

(a) Fj |Uh
is real analytic so that ∂Fi

∂uj
=

∂Fj

∂ui
in Uh for all h ∈ J ,

(b) the Hessian matrix [ ∂Fi

∂uj
] is positive definite on each Uh.
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Therefore, the 1-form η =
∑

i Fi(u)dui is a C1 smooth 1-form on R
n so that

dη = 0 on each Uh, h ∈ J . This implies that dη = 0 in R
n. Hence the integral

(16) W (u) =

∫ u

0

η

is a well defined C2 smooth function on R
n so that its Hessian matrix is positive

definite. Therefore, W is convex in R
n so that its gradient ∇W = F . Now F is

injective due to the following well known lemma,

Lemma 24. If W : Ω → R is a C1-smooth strictly convex function on an open
convex set Ω ⊂ R

m, then its gradient ∇W : Ω → R
m is an embedding.

4.2. The map F is onto. Since both R
n and P = {x ∈ (−∞, 2π)n|∑n

i=1 xi >
2πχ(S)} are connected manifolds of dimension n and F is injective and continuous,
it follows that F (Rn) is open in P. To show that F is onto, it suffices to prove that
F (Rn) is closed in P.

To this end, take a sequence {u(m)} in R
n which leaves every compact set in R

n.
We will show that {F (u(m))} leaves each compact set in P. By taking subsequences,

we may assume that for each index i = 1, 2, ..., n, the limit limm u
(m)
i = ti exists

in [−∞,∞]. Furthermore, by Akiyoshi’s theorem that the space p × R
n is in the

union of a finite number of Delaunay cells D(T ), we may assume, after taking
another subsequence, that the corresponding hyperbolic polyhedral metrics dm =
A−1(p, w(u(m))) are in D(T ) for one triangulation T . We will calculate in the
length coordinate ΦT below.

Since u(m) does not converge to any vector in R
n, there exists ti = ∞ or −∞.

Let us label vertices v ∈ V by black and white as follows. The vertex vi is black if
and only if ti = −∞ and all other vertices are white.

Lemma 25. (a) There does not exist a triangle τ ∈ T with exactly two white
vertices.

(b) If ∆v1v2v3 is a triangle with exactly one white vertex at v1, then the inner
angle of the triangle at v1 converges to 0 as m → ∞ in the metrics dm.

Proof. To see (a), suppose otherwise, using the ΦT length coordinate, we see the
given assumption is equivalent to following. There exists a hyperbolic triangle

of lengths l
(m)
1 , l

(m)
2 , l

(m)
3 such that s(l

(m)
i ) = s(ai)e

u
(m)
j

+u
(m)
k , {i, j, k} = {1, 2, 3},

where limm u
(m)
i > −∞ for i = 2, 3 and limm u

(m)
1 = −∞. By applying sinh(t/2)

to the triangle inequality l
(m)
2 + l

(m)
3 > l

(m)
1 and using angle sum formula for sinh,

we obtain

s(l
(m)
2 )

√

1 + s(l
(m)
3 )2 + s(l

(m)
3 )

√

1 + s(l
(m)
2 )2 > s(l

(m)
1 ).

Thus

s(a2)e
u
(m)
1 +u

(m)
3

√

1 + s(a3)2e2u
(m)
1 +2u

(m)
2 + s(a3)e

u
(m)
1 +u

(m)
2

√

1 + s(a2)2e2u
(m)
1 +2u

(m)
3

> s(a1)e
u
(m)
2 +u

(m)
3 .

This is the same as

s(a2)

√

e−2u
(m)
2 + s(a3)2e2u

(m)
1 + s(a3)

√

e−2u
(m)
3 + s(a3)2e2u

(m)
1 > s(a1)e

−u
(m)
1 .

However, by the assumption, the right-hand-side tends to ∞ and the left-hand-side
is bounded. The contradiction shows that (a) holds.



DISCRETE UNIFORMIZATION HYPERBOLIC 15

To see (b), we use the same notation as in the proof of (a). Let α
(m)
1 be the inner

angle at v1 of the triangle ∆v1v2v3 in dm metric. Our goal is to show limm α
(m)
1 = 0.

Since the sequence of hyperbolic polyhedral metrics {dm} are Delaunay in the

same triangulation T , by proposition 11, the three numbers s(l
(m)
1 ), s(l

(m)
2 ), s(l

(m)
3 )

satisfy the triangle inequality. Therefore, for each m, there is a Euclidean triangle

whose sides have lengths s(l
(m)
1 ), s(l

(m)
2 ), s(l

(m)
3 ). Since s(l

(m)
i ) = s(ai)e

u
(m)
j

+u
(m)
k ,

this triangle is similar to the Euclidean triangle ∆ whose sides have lengths s(a1)e
−u

(m)
1 ,

s(a1)e
−u

(m)
2 and s(a1)e

−u
(m)
3 . By the assumption that limm u

(m)
1 > −∞ and limm u

(m)
2 =

−∞ and limm u
(m)
3 = −∞, the three edge lengths s(a1)e

−u
(m)
1 , s(a1)e

−u
(m)
2 , s(a1)e

−u
(m)
3

tend to t ∈ R, ∞ and ∞ respectively. Therefore the angle in the Euclidean triangle

∆ opposite to the edge of length s(a1)e
−u

(m)
1 approaches 0. By the cosine law for

Euclidean triangle, we obtain

lim
m

s(l
(m)
2 )2 + s(l

(m)
3 )2 − s(l

(m)
1 )2

2s(l
(m)
2 )s(l

(m)
3 )

= 1.

On the other hand, from Lemma 8, we have

sin
α
(m)
2 + α

(m)
3 − α

(m)
1

2
· cosh l

(m)
1

2
=

s(l
(m)
2 )2 + s(l

(m)
3 )2 − s(l

(m)
1 )2

2s(l
(m)
2 )s(l

(m)
3 )

.

Also we have limm l
(m)
1 = 0 due to limm u

(m)
2 = −∞ and limm u

(m)
3 = −∞.

Hence

lim
m

sin
α
(m)
2 + α

(m)
3 − α

(m)
1

2
= 1.

It is equivalent to

lim
m

(α
(m)
2 + α

(m)
3 − α

(m)
1 ) = π ≥ lim

m
(α

(m)
2 + α

(m)
3 + α

(m)
1 ).

Thus

lim
m

α
(m)
1 ≤ 0.

Hence

lim
m

α
(m)
1 = 0.

�

We now finish the proof of F (Rn) = P as follows.
Case 1. All vertices are white. There exists ti = ∞. Let △vivjvk be a trian-

gle at vertex vi. There exists a hyperbolic triangle of lengths l
(m)
i , l

(m)
j , l

(m)
k such

that s(l
(m)
i ) = s(ai)e

u
(m)
j

+u
(m)
k (similar formulas hold for l

(m)
j and l

(m)
k ). Then



16 XIANFENG GU, REN GUO, FENG LUO, JIAN SUN, AND TIANQI WU

limm l
(m)
j = limm l

(m)
k = ∞. Let α

(m)
i be the inner angle at vi. By the cosine rule,

lim
m

cosα
(m)
i = lim

m

− cosh l
(m)
i + cosh l

(m)
j cosh l

(m)
k

sinh l
(m)
j sinh l

(m)
k

= lim
m

− cosh l
(m)
i + cosh l

(m)
j cosh l

(m)
k

cosh l
(m)
j cosh l

(m)
k

· lim
m

cosh l
(m)
j cosh l

(m)
k

sinh l
(m)
j sinh l

(m)
k

= lim
m

− cosh l
(m)
i + cosh l

(m)
j cosh l

(m)
k

cosh l
(m)
j cosh l

(m)
k

= − lim
m

cosh l
(m)
i

cosh l
(m)
j cosh l

(m)
k

+ 1

= − lim
m

2s(l
(m)
i )2 + 1

(2s(l
(m)
j )2 + 1)(2s(l

(m)
k )2 + 1)

+ 1

= − lim
m

2s(l
(m)
i )2

(2s(l
(m)
j )2 + 1)(2s(l

(m)
k )2 + 1)

+ 1

= − lim
m

2s(ai)
2e2u

(m)
j

+2u
(m)
k

(2s(aj)2e
2u

(m)
i

+2u
(m)
k + 1)(2s(ak)2e

2u
(m)
i +2u

(m)
j + 1)

+ 1

= − lim
m

2s(ai)
2

(2s(aj)2e2u
(m)
i + e−2u

(m)
k )(2s(ak)2e2u

(m)
i + e−2u

(m)
j )

+ 1

= 1.

Therefore each inner angle at vi approaches 0. The curvature of dm at vi ap-
proaches 2π. This shows that F (u(m)) tends to infinity of P.

Case 2. All vertices are black. Then the length of each edge approaches 0. Each
hyperbolic triangle approaches a Euclidean triangle. The sum of the curvatures at
all vertices approaches 2πχ(S). This shows that F (u(m)) tends to infinity of P.

Case 3. There exist both white and black vertices. Since the surface S is con-
nected, there exists an edge e whose end points v, v1 have different colors. Assume
v is white and v1 is black. Let v1, ..., vk be the set of all vertices adjacent to v so
that v, vi, vi+1 form vertices of a triangle and let vk+1 = v1. Now applying part (a)
of Lemma 25 to triangle ∆vv1v2 with v white and v1 black, we conclude that v2
must be black. Repeating this to ∆vv2v3 with v white and v2 black, we conclude
v3 is black. Inductively, we conclude that all vi’s, for i = 1, 2, ..., k, are black. By
part (b) of Lemma 25 , we conclude that the curvature of dm at v tends to 2π. This
shows that F (u(m)) tends to infinity of P.

Cases 1,2,3 show that F (Rn) is closed in P. Therefore F (Rn) = P.

4.3. Discrete Yamabe flow. Given K∗ ∈ (−∞, 2π)V so that
∑

v∈V K
∗(v) >

2πχ(S), by the proof above, there exists u∗ ∈ R
n so that F (u∗) = K∗. Furthermore,

the function F is the gradient ▽W of a strictly convex function W (u) defined on
(16) on R

n.
The discrete Yamabe flow with surgery is defined to be the gradient flow of the

strictly convex function W ∗(u) = W (u) − ∑

i=1 K
∗
i ui. This flow is a generaliza-

tion of the discrete Yamabe flow introduced in [16]. Since F (u∗) = K∗, we see
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▽W ∗(u∗) = 0, i.e., W ∗ has a unique minimal point u∗ in R
n. It follows that the

gradient flow of W ∗ converges to the minimal point u∗ as time approaches infinity.

In the formal notation, the flow takes the form dui(t)
dt

= Ki −K∗
i and u(0) = 0.

The exponential convergence of the flow can be established using exactly the same
method used for Theorem 1.4 of [16].

5. Algorithmic aspect of discrete conformality

We will prove theorem 2 in this section.
Suppose α and α′ are two hyperbolic (or Euclidean) polyhedral metrics on (S, V )

given in terms of edge lengths in two geodesic triangulations T and T ′, i.e., l =
Φ−1

T (α) and l′ = Φ−1
T ′ (α′) are two vectors in R

E(T ) and R
E(T ′). We will produce

an algorithm to decide if d and d′ are discrete conformal using the data (T , l) and
(T ′, l′).

There are two steps involved in the algorithm.
In the first step, using proposition 13(c), we may assume that both T and T ′

are Delaunay in metrics α and α′ respectively. (The same also holds for Euclidean
polyhedral metrics. This is a well known fact from computational geometry. See
for instance [3]). Next, consider two decorated hyperbolic metrics (d, w) = AT (α)
and (d′, w′) = AT ′(α′) with their respective Penner’s λ-coordinates y = Ψ−1

T (d, w)

and y′ = Ψ−1
T ′ (d′, w′). By theorem 17, we see Theorem 2 follows from,

Proposition 26. Suppose two decorated hyperbolic metrics (d, w) and (d′, w′) in
TD(Σ) are given in terms of λ-lengths in two triangulations. There exists an algo-
rithm to decide if d = d′.

Proof. By the construction y = Ψ−1
T (d, w) and y′ = Ψ−1

T ′ (d′, w′) are the two λ-
lengths. Our goal is to use y and y′ to decide if d = d′. There are two cases
according to T and T ′ are isotopic or not.

In the first case, T and T ′ are isotopic. Then it is known by the work of Penner
[19] that d = d′ if and only if the associated Thurston’s shear coordinates of y and y′

are the same. Here the shear coordinate z of y is defined to be z(e) = y(e1)y(e3)
y(e2)y(e4)

with

e1, e2, e3, e4 being a (fixed) cyclically ordered edges of the quadrilateral associated
to e. Thus one can check algorithmically if d = d′ using y and y′.

In the second case that T and T ′ are not isotopic, we can algorithmically produce
y′′ = Ψ−1

T (d′, w′) from y′ and T ′. Indeed, a well known theorem of L. Mosher [18]
says that there exists an algorithm to produce a finite set of triangulations T1 =
T ′, T2, ..., Tk = T so that Ti+1 is obtained from Ti by a diagonal switch. Penner’s
Ptolemy identity shows that one can compute algorithmically Ψ−1

Ti+1
(d′, w′) from

Ψ−1
Ti

(d′, w′). Thus we can algorithmically compute the new λ-length coordinate

y′′ = Ψ−1
T (d′, w′) from y′ = Ψ−1

T ′ (d′, w′). This reduces the problem to the first
case. �

6. Appendix

In the appendix we prove Lemma 20. Let s(x) = sinh x
2 .

Lemma 27 (Fenchel [7] page 118). Given a hyperbolic triangle with side lengths
a, b, c, then

(s(a)s(b)s(c))2

(s(a) + s(b) + s(c))(s(a) + s(b)− s(c))(s(b) + s(c)− s(a))(s(c) + s(b)− s(a))
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equals

• 1
4 sinh

2 r if the triangle has a compact circumcircle of radius r,
• ∞ if the circumcircle is a horocycle,
• − 1

4 cosh
2 D if the circumcircle is of constant distance D to a geodesic.

As a corollary we have,

Lemma 28. Denote by α, β, γ the angles opposite to the sides with lengths a, b, c.
Then

sinh a

sinα
= 2ζ cosh

a

2
cosh

b

2
cosh

c

2
,

where ζ equals

• tanh r if the triangle has a compact circumcircle of radius r,
• 1 if the circumcircle is a horocycle,
• cothD if the circumcircle is of constant distance D to a geodesic.

Proof. Assume that the triangle has a circumscribed circle of radius r. By using
the cosine rule and Lemma 27,

sinα = (1 − cos2 α)
1
2

=
(− cosh2 a− cosh2 b− cosh2 c+ 1 + 2 cosha cosh b cosh c)

1
2

sinh b sinh c

=
2

sinh b sinh c
· {4s(a)2s(b)2s(c)2+

2s(a)2s(b)2 + 2s(b)2s(c)2 + 2s(c)2s(a)2 − s(a)4 − s(b)4 − s(c)4} 1
2

=
2

sinh b sinh c
· {4s(a)2s(b)2s(c)2+

(s(a) + s(b) + s(c))(s(a) + s(b)− s(c))(s(b) + s(c)− s(a))(s(c) + s(b)− s(a))} 1
2

=
2

sinh b sinh c
· {4s(a)2s(b)2s(c)2 + 4s(a)2s(b)2s(c)2

sinh2 r
} 1

2

=
4

sinh b sinh c
· s(a)s(b)s(c)cosh r

sinh r
.

By taking limit with r → ∞, we can prove the lemma for the case that the
triangle has a horocyclic circumcircle.

Similar calculation can be used to prove the lemma for the case that the triangle
has a circumscribed equidistant curve. �

Lemma 29. Let a, b, c, d be the side lengths of a hyperbolic quadrilateral and e, f
the diagonal lengths so that a, b, c, d are cyclically ordered edge lengths and edges of
lengths a, b, e form a triangle.

(i) The vertices of this quadrilateral lie on a curve of constant geodesic curva-
ture.

(ii) Ptolemy’s formula holds:

s(e)s(f) = s(a)s(c) + s(b)s(d).

(iii)

(17) s(e)2 = (s(a)s(c) + s(b)s(d))
s(a)s(d) + s(b)s(c)

s(a)s(b) + s(c)s(d)
,
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and

s(f)2 = (s(a)s(c) + s(b)s(d))
s(a)s(b) + s(c)s(d)

s(a)s(d) + s(b)s(c)
.

Proof. (i)=⇒(ii). It was proved by T. Kubota [14].
(ii)=⇒(i). It was proved by Joseph E. Valentine [21], Theorem 3.4.
(iii)=⇒(ii). The product of the two equations in (iii) produces the equation in (ii).
(i)=⇒(iii).
Case 1. When the vertices lie on a circle, it was proved in [12] (theorem 1, page 4).

a

b

d

c
e

f

R

H
2

Figure 1

Case 2. When the vertices lie on a horocycle, for example as in Figure 1, we have

s(e) = s(a) + s(b),

s(f) = s(b) + s(c),

s(d) = s(a) + s(b) + s(c).

Then the equations in (iii) hold.
Case 3. When the vertices lie on a geodesic, without loss of generality, we may
assume

e = a+ b,

f = b+ c,

d = a+ b+ c.

Direct calculation shows that

s(a)s(c) + s(b)s(d) = s(a)s(c) + s(b)s(a+ b+ c) = s(a+ b)s(c+ b).

Similarly,

s(a)s(d) + s(b)s(c) = s(a+ b)s(a+ c),

s(a)s(b) + s(c)s(d) = s(c+ a)s(c+ b).

Therefore the right hand side of (17) equals

s(a+ b)s(c+ b)
s(a+ b)s(a+ c)

s(c+ a)s(c+ b)
= s(a+ b)2 = s(e)2.

Similar argument proves the equation involving s(f).
Case 4. When the vertices lie on an equidistant curve with distanceD to its geodesic
axis, project the vertices to the geodesic axis. The corresponding distance between
those projection of vertices are denoted by a, b, c, d, e, f.
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By Case 3, we have

s(e)2 = (s(a)s(c) + s(b)s(d))
s(a)s(d) + s(b)s(c)

s(a)s(b) + s(c)s(d)
.

Since
s(x) = s(x) coshD

for x = a, b, c, d, e, f, we have

s(e)2 = (s(a)s(c) + s(b)s(d))
s(a)s(d) + s(b)s(c)

s(a)s(b) + s(c)s(d)
.

�

6.1. Proof of Lemma 20. First, we verify that

∂A

∂x
|A=B =

∂B

∂x
.

The role of x, y, z, w are the same with respect to a. It is enough to verify the case
of variable x.

Now let α, α′, β, β′ be the angles formed by the pairs of edges {a, y}, {a, x}, {a, z}, {a, w}
as Figure 2.

x
y

w
z

a

A

α
βα′

β′

Figure 2

In the triangle of lengths y, z, A, by the cosine rule,

coshA = cosh y cosh z − sinh y sinh z cos(α+ β).

Taking derivative of both sides with respect to x, we have

∂A

∂x
=

sinh y sinh z sin(α+ β)

sinhA
· ∂α
∂x

.

In the triangle of lengths x, y, a, by the derivative of cosine rule [17], we have

∂α

∂x
=

sinhx

sinh y sinh a sinα
.

Therefore,
∂A

∂x
=

sinh z

sinh a
· sin(α+ β)

sinhA
· sinhx
sinα

.

In the triangle of lengths y, z, A, Lemma 28 implies that

(18)
sinhA

sin(α+ β)
= 2ζ1 cosh

A

2
cosh

y

2
cosh

z

2
.

In the triangle of lengths x, y, a, Lemma 28 implies that

(19)
sinhx

sinα
= 2ζ2 cosh

x

2
cosh

y

2
cosh

a

2
.
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Therefore,

∂A

∂x
=
sinh z

sinh a
· 2ζ2 cosh

x
2 cosh

y
2 cosh

a
2

2ζ1 cosh
A
2 cosh y

2 cosh
z
2

=
sinh z

2 cosh
x
2 ζ2

sinh a
2 cosh

A
2 ζ1

.

When A = B, by Lemma 29, the vertices of the hyperbolic quadrilateral lie on
a circle, a horocycle or an equidistant curve. Thus ζ1 = ζ2.

Therefore
∂A

∂x
|A=B =

sinh z
2 cosh

x
2

sinh a
2 cosh

B
2

=
∂B

∂x
.

Second, we verify that
∂A

∂a
|A=B =

∂B

∂a
.

In the triangle of lengths y, z, A, by the cosine rule,

coshA = cosh y cosh z − sinh y sinh z cos(α+ β).

Taking derivative of both sides with respect to a, we have

∂A

∂a
=

sinh y sinh z sin(α+ β)

sinhA
· (∂α

∂a
+

∂β

∂a
).

In the triangle of length x, y, a, by the derivative of cosine rule [17], we have

∂α

∂a
= − sinhx

sinh y sinh a sinα
cosα′.

In the triangle of length w, z, a, by the derivative of cosine rule [17], we have

∂β

∂a
= − sinhw

sinh z sinh a sinβ
cosβ′.

Therefore

∂A

∂a
= − sin(α+ β)

sinhA sinh a
(
sinh z sinhx cosα′

sinα
+

sinh y sinhw cosβ′

sinβ
).

By the equations (18) and (19), we have

sin(α+ β)

sinα
=

ζ2 cosh
a
2 sinh

A
2

ζ1 cosh
z
2 sinh

x
2

.

By the similar calculation, we have

sin(α+ β)

sinβ
=

ζ3 cosh
a
2 sinh

A
2

ζ1 cosh
y
2 sinh

w
2

,

there ζ3 is the corresponding quantity of the triangle of lengths w, z, a.
Therefore

∂A

∂a
= − 1

cosh A
2 sinh a

2

(
ζ2
ζ1

sinh
z

2
cosh

x

2
cosα′ +

ζ3
ζ1

sinh
y

2
cosh

w

2
cosβ′).

When A = B, by Lemma 29, the vertices of the hyperbolic quadrilateral lie on
a circle, a horocycle or an equidistant curve. Thus ζ1 = ζ2 = ζ3.

Therefore

∂A

∂a
|A=B = − 1

cosh B
2 sinh a

2

(sinh
z

2
cosh

x

2
cosα′ + sinh

y

2
cosh

w

2
cosβ′).
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On the other hand
∂B

∂a
= − sinh B

2 cosh a
2

cosh B
2 sinh a

2

.

To prove ∂A
∂a

|A=B = ∂B
∂a

, it remains to show that

(20) sinh
z

2
cosh

x

2
cosα′ + sinh

y

2
cosh

w

2
cosβ′ = sinh

B

2
cosh

a

2
.

In the triangle of length x, y, a, by the cosine rule,

cosα′ =
− coshy + coshx cosh a

sinhx sinh a
.

In the triangle of length w, z, a, by the cosine rule,

cosβ′ =
− cosh z + coshw cosha

sinhw sinh a
.

Therefore the equation (20) is equivalent to

sinh z
2

2 sinh x
2

(− cosh y + coshx cosh a) +
sinh y

2

2 sinh w
2

(− cosh z + coshw cosha)(21)

= sinh
B

2
cosh

a

2
sinha.

Using the notation s(t) = sinh t
2 , we have cosh t = 2s(t)2 + 1. Therefore the

equation (21) is equivalent to

s(z)

s(x)
(2s(a)2s(x)2 + s(a)2 + s(x)2 − s(y)2)

+
s(y)

s(w)
(2s(a)2s(w)2 + s(a)2 + s(w)2 − s(z)2)

= 2s(B)s(a)(s(a)2 + 1)

= 2(s(x)s(z) + s(y)s(w))(s(a)2 + 1),

the second equality is due to Ptolemy’s formula.
After simplify we obtain

s(a)2 = (s(x)s(z) + s(y)s(w))
s(x)s(w) + s(y)s(z)

s(x)s(y) + s(z)s(w)
.

This is exactly the result of Lemma 29.
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