MTH 428/528

Lectures 16-20

Yevgeniy Kovchegov
Oregon State University
Topics:

- Martingales
- Moran model with mutation
- Stationary distribution
Martingales.

Definition. A homogeneous Markov chain \(\{X_t\} \) is a martingale if

- \(E[|X_t|] < \infty \) for all \(t \geq 0 \), and
- \(E[X_{t+1} \mid X_t = x] = x \).

Definition. For a homogeneous Markov chain \(\{X_t\} \), a random variable \(\tau \) is a stopping time if for any \(t \geq 0 \), knowing \(X_0, X_1, \ldots, X_t \) (i.e. the trajectory of the process up to time \(t \)) is sufficient for determining whether the event \(\{\tau \leq t\} \) occurred or not.

Optional Stopping Theorem. Suppose a homogeneous Markov chain \(\{X_t\} \) is a martingale, and \(T \) is a stopping time with respect to \(X_t \). If \(P(T < \infty) = 1 \) and there is \(K > 0 \) such that \(|X_t| \leq K \) when \(t < T \), then

\[
E[X_T \mid X_0] = X_0.
\]
Martingales.

If Markov chain \(\{X_t\} \) is a martingale, then
\[
E[X_1 \mid X_0 = x] = x \quad \text{and} \quad E[X_2 \mid X_1 = y] = y.
\]
Then,
\[
E[X_2 \mid X_0 = x] = \sum_{y \in S} E[X_2 \mid X_1 = y, X_0 = x] P(X_1 = y \mid X_0 = x)
\]
\[
= \sum_{y \in S} E[X_2 \mid X_1 = y] P(X_1 = y \mid X_0 = x)
\]
\[
= \sum_{y \in S} y P(X_1 = y \mid X_0 = x) = E[X_1 \mid X_0 = x] = x
\]

So, \(E[X_2 \mid X_0 = x] = x \), and iterating the argument, we obtain
\[
E[X_t \mid X_0 = x] = x \quad \text{for all } t \geq 0.
\]
Moran model via martingales.

First, we observe that the Moran process is a martingale: there

\[p_j = q_j = \frac{j(n - j)}{n^2}, \quad r_j = 1 - 2\frac{j(n - j)}{n^2} \]

and

\[E[X_{t+1} \mid X_t = j] = (j + 1) \cdot p_j + j \cdot r_j + (j - 1) \cdot q_j = j. \]

Moreover, the Optional Stopping Theorem will allow us to answer the question of finding the probability of fixation with all \(n \) alleles being \(A \),

\[\alpha = P(X_{T_f} = n \mid X_0 = j). \]

Indeed, by the Optional Stopping Theorem,

\[0 \cdot (1 - \alpha) + n \cdot \alpha = E[X_{T_f} \mid X_0 = j] = j. \]

Thus,

\[P(X_{T_f} = n \mid X_0 = j) = \alpha = \frac{j}{n}. \]
Wright-Fisher Model via martingales.

Given that we know X_t, variable X_{t+1} is a Binomial random variable with $n = 2N$ trials and $p = \frac{X_t}{n}$, i.e.

$$P(X_{t+1} = k \mid X_t = j) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad \text{where } p = \frac{j}{n}.$$

Then, X_t is a martingale:

$$E[X_{t+1} \mid X_t = j] = np = j.$$

Here too, by the Optional Stopping Theorem,

$$0 \cdot (1 - \alpha) + n \cdot \alpha = E[X_{T_f} \mid X_0 = j] = j$$

and therefore

$$\alpha : = P(X_{T_f} = n \mid X_0 = j) = \frac{j}{n}.$$
Martingales.

Definition. A sequence of random variables \(\{M_t\} \) is a martingale with respect to a homogeneous Markov chain \(\{X_t\} \) if

- \(M_t \) is a function of \(X_t, X_{t-1}, \ldots, X_0 \),
- \(E[|M_t|] < \infty \) for all \(t \geq 0 \), and
-

\[
E[M_{t+1} \mid X_t, X_{t-1}, \ldots, X_0] = M_t.
\]

Optional Stopping Theorem. Suppose \(\{M_t\} \) is a martingale with respect to \(\{X_t\} \), and \(T \) is a stopping time with respect to \(X_t \). If \(P(T < \infty) = 1 \) and there is \(K > 0 \) such that \(|M_t| \leq K \) when \(t < T \), then

\[
E[M_T \mid X_0] = M_0.
\]
Martingales and harmonic functions.

Suppose \(\{X_t\} \) is a time homogeneous Markov chain (HMC).

We say that \(h(\cdot) \) is a harmonic function with respect to the transition probabilities \(\{p(x, y)\} \) if \(h \) satisfies the averaging property

\[
\sum_y p(x, y)h(y) = h(x).
\]

There, \(h(X_t) \) is a martingale with respect to \(\{X_t\} \):

\[
E[h(X_{t+1}) \mid X_t = x] = \sum_y p(x, y)h(y) = h(x)
\]

and

\[
E[h(X_{t+1}) \mid X_t] = h(X_t).
\]
Martingales and harmonic functions.

For a birth-and-death chain X_t, the probability harmonic function h is the one satisfying the averaging property

$$h(k) = q_k h(k - 1) + (1 - q_k - p_k) h(k) + p_k h(k + 1)$$

The above recurrence relation, after being simplified as

$$q_k \left(h(k) - h(k - 1) \right) = p_k \left(h(k + 1) - h(k) \right)$$

yields $h(0) = A$, $h(1) = A + B$, and

$$h(k) = A + B \left(1 + \sum_{j=2}^{k} \frac{q_1 \cdots q_{j-1}}{p_1 \cdots p_{j-1}} \right) \quad \text{for } k = 2, 3, \ldots$$

Thus $M_t = h(X_t)$ is a martingale with respect to $\{X_t\}$.
Martingales and harmonic functions.

For a birth-and-death chain X_t, the probability harmonic function h is the one satisfying the averaging property

$$h(k) = q_k h(k - 1) + (1 - q_k - p_k) h(k) + p_k h(k + 1)$$

The above recurrence relation yields $h(0) = A$, $h(1) = A + B$, and $h(k) = A + B \left(1 + \sum_{j=2}^{k} \frac{q_1 \cdots q_{j-1}}{p_1 \cdots p_{j-1}} \right)$ for $k = 2, 3, \ldots$

Thus $M_t = h(X_t)$ is a martingale with respect to $\{X_t\}$. Define the following stopping time with respect to X_t,

$$T = \min\{t \geq 0 : X_t = 0 \text{ or } m\}.$$

Then, given that $X_0 = j$ for $0 \leq j \leq m$,

$$P(X_T = m \mid X_0 = j) = \frac{h(j) - h(0)}{h(m) - h(0)}.$$
Martingales and harmonic functions.

Example. For a birth-and-death chain X_t with $p_k = p$ and $q_k = q$ for all k, and $p \neq q$,

$$h(k) = qh(k - 1) + (1 - q - p)h(k) + ph(k + 1)$$

yielding

$$h(k) = A + B \left(\frac{q}{p} \right)^k$$

for $k = 0, 1, 2, 3, \ldots$

Define the following stopping time with respect to X_t,

$$T = \min\{t \geq 0 : X_t = 0 \text{ or } m\}.$$

Then, given that $X_0 = j$ for $0 \leq j \leq m$,

$$P(X_T = m \mid X_0 = j) = \frac{h(j) - h(0)}{h(m) - h(0)} = \frac{\left(\frac{q}{p} \right)^j - 1}{\left(\frac{q}{p} \right)^m - 1}.$$
Moran model with mutation.

Consider Moran model with mutation. We think of \(n = 2N \) haploid individuals (who have one copy of their genetic material in each cell), and a genetic locus with two alleles \(A \) and \(a \) that have the same fitness. This model evolves as following:

(i) At each time step, an individual chosen uniformly at random out of \(n \) individuals is being “replaced”.

(ii) To replace individual \(x \), we choose at random from the set of individuals, including \(x \) itself.

(iii) An allele \(A \) that is chosen mutates to allele \(a \) with probability \(\alpha > 0 \), while \(a \) mutates to allele \(A \) with probability \(\beta > 0 \).
Moran model with mutation.

(i) At each time step, an individual chosen uniformly at random out of n individuals is being “replaced”.

(ii) To replace individual x, we choose at random from the set of individuals, including x itself.

(iii) An allele A that is chosen mutates to allele a with probability $\alpha > 0$, while a mutates to allele A with probability $\beta > 0$.

\[
p(i, i + 1) = \frac{n - i}{n} \cdot \left(\frac{i}{n} \cdot (1 - \alpha) + \frac{n - i}{n} \cdot \beta \right)
\]

and

\[
p(i, i - 1) = \frac{i}{n} \cdot \left(\frac{i}{n} \cdot \alpha + \frac{n - i}{n} \cdot (1 - \beta) \right)
\]
Stationary distribution and reversibility.

For a homogeneous Markov chain with the transition probability matrix \(P = \left(p(i, j) \right)_{i, j \in S} \), the stationary distribution (aka ‘equilibrium distribution’) \(\pi \) is defined as follows:

\[
\pi P = \pi \iff \sum_{i \in S} \pi(i)p(i, j) = \pi(j).
\]

Thus \(\sum_{i} \pi(i)p(i, j) = \pi(j)\sum_{i} p(j, i) \), and for any state \(j \in S \),

\[
\sum_{i: i \neq j} \pi(i)p(i, j) = \sum_{i: i \neq j} \pi(j)p(j, i).
\]

Thus when restated in terms of traffic flow, the influx to the state \(j \) is equal to outflow from \(j \), for each \(j \). Thus the distribution stays unchanged.
Stationary distribution and reversibility.

The following are the detailed balance conditions (d.b.c.) also called time reversibility:

$$\pi(i)p(i, j) = \pi(j)p(j, i).$$

Restated in terms of traffic flow: for every pair of states i and j the traffic in between them is balanced (equalized), i.e. the traffic flow from i to j equals to the traffic flow from j to i.

Observe that if d.b.c. are satisfied, the distribution will not change with time, i.e. π is stationary;

$$\sum_{i: i \neq j} \pi(i)p(i, j) = \sum_{i: i \neq j} \pi(j)p(j, i).$$
Stationary distribution and reversibility.

Observe that in the case of a birth-and-death chain, the definition of a stationary distribution

\[\pi P = \pi \iff \sum_{i \in S} \pi(i) p(i, j) = \pi(j). \]

can be rewritten as

\[\pi_k = p_{k-1}\pi_{k-1} + (1-q_k-p_k)\pi_k + q_{k+1}\pi_{k+1} \quad \text{for } k = 1, 2, \ldots \]

The above equations can be shown to be equivalent to the detailed balance conditions (d.b.c.)

\[\pi_{k-1}p_{k-1} = q_k\pi_k. \]

Hence, \(\pi_k = \frac{p_{k-1}}{q_k}\pi_{k-1} \) for \(k = 1, 2, \ldots \).
Stationary distribution and reversibility.

In the case of a birth-and-death chain, \(\pi_k = \frac{p_{k-1}}{q_k} \pi_{k-1} \)

and

\[
\pi_k = \frac{p_0 \cdots p_{k-1}}{q_1 \cdots q_k} \pi_0 \quad \text{for } k = 1, 2, \ldots.
\]

Next, if \(S = \{0, 1, \ldots, n\} \) is the state space,

\[
\pi_0 + \pi_1 + \ldots + \pi_n = 1
\]

implying

\[
\pi_0 + \frac{p_0}{q_1} \pi_0 + \ldots + \frac{p_0 \cdots p_{n-1}}{q_1 \cdots q_n} \pi_0 = 1.
\]

Hence,

\[
\pi_0 = \left(1 + \sum_{j=1}^{n} \frac{p_0 \cdots p_{j-1}}{q_1 \cdots q_j}\right)^{-1}
\]

and

\[
\pi_k = \frac{p_0 \cdots p_{k-1}}{q_1 \cdots q_k} \left(1 + \sum_{j=1}^{n} \frac{p_0 \cdots p_{j-1}}{q_1 \cdots q_j}\right)^{-1} \quad \text{for } k = 1, 2, \ldots.
\]
The gamma function.

The gamma function $\Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$$

for all $\alpha > 0$. Integration by parts provides

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha).$$

In particular, $\Gamma(k) = (k - 1)!$ for all integer $k > 0$.

Also, for $A > 0$,

$$A \cdot (A + 1) \cdot (A + 2) \cdot \ldots \cdot (A + k - 1) = \frac{\Gamma(A + k)}{\Gamma(A)}.$$
Stationary distribution for Moran process.

\[A \cdot (A + 1) \cdot (A + 2) \cdot \ldots \cdot (A + k - 1) = \frac{\Gamma(A + k)}{\Gamma(A)}. \]

For the Moran model with mutation,

\[p_i = \frac{n - i}{n} \cdot \left(\frac{i}{n} \cdot (1 - \alpha) + \frac{n - i}{n} \cdot \beta \right) = \frac{n - i}{n^2} \left(n \cdot \beta + i \cdot (1 - \alpha - \beta) \right) \]

Thus, if \(\alpha + \beta < 1 \),

\[p_0 \ldots p_{k-1} = \frac{n! (1 - \alpha - \beta)^k}{(n - k)! n^{2k}} \cdot \frac{\Gamma \left(n \cdot \frac{\beta}{1 - \alpha - \beta} + k \right)}{\Gamma \left(n \cdot \frac{\beta}{1 - \alpha - \beta} \right)}. \]
Stationary distribution for Moran process.
If $\alpha + \beta < 1$,
\[p_0 \cdots p_{k-1} = \frac{n!(1 - \alpha - \beta)^k}{(n - k)!n^{2k}} \cdot \frac{\Gamma\left(n \cdot \frac{\beta}{1-\alpha-\beta} + k\right)}{\Gamma\left(n \cdot \frac{\beta}{1-\alpha-\beta}\right)}. \]

Also,
\[q_i = \frac{i}{n} \left(\frac{i}{n} \cdot \alpha + \frac{n - i}{n} \cdot (1 - \beta)\right) = \frac{i}{n^2} \left(n \cdot \alpha + (n-i) \cdot (1 - \alpha - \beta)\right) \]
and
\[q_1 \cdots q_k = \frac{k!(1 - \alpha - \beta)^k}{n^{2k}} \cdot \frac{\Gamma\left(n \cdot \frac{\alpha}{1-\alpha-\beta} + n\right)}{\Gamma\left(n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k)\right)}. \]
Stationary distribution for Moran process.
If $\alpha + \beta < 1$,

$$p_0 \cdots p_{k-1} = \frac{n!(1 - \alpha - \beta)^k}{(n-k)!n^{2k}} \cdot \frac{\Gamma \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k \right)}{\Gamma \left(n \cdot \frac{\beta}{1-\alpha-\beta} \right)}.$$

and

$$q_1 \cdots q_k = \frac{k!(1 - \alpha - \beta)^k}{n^{2k}} \cdot \frac{\Gamma \left(n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)}{\Gamma \left(n \cdot \frac{\alpha}{1-\alpha-\beta} + (n-k) \right)}.$$

Hence,

$$\pi_k = \frac{p_0 \cdots p_{k-1}}{q_1 \cdots q_k} \pi_0 = C(n,k) \frac{\Gamma \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k \right) \Gamma \left(n \cdot \frac{\alpha}{1-\alpha-\beta} + (n-k) \right)}{\Gamma \left(n \cdot \frac{\beta}{1-\alpha-\beta} \right) \Gamma \left(n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0.$$
The beta function.

The beta function $B(a, b)$ is defined as

$$B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)} = \int_0^1 x^{a-1} (1 - x)^{b-1} dx$$

for all $a > 0$ and $b > 0$.

Then,

$$\pi_k = C(n, k) \frac{\Gamma \left(n \cdot \frac{\beta}{1 - \alpha - \beta} + k \right) \Gamma \left(n \cdot \frac{\alpha}{1 - \alpha - \beta} + (n - k) \right)}{\Gamma \left(n \cdot \frac{\beta}{1 - \alpha - \beta} \right) \Gamma \left(n \cdot \frac{\alpha}{1 - \alpha - \beta} + n \right)} \pi_0$$

$$= C(n, k) \frac{B \left(n \cdot \frac{\beta}{1 - \alpha - \beta} + k, n \cdot \frac{\alpha}{1 - \alpha - \beta} + (n - k) \right)}{B \left(n \cdot \frac{\beta}{1 - \alpha - \beta}, n \cdot \frac{\alpha}{1 - \alpha - \beta} + n \right)} \pi_0.$$
\[B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} \, dx, \]

\[\pi_k = C(n, k) \frac{B \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k) \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0, \]

and by the Binomial Theorem,

\[1 = \sum_{k=0}^{n} \pi_k = \frac{\sum_{k=0}^{n} C(n, k) B \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k) \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0 \]

\[= \frac{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0. \]
Stationary distribution for Moran process. Recall:

\[\pi_k = C(n, k) \frac{B \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k) \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0 \]

and

\[1 = \frac{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + n \right)} \pi_0. \]

Hence, we have exact solution:

\[\pi_k = C(n, k) \frac{B \left(n \cdot \frac{\beta}{1-\alpha-\beta} + k, \ n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k) \right)}{B \left(n \cdot \frac{\beta}{1-\alpha-\beta}, \ n \cdot \frac{\alpha}{1-\alpha-\beta} \right)}. \]
Stationary distribution for Moran process. Recall:

\[B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)} = \int_0^1 x^{a-1}(1 - x)^{b-1} \, dx \]

and

\[
\pi_k = C(n, k) \frac{B\left(n \cdot \frac{\beta}{1-\alpha-\beta} + k, n \cdot \frac{\alpha}{1-\alpha-\beta} + (n - k) \right)}{B\left(n \cdot \frac{\beta}{1-\alpha-\beta}, n \cdot \frac{\alpha}{1-\alpha-\beta} \right)}.
\]

We use Stirling’s approximation

\[
\Gamma(z) = \sqrt{2\pi} e^{-z} z^{z-\frac{1}{2}} \left(1 + O\left(\frac{1}{z}\right)\right) \quad \text{and} \quad m! = \sqrt{2\pi} e^{-m} m^{m+\frac{1}{2}} \left(1 + O\left(\frac{1}{m}\right)\right)
\]

and obtain for \(\rho := \frac{k}{n} \in [\epsilon, 1 - \epsilon], \quad \alpha = \frac{a}{n} \quad \text{and} \quad \beta = \frac{b}{n}, \)

\[
\pi_k = \frac{1}{n} \cdot \frac{\rho^{a-1}(1 - \rho)^{b-1}}{B(a, b)} \left(1 + o(1)\right).
\]
Stationary distribution for Moran process.
For $\rho := \frac{k}{n} \in [\epsilon, 1 - \epsilon]$, $\alpha = \frac{a}{n}$ and $\beta = \frac{b}{n}$,

$$\pi_k = \frac{1}{n} \cdot \frac{\rho^{a-1} (1 - \rho)^{b-1}}{B(a, b)} (1 + o(1)).$$