Invariant Galton-Watson measures

Yevgeniy Kovchegov Oregon State University

collaboration with

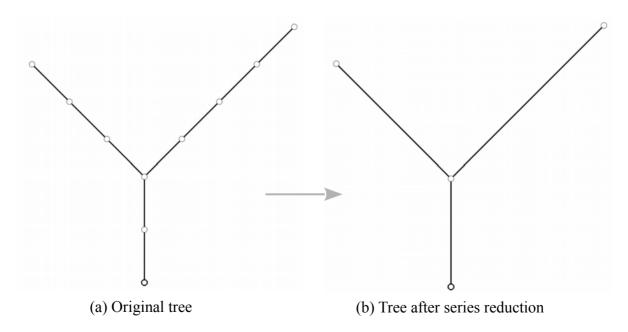
Ilya Zaliapin (University Nevada Reno) Guochen Xu (Oregon State University)

Combinatorial trees.

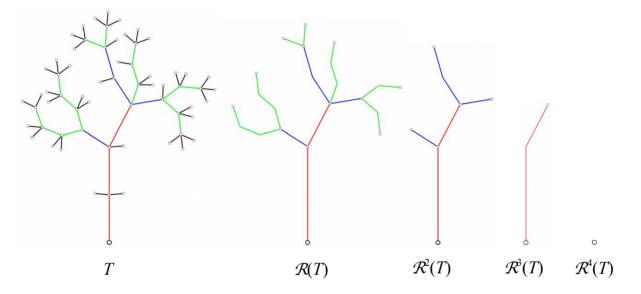
 ${\mathcal T}$ - space of finite unlabeled rooted reduced trees.

Empty tree $\phi = \{\rho\}$ comprised of a root vertex ρ and no edges.

 $\mathcal{T}^{|}$ - subspace of \mathcal{T} containing ϕ and all the trees in \mathcal{T} with a stem (ρ has exactly one offspring).



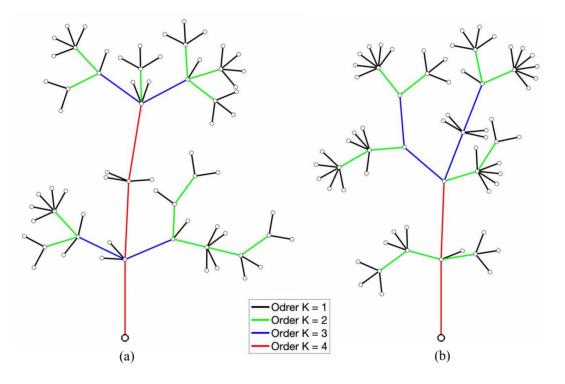
Horton pruning and Horton-Strahler order



Horton pruning $\mathcal{R} : \mathcal{T}^{|} \to \mathcal{T}^{|}$ is an onto function whose value $\mathcal{R}(T)$ for a tree $T \neq \phi$ is obtained by removing the leaves and their parental edges from T, followed by series reduction. We also set $\mathcal{R}(\phi) = \phi$.

Horton-Strahler order: $\operatorname{ord}(T) = \min \{k \ge 0 : \mathcal{R}^k(T) = \phi\}.$

Horton-Strahler order



Horton-Strahler order: $\operatorname{ord}(T) = \min \{k \ge 0 : \mathcal{R}^k(T) = \phi\}.$

Horton prune-invariance

Consider a measure μ on \mathcal{T} (or $\mathcal{T}^{|}$) such that $\mu(\phi) = 0$. Let ν be the pushforward measure, $\nu = \mathcal{R}_*(\mu)$, i.e.,

$$\nu(T) = \mu \circ \mathcal{R}^{-1}(T) = \mu \left(\mathcal{R}^{-1}(T) \right).$$

Measure μ is said to be Horton prune-invariant if for any tree $T \in \mathcal{T}$ (or $\mathcal{T}^{|}$) we have

$$\nu(T | T \neq \phi) = \mu(T).$$

Objective: finding and classifying Horton prune-invariant tree measures.

Attractors

For a tree measure ρ_0 let $\nu_k = \mathcal{R}^k_*(\rho_0)$ denote the pushforward probability measure induced by operator \mathcal{R}^k , i.e.,

 $\nu_k(T) = \rho_0 \circ \mathcal{R}^{-k}(T) = \rho_0 \left(\mathcal{R}^{-k}(T) \right), \text{ and set } \rho_k(T) = \nu_k \left(T \mid T \neq \phi \right).$ If $\lim_{k \to \infty} \rho_k(T) = \rho^*(T) \quad \forall T \in \mathcal{T}$, then measure ρ^* is an attractor.

Objective: finding and classifying attractors.

Pruning Galton-Watson trees

Consider a Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Assume criticality or subcriticality, i.e., $\sum_{k=0}^{\infty} kq_k \leq 1$.

Theorem. [G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)]

• Assume finite second moment, i.e., $\sum_{k=0}^{\infty} k^2 q_k < \infty$.

Galton-Watson measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is critical binary Galton-Watson $\mathcal{GW}(q_0 = q_2 = 1/2)$.

• Assume criticality and finite branching, i.e., $|\{k : q_k > 0\}| < \infty$. Let $\rho_0 \equiv \mathcal{GW}(\{q_k\})$, $\nu_k = \mathcal{R}^k_*(\rho_0)$, and set $\rho_k(T) = \nu_k(T | T \neq \phi)$. Then,

$$\lim_{k \to \infty} \rho_k(T) = \rho^*(T) \qquad \forall T \in \mathcal{T},$$

where $\rho^* = \mathcal{GW}(q_0 = q_2 = 1/2)$ is critical binary Galton-Watson measure.

• If $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ is subcritical, then $\rho_k(T)$ converges to a point mass measure, $\rho^* = \mathcal{GW}(q_0=1)$.

Pruning Galton-Watson trees

Consider a Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Assume criticality or subcriticality, i.e., $\sum_{k=0}^{\infty} kq_k \leq 1$.

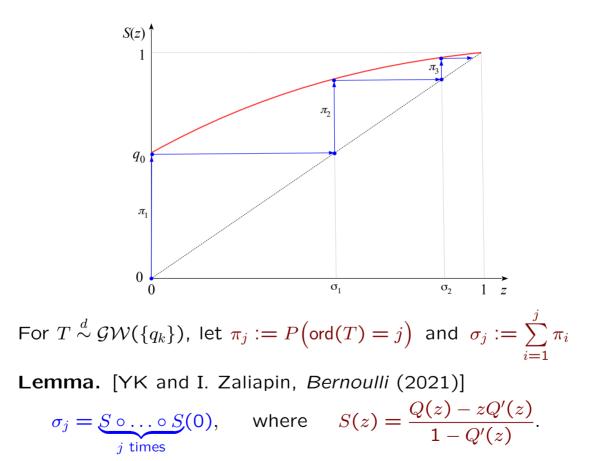
Let $Q(z) = \sum_{m=0}^{\infty} z^m q_m$ denote the generating function.

For $T \stackrel{d}{\sim} \mathcal{GW}(\{q_k\})$ let $\pi_j := P(\operatorname{ord}(T) = j)$, $\sigma_0 = 0 \text{ and } \sigma_j := \sum_{i=1}^j \pi_i \quad \forall j \ge 1$

Lemma. [YK and I. Zaliapin, Bernoulli (2021)]

$$\sigma_j = \underbrace{S \circ \ldots \circ S}_{j \text{ times}}(0), \quad \text{where} \quad S(z) = \frac{Q(z) - zQ'(z)}{1 - Q'(z)}.$$

Pruning Galton-Watson trees



Regularity condition

Many of the results are proven under the following assumption.

Assumption 1. The following limit exists:

$$S'(1) = \lim_{x \to 1^{-}} \frac{1 - S(x)}{1 - x} \quad \Leftrightarrow \quad \lim_{x \to 1^{-}} \frac{Q(x) - x}{(1 - x)(1 - Q'(x))} = 1 - S'(1)$$

Proposition. [YK and I. Zaliapin, *Bernoulli* (2021)] If $\mathcal{GW}(\{q_k\})$ is a subcritical Galton-Watson measure with $q_1 = 0$, then Assumption 1 holds with S'(1) = 0.

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. If

 $\mathsf{E}[X^2] = \sum_{k=0}^{\infty} k^2 q_k < \infty \qquad \text{where} \quad X \stackrel{d}{\sim} \{q_k\},$

then Assumption 1 holds with $S'(1) = \frac{1}{2}$.

Regularity condition

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ and infinite second moment, i.e., $\sum_{k=0}^{\infty} k^2 q_k = \infty$. Let $X \stackrel{d}{\sim} \{q_k\}$. If the limit

$$\Lambda = \lim_{k \to \infty} \frac{k}{E[X \mid X \ge k]} = \lim_{k \to \infty} \frac{k \sum_{m=k}^{\infty} q_m}{\sum_{m=k}^{\infty} m q_m}$$

exists, then Assumption 1 holds with $S'(1) = \Lambda$.

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson process $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ and offspring distribution $\{q_k\}$ of Zipf type:

 $q_k \sim Ck^{-(\alpha+1)}$ with $\alpha \in (1,2]$ and C > 0.

Then Assumption 1 holds with $S'(1) = \Lambda = \frac{\alpha - 1}{\alpha}$.

Invariant Galton-Watson measures

For a given $q \in [1/2, 1)$, a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ is said to be the invariant Galton-Watson (IGW) measure with parameter q and denoted by $\mathcal{IGW}(q)$ if its generating function is given by

$$Q(z) = z + q(1-z)^{1/q}.$$

Branching probabilities: $q_0 = q$, $q_1 = 0$, $q_2 = (1 - q)/2q$, and

$$q_k = rac{1-q}{k! \, q} \prod_{i=2}^{k-1} (i-1/q) \quad (k \geq 3).$$

Here, if q = 1/2, then the distribution is critical binary, i.e., $\mathcal{GW}(q_0 = q_2 = 1/2)$.

If $q \in (1/2, 1)$, the distribution is of Zipf type with

$$q_k = \frac{(1-q)\Gamma(k-1/q)}{q\Gamma(2-1/q)\,k!} \sim Ck^{-(1+q)/q}, \text{ where } C = \frac{1-q}{q\,\Gamma(2-1/q)}.$$

Invariant Galton-Watson measures

Recall

$$S(z) = \frac{Q(z) - zQ'(z)}{1 - Q'(z)}.$$

Assumption 1. The following limit exists:

$$S'(1) = \lim_{x \to 1^{-}} \frac{1 - S(x)}{1 - x} \quad \Leftrightarrow \quad \lim_{x \to 1^{-}} \frac{Q(x) - x}{(1 - x)(1 - Q'(x))} = 1 - S'(1)$$

Horton prune-invariance: for $\nu(T) = \mu(\mathcal{R}^{-1}(T))$,

 $\nu(T | T \neq \phi) = \mu(T).$

Theorem. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical or subcritical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ that satisfies Assumption 1. Then, measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is $\mathcal{IGW}(q_0)$.

Attraction property of critical Galton-Watson trees

Theorem. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ denote the pushforward probability measure induced by operator \mathcal{R}^k , i.e.,

 $\nu_k(T) = \rho_0 \circ \mathcal{R}^{-k}(T) = \rho_0 \left(\mathcal{R}^{-k}(T) \right), \text{ and set } \rho_k(T) = \nu_k \left(T \mid T \neq \phi \right).$

Suppose Assumption 1 is satisfied. Then,

 $\lim_{k\to\infty}\rho_k(T)=\rho^*(T),$

where ρ^* denotes $\mathcal{IGW}(q)$ with q = 1 - S'(1).

Finally, if $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ is subcritical, then $\rho_k(T)$ converges to a point mass measure, $\mathcal{GW}(q_0=1)$.

Attraction property of critical Galton-Watson trees

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$, with offspring distribution q_k of Zipf type:

 $q_k \sim Ck^{-(\alpha+1)}$ with $\alpha \in (1,2]$ and C > 0.

Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ and $\rho_k(T) = \nu_k(T \mid T \neq \phi)$.

Then, $\lim_{k\to\infty} \rho_k(T) = \rho^*(T)$, where ρ^* is $\mathcal{IGW}(q)$ with $q = \frac{1}{\alpha}$.

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$ such that $\sum_{k=2}^{\infty} k^2 q_k < \infty$.

Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ and $\rho_k(T) = \nu_k(T \mid T \neq \phi)$.

Then, $\lim_{k\to\infty} \rho_k(T) = \rho^*(T)$, where ρ^* is $\mathcal{IGW}(1/2)$ (critical binary).

A gift from anonymous referee

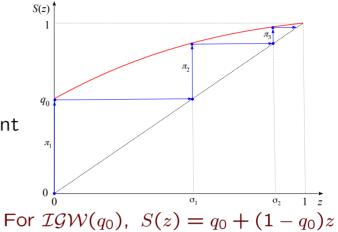
This is an example of Horton prune-invariant critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ for which Assumption 1 does not hold.

Let
$$q_0 \in (1/2, 1)$$
, $q_1 = 0$, and

$$q_m = \frac{1}{m!A} \sum_{n \in \mathbb{Z}} B^n \rho^{nm} e^{-\rho^n} \qquad m = 2, 3, \dots,$$

where $\rho = 1 - q_0$, parameter $B \in ((1 - q_0)^{-1}, (1 - q_0)^{-2})$ is found by solving

$$\sum_{n \in \mathbb{Z}} B^n \left(1 - \rho^{n+1} - (1 + \rho^n - \rho^{n+1}) e^{-\rho^n} \right) = 0, \quad \text{and} \quad A = \sum_{n \in \mathbb{Z}} B^n \rho^n \left(1 - e^{-\rho^n} \right).$$



Metric trees.

 $\ensuremath{\mathcal{L}}$ - space of finite unlabeled rooted reduced trees with edge lengths.

Empty tree $\phi = \{\rho\}$ comprised of a root vertex ρ and no edges.

d(x, y): the length of the minimal path within T between x and y.

The length of a tree T is the sum of the lengths of its edges:

$$\operatorname{length}(T) = \sum_{i=1}^{\#T} l_i.$$

The height of a tree T is the maximal distance between the root and a vertex:

height(T) =
$$\max_{1 \le i \le \#T} d(v_i, \rho)$$
.

Metric invariant Galton-Watson measures

Denote

shape(T) = combinatorial shape of T.

Continuous Galton-Watson measure: for a given p.m.f. $\{q_k\}$ and a parameter $\lambda > 0$, a metric T is distributed as

 $T \stackrel{d}{=} \mathcal{GW}(\{q_k\}, \lambda)$ if shape $(T) \stackrel{d}{=} \mathcal{GW}(\{q_k\})$

and, conditioned on shape(T), the edges of T are i.i.d. exponentially distributed with parameter λ .

Exponential critical binary Galton-Watson tree measure:

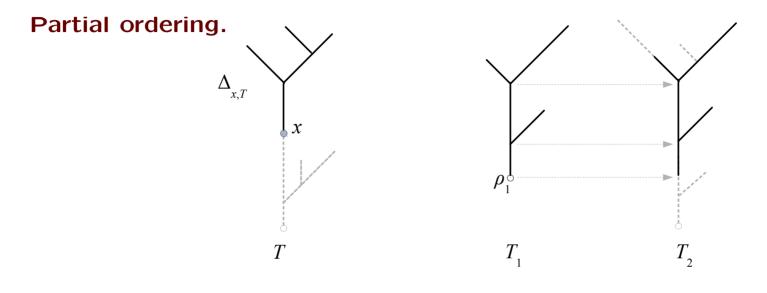
$$\mathsf{GW}(\lambda) = \mathcal{GW}(q_0 = q_2 = 1/2, \lambda)$$

Exponential invariant Galton-Watson (IGW) tree measure: for a given $q \in [1/2, 1)$ and $\lambda > 0$, let p.m.f. $\{q_k\}$ be such that $\mathcal{GW}(\{q_k\}) = \mathcal{IGW}(q)$, then,

$$\mathcal{IGW}(q,\lambda) = \mathcal{GW}(\{q_k\},\lambda)$$

is the IGW measure with parameters q and λ .

Notice that $\mathcal{IGW}(1/2,\lambda) = GW(\lambda)$.



(a) Descendant tree

(b) Isometry

Consider $T \in \mathcal{L}$ and a point $x \in T$. Let $\Delta_{x,T}$ denote all points of T descendant to x, including x. Then $\Delta_{x,T}$ is itself a tree in \mathcal{L} with root at x.

Let (T_1, d) and (T_2, d) be two metric rooted trees, and let ρ_1 denote the root of T_1 . $f : (T_1, d) \to (T_2, d)$ is an isometry if $\operatorname{Image}[f] \subseteq \Delta_{f(\rho_1), T_2}$ and $\forall x, y \in T_1$, d(f(x), f(y)) = d(x, y).

Generalized dynamical pruning.

Partial order: $T_1 \leq T_2$ if and only if \exists an isometry $f : (T_1, d) \rightarrow (T_2, d)$.

Consider a monotone non-decreasing

 $\varphi: \mathcal{L} \to \mathbb{R}^+,$

i.e., $\varphi(T_1) \leq \varphi(T_2)$ whenever $T_1 \leq T_2$.

Generalized dynamical pruning: for any $t \ge 0$, let

$$\mathcal{S}_t(arphi,T) =
ho \cup \left\{ x \in T \setminus
ho \; : \; arphi \left(\Delta_{x,T}
ight) \geq t
ight\}$$

Note that $\mathcal{S}_t(\varphi, T) : \mathcal{L} \to \mathcal{L}$ is an operator induced by φ .

It cuts all subtrees $\Delta_{x,T}$ for which the value of φ is below threshold t. Here,

 $S_s(T) \preceq S_t(T)$ whenever $s \ge t$.

Prune-invariance.

$$\mathcal{S}_t(\varphi,T) =
ho \cup \left\{ x \in T \setminus
ho \ : \ \varphi\left(\Delta_{x,T}\right) \ge t
ight\}$$

Definition. Consider a probability measure μ on \mathcal{L} such that $\mu(\phi) = 0$. Let ν be the pushforward measure induced by operator S_t , i.e.,

$$\nu(T) = \mu \circ \mathcal{S}_t^{-1}(T) = \mu \left(\mathcal{S}_t^{-1}(T) \right).$$

A tree measure μ is called prune-invariant with respect to S_t if for any tree $T \in \mathcal{L}$ there $\exists \gamma_t > 0$ such that

$$\mu\left(\operatorname{shape}(T)\in A, \ \vec{\ell}(T)\in B\right) = \nu\left(\operatorname{shape}(T)\in A, \ \gamma_t\vec{\ell}(T)\in B \ \middle| \ T\neq \phi\right),$$

where

$$\vec{\ell}(T) =$$
 vector of edge-lengths.

Objective: find and classify prune-invariant measures on \mathcal{L} .

See [YK and I. Zaliapin, *Probability Surveys* (2020)] for more on the topic.

Generalized dynamical pruning.

Example (Tree height). Let $\varphi(T) = \text{height}(T)$.

Continuous semigroup property: $S_t \circ S_s = S_{t+s}$ for any $t, s \ge 0$.

It coincides with tree erasure in [J. Neveu, Adv. Appl. Prob. (1986)].

[J. Neveu, Adv. Appl. Prob. (1986)]: $GW(\lambda)$ is prune-invariant with respect to $\varphi(T) = height(T)$.

Example (Tree length). Let $\varphi(T) = \text{length}(T)$. No semigroup property.

It coincides with potential dynamics of 1D ballistic annihilation in [YK and I. Zaliapin, *JSP* (2020)].

Example (Horton pruning). Let $\varphi(T) = \operatorname{ord}(T) - 1$, where $\operatorname{ord}(T)$ denotes the Horton-Strahler order of T. Here, $S_t = \mathcal{R}^{\lfloor t \rfloor}$.

Discrete semigroup property: $S_t \circ S_s = S_{t+s}$ for any $t, s \in \mathbb{N}$.

[G. A. Burd, E. C. Waymire, and R. D. Winn, *Bernoulli* (2000)]: GW(λ) is prune-invariant with respect to $\varphi(T) = \operatorname{ord}(T) - 1$.

Prune-invariance.

Theorem. [YK and I. Zaliapin, *JSP* (2020)] Let $T \stackrel{d}{=} GW(\lambda)$. Then, for any monotone non-decreasing function $\varphi : \mathcal{L} \to \mathbb{R}^+$,

$$T^{t} := \left\{ \mathcal{S}_{t}(\varphi, T) | \mathcal{S}_{t}(\varphi, T) \neq \phi \right\} \stackrel{d}{=} \mathsf{GW}(\lambda p_{t}),$$

where $p_t = \mathsf{P}(\mathcal{S}_t(\varphi, T) \neq \phi)$.

That is, if $\mu \equiv GW(\lambda)$, then, the pushforward measure ν induced by operator S_t satisfies

$$\nu(\cdot \mid \neq \phi) \equiv \mathsf{GW}(\mathcal{E}_t(\lambda, \varphi)) \quad \text{with} \quad \mathcal{E}_t(\lambda, \varphi) = \lambda p_t.$$

Theorem. [YK and I. Zaliapin, JSP (2020)]

(a) If
$$\varphi(T) = \text{length}(T)$$
, then $\mathcal{E}_t(\lambda, \varphi) = \lambda e^{-\lambda t} \Big[I_0(\lambda t) + I_1(\lambda t) \Big]$.

(b) If $\varphi(T) = \text{height}(T)$, then $\mathcal{E}_t(\lambda, \varphi) = \frac{2\lambda}{\lambda t+2}$.

(c) If $\varphi(T) = \operatorname{ord}(T) - 1$, then $\mathcal{E}_t(\lambda, \varphi) = \lambda 2^{-\lfloor t \rfloor}$.

Prune-invariance. Recall that $\mathcal{IGW}(1/2, \lambda) = GW(\lambda)$.

Theorem. [YK, G. Xu, I. Zaliapin, preprint (2021)]

Let $T \stackrel{d}{=} \mathcal{IGW}(q, \lambda)$. Then, for any monotone non-decreasing function $\varphi : \mathcal{L} \to \mathbb{R}^+$,

$$T^{t} := \left\{ \mathcal{S}_{t}(\varphi, T) | \mathcal{S}_{t}(\varphi, T) \neq \phi \right\} \stackrel{d}{=} \mathcal{I}\mathcal{G}\mathcal{W}\left(q, \lambda p_{t}^{(1-q)/q}\right),$$

where $p_t = \mathsf{P}(\mathcal{S}_t(\varphi, T) \neq \phi)$.

That is, if $\mu \equiv IGW(q, \lambda)$, then, the pushforward measure ν induced by operator S_t satisfies

$$\nu(\cdot \mid \neq \phi) \equiv \mathcal{IGW}(q, \mathcal{E}_t(\lambda, \varphi)) \quad \text{with} \quad \mathcal{E}_t(\lambda, \varphi) = \lambda p_t^{(1-q)/q}$$

Theorem. [YK, G. Xu, I. Zaliapin, preprint (2021)]

(a) If $\varphi(T) = \text{length}(T)$, then

$$p_t = 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \Gamma(n/q+1)}{n! n! \Gamma(n/q-n+2)} (\lambda q)^n t^n.$$

(b) If $\varphi(T) = \text{height}(T)$, then

$$p_t = \left(\lambda(1-q)t+1
ight)^{-q/(1-q)}$$
 and $\mathcal{E}_t(\lambda,\varphi) = \lambda p_t^{(1-q)/q} = \frac{\lambda}{\lambda(1-q)t+1}$

A related concept.

[T. Duquesne and M. Winkel, *SPA* (2019)] introduced concept of hereditary reduction.

The notion of hereditary reduction is a generalization of tree erasure in [J. Neveu, *Adv. Appl. Prob.* (1986)], similar to generalized dynamical pruning.

[T. Duquesne and M. Winkel, *SPA* (2019)]: $GW(\lambda)$ is invariant with respect to hereditary reduction.

[YK, G. Xu, I. Zaliapin, preprint (2021)]: $\mathcal{IGW}(q,\lambda)$ is invariant with respect to hereditary reduction.

Tokunaga coefficients and Horton law.

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] For a given $q \in [1/2, 1)$, consider an invariant Galton-Watson measure $\mathcal{IGW}(q)$. Then, its Tokunaga coefficients are

 $T_{i,j}^{o} = rac{\mathcal{N}_{i,j}^{o}[K]}{\mathcal{N}_{j}[K]} = T_{j-i}^{o}, \quad ext{ where } T_{k}^{o} = c^{k-1} \ (k \ge 1) \quad ext{ with } c = rac{1}{1-q}.$

Additionally, $\pi_i = P(\operatorname{ord}(T) = j) = q c^{1-i}$, and the strong Horton law $\lim_{K \to \infty} \frac{\mathcal{N}_k[K]}{\mathcal{N}_1[K]} = R^{1-k}$ holds with Horton exponent

$$R = c^{c/(c-1)} = (1-q)^{-1/q}.$$

Critical binary: since $\mathcal{IGW}(1/2) = \mathcal{GW}(q_0 = q_2 = 1/2)$, for q = 1/2, we have

$$c = 2, \quad \pi_i = 2^{-i}, \quad T_k = 2^{k-1}, \quad \text{and} \quad R = 4.$$