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Quantum Fourier Transforms

Discrete Fourier transform over CN is an N⇥N unitary
matrix. Thus, there is an algorithmic advantage of
implementing it on quantum computers.

• Classical Fourier transform uses O(N2) gates.

• Let N = 2n. Fast Fourier transform (FFT) uses
O(n2n) = O(N logN) gates.

• Let N = 2n. Quantum Fourier transform (QFT)
uses O(n2) = O(log2

N) gates.

The QFT is a quantum implementation of the FFT
via Hadamard gates and controlled phase shift gates.

Applied mathematician Gilbert Strang described the
FFT as the most important numerical algorithm of

our lifetime.
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Randomized algorithms.

Applied mathematician Gilbert Strang described the
FFT as the most important numerical algorithm of

our lifetime.

The QFT is equally revered in quantum computation.
Notable applications being the phase estimation algo-
rithm and Shor’s algorithm.

Another successful approach in classical computing:

randomized algorithms would often achieve algorith-
mic speedup, and in some cases, randomized algo-
rithms are the only practical means of solving a prob-
lem.

Similarly to Grover’s algorithm, randomized algorithm
produces an optimal or close to optimal solution with
probability 1� ✏.

Goal: A quantum approach that replicates the suc-
cess of randomized algorithms.
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Metropolis-Hastings algorithm.

Goal: simulating an S-valued random variable dis-
tributed according to a given probability distribution
⇡(z), given a complex nature of large discrete space
S.

MCMC: generating a Markov chain {Xt} over S, with
distribution µt(z) = P (Xt = z) converging rapidly to
its unique stationary distribution, ⇡(z).

Metropolis-Hastings algorithm: Consider a con-
nected neighborhood network with points in S. Sup-
pose we know the ratios of ⇡(z0)

⇡(z) for any two neighbor

points z and z
0 on the network.

Let for z and z
0 connected by an edge of the network,

the transition probability be set to

p(z, z0) =
1

M
min

⇢
1,

⇡(z0)

⇡(z)

�
for M large enough.
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Metropolis-Hastings algorithm.

Consider a connected neighborhood network with points
in S.

Suppose we know the ratios of ⇡(z0)
⇡(z) for any two neigh-

bor points z and z
0 on the network.

Let for z and z
0 connected by an edge of the network,

the transition probability be set to

p(z, z0) =
1

M
min

⇢
1,

⇡(z0)

⇡(z)

�
for M large enough.

Specifically, M can be any number greater than the
maximal degree in the neighborhood network.

Let p(z, z) absorb the rest of the probabilities, i.e.

p(z, z) = 1�

X

z0: z⇠z0

p(z, z0)
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Knapsack problem. The knapsack problem is

a problem in combinatorial optimization: Given a set

of items, each with a mass and a value, determine the

number of each item to include in a collection so that

the total weight is less than or equal to a given limit

and the total value is as large as possible. Knapsack

problem is NP complete.

Source: Wikipedia.org
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Knapsack problem. Given m items of various
weights wj and value vj, and a knapsack with a weight
limit R. Assuming the volume and shape do not mat-
ter, find the most valuable subset of items that can
be carried in the knapsack.

Mathematically: we need z = (z1, . . . , zm) in

S =
�
z 2 {0,1}m :

mX

j=1

wjzj  R
 

maximizing U(z) =
mP

j=1
vjzj.

Source: Wikipedia.org
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Knapsack problem. Find z = (z1, . . . , zm) in

S =
�
z 2 {0,1}m :

mP
j=1

wjzj  R
 
maximizing U(z) =

mP
j=1

vjzj.

• MCMC approach: Assign weights ⇡(z) = 1
Z�

exp
�
� U(z)

 

to each z 2 S with � = 1
T
, where

Z� =
X

z2S

exp
�
� U(z)

 

is called partition function. Next, for each z 2 S

consider a clique Cz of neighbor points in S. Consider
a Markov chain over S that jumps from z to a neighbor
z
0
2 Cz with probability

p(z, z0) =
1

m
min

⇢
1,

⇡(z0)

⇡(z)

�
.
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Knapsack problem. Assign weights ⇡(z) =
1
Z�

exp
�
� U(z)

 
to each z 2 S with � = 1

T
, where

Z� =
X

z2S

exp
�
� U(z)

 

is called partition function. Next, for each z 2 S

consider a clique Cz of neighbor points in S. Consider
a Markov chain over S that jumps from z to a neighbor
z
0
2 Cz with probability

p(z, z0) =
1

m
min

⇢
1,

⇡(z0)

⇡(z)

�
.

Observe that

⇡(z0)

⇡(z)
= exp

�
�
�
U(z0)� U(z)

�
= exp

�
�
�
v · (z0 � z)

� 
,

where v = (v1, . . . , vm) is the values vector.
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Knapsack and other optimization problems.

• Issues:

(i) Running time?

Analyzing mixing time is challenging in MCMC
for real-life optimization problems such as knap-
sack problem. With few exceptions – no firm
foundation exists, and no performance guaran-
teed.

(ii) Optimal T?

T is usually chosen using empirical observations,
trial and error, or certain heuristic.

Often, simulated annealing approach is used.
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Simulated annealing.

Usually, we let ⇡(z) = 1
Z�

exp
�
� U(z)

 
to each z 2 S

with � = 1
T
, and p(z, z0) = 1

M
min

n
1, ⇡(z0)

⇡(z)

o
.

• Idea: What if we let temperature T change with
time t, i.e. T = T (t)? When T is large, the Markov
chain is more di↵usive; as T gets smaller, the value
Xt stabilizes around the maxima.

The method was independently devised by S. Kirk-
patrick, C.D. Gelatt and M.P. Vecchi in 1983, and by
V. Černý in 1985.

Name comes from annealing in metallurgy, a tech-
nique involving heating and controlled cooling.
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Gibbs Sampling: Ising Model.

Every vertex v of G = (V,E) is assigned a spin �(v) 2

{�1,+1}. The probability of a configuration � 2

{�1,+1}V is

⇡(�) =
e
��H(�)

Z(�)
, where � =

1

T

| | | | |

� • � • � • � • � • �

| | | | |

� • � • � • � • � • �

| | | | |

� • � • � • � • � • �

| | | | |
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Gibbs Sampling: Ising Model.

Every vertex v of G = (V,E) is assigned a spin �(v) 2

{�1,+1}. The probability of a configuration � 2

{�1,+1}V is

⇡(�) =
e
��H(�)

Z(�)
, where � =

1

T

| | | | |

� +1 � �1 � �1 � �1 � +1 �

| | | | |

� +1 � �1 � +1 � +1 � �1 �

| | | | |

� +1 � �1 � �1 � +1 � �1 �

| | | | |
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Gibbs Sampling: Ising Model.

8� 2 {�1,+1}V , the Hamiltonian (energy function)

H(�) = �
1

2

X

u,v:u⇠v

�(u)�(v) = �

X

edges e=[u,v]

�(u)�(v)

and probability of a configuration � 2 {�1,+1}V is

⇡(�) =
e
��H(�)

Z(�)
, where � =

1

T

Z(�) =
P

�2{�1,+1}V e
��H(�) - normalizing factor.

The local Hamiltonian Hlocal(�, v) = �

X

u:u⇠v

�(u)�(v) .

Conditional probability for �(v) is expressed via Hlocal(�, v):

H(�) = Hlocal(�, v)�
X

e=[u1,u2]:u1,u2 6=v

�(u1)�(u2)
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Gibbs Sampling: Ising Model via Glauber dynamics.

| | | | |

� +1 � �1 � �1 � �1 � +1 �

| | | | |

� +1 � �1 � �(v) � +1 � �1 �

| | | | |

� +1 � �1 � �1 � +1 � �1 �

| | | | |

Conditional probability for �(v) is expressed via Hlocal(�, v):

H(�) = Hlocal(�, v)�
X

e=[u1,u2]:u1,u2 6=v

�(u1)�(u2)
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Gibbs Sampling: Ising Model via Glauber dynamics.

| | | | |

� +1 � �1 � �1 � �1 � +1 �

| | | | |

� +1 � �1 � ? � +1 � �1 �

| | | | |

� +1 � �1 � �1 � +1 � �1 �

| | | | |

Randomly pick v 2 V with probability deg(v)
2|E|

. Next,

erase the spin �(v), and replace it with +1 or �1
with probabilities

P (�!�+) =
e
��H(�+)

e��H(��)+e��H(�+)
=

e
��Hlocal(�+,v)

e��Hlocal(��,v)+e��Hlocal(�+,v)
=

e
�2��(v)

e�2��(v)+e2��(v)

and P (�!��)=
e
2��(v)

e�2��(v)+e2��(v)
.
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Gibbs Sampling: Ising Model via Glauber dynamics.

Randomly pick v 2 V with probability deg(v)
2|E|

. Next,

erase the spin �(v), and replace it with +1 or �1
with probabilities

P (�!�+) =
e
��H(�+)

e��H(��)+e��H(�+)
=

e
��Hlocal(�+,v)

e��Hlocal(��,v)+e��Hlocal(�+,v)
=

e
�2��(v)

e�2��(v)+e2��(v)

and P (�!��)=
e
2��(v)

e�2��(v)+e2��(v)
.

Here, �+,v = �+ and ��,v = �� are given by

�+(u) =

⇢
�(u) if u 6= v,

+1 if u = v
and ��(u) =

⇢
�(u) if u 6= v,

�1 if u = v

So, the transition probabilities are

p(�,�+,v) =
deg(v)

2|E|

e
2��(v)

e�2��(v)+e2��(v)
and p(�,��,v) =

deg(v)

2|E|

e
2��(v)

e2��(v)+e2��(v)
.
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Glauber dynamics: Rapid mixing.

Glauber dynamics - a random walk on state space S

(here {�1,+1}V ) s.t. needed ⇡ is stationary w.r.t.
Glauber dynamics.

In high temperatures (i.e. � = 1
T

small enough) it
takes O(n logn) iterations to get “"-close” to ⇡. Here
|V | = n.

Need: maxv2V deg(v) · tanh(�) < 1

Thus the Glauber dynamics is a fast way to generate
⇡. It is an important example of Gibbs sampling.
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Close enough distribution and mixing time.

What is “"-close” to ⇡? Start with �0:

| | | | |

� +1 � +1 � +1 � +1 � +1 �

| | | | |

� +1 � +1 � +1 � �1 � �1 �

| | | | |

� �1 � �1 � �1 � �1 � �1 �

| | | | |

If Pt(�) is the probability distribution after t iterations,
the total variation distance

kPt � ⇡k
TV

=
1

2

X

�2{�1,+1}V

|Pt(�)� ⇡(�)|  " .
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Close enough distribution and mixing time.

Total variation distance:

kµ�⌫k
TV

:=
1

2

X

x2S

|µ(x)�⌫(x)| = sup
A⇢S

|µ(A)�⌫(A)|.

Mixing time: let µt = µ0P
t
, then

tmix(") := inf
�
t : kµt � ⇡k

TV
 ", all µ0

 
.

In high temperature, tmix(") = O(n logn).
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Quantum walks: the interchange framework.

In
Framework for discrete-time quantum walks and a

symmetric walk on a binary tree (Phys. Rev. A, 2011)
by Z. Dimcovic, D. Rockwell, I. Milligan, R. Burton,
T. Nguyen, and Y. Kovchegov,
a general framework for discrete-time quantum walks
is constructed as a quantum analog of memory-2
Markov chains (walks).

Consider a simply connected graph (network) G = (V,E).
Let N = |V |.

We construct a quantum walk | (t)i 2 CN
⇥ CN via

the interchange framework.

Let |ii and |ji represent two neighboring vertices in
G = (V,E). Then,

| (t)i =
X

i,j

cij(t) |ii ⌦ |ji



Quantum Walks 21

Quantum walks: the interchange framework.

We construct a quantum walk | (t)i 2 CN
⇥ CN via

the interchange framework.

Let |ii and |ji represent two neighboring vertices in
G = (V,E). Then,

| (t)i =
X

i,j

cij(t) |ii ⌦ |ji

evolves according to

| (t+1)i = UX | (t)i,

where

X : |ii ⌦ |ji ! |ji ⌦ |ii

is the interchange operator, and

U =
X

j

⇧j ⌦ Uj, where ⇧j = |jihj| .
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Quantum walks: the interchange framework.

We construct a quantum walk | (t)i 2 CN
⇥ CN via

the interchange framework.

Let |ii and |ji represent two neighboring vertices in
G = (V,E). Then,

| (t)i =
X

i,j

cij(t) |ii ⌦ |ji

evolves according to

| (t+1)i = UX | (t)i,

where

X : |ii ⌦ |ji ! |ji ⌦ |ii

is the interchange operator, and

U =
X

j

⇧j ⌦ Uj, where ⇧j = |jihj| .

i
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Quantum walks: the interchange framework.

Framework for discrete-time quantum walks and a

symmetric walk on a binary tree (Phys. Rev. A, 2011)
by Z. Dimcovic, D. Rockwell, I. Milligan, R. Burton,
T. Nguyen, and Y. Kovchegov,
studied a DTQW on a binary tree. Here, for a non-
root vertex j,

Uj =


I 0
0 U

loc

j

�
, where U

loc

j =
1
p
3

2

4
1 e

2⇡i/3
e
2⇡i/3

e
2⇡i/3 1 e

2⇡i/3

e
2⇡i/3

e
2⇡i/3 1

3

5 .

DTQW evolution: | (t+1)i = UX | (t)i with

X : |ii⌦|ji ! |ji⌦|ii and U =
X

j

⇧j⌦Uj, where ⇧j = |jihj| .

in
neighbor
points
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Quantum walks: what’s missing?

• We are supposed to know the ratios of ⇡(z0)
⇡(z) for any pair

of neighbors z and z
0 on the network.

Approach: local unitary operators Uj in the interchange
framework.

• Not knowing the running time.

Approach: Using adiabatic analog of simulated annealing.
On Alternating Quantum Walks (Physica A, 2017) by J. Rousseva

and Y. Kovchegov

Stable adiabatic times for Markov chains (Stochastics, 2016) by
K. Bradford, Y. Kovchegov, and T. Nguyen

Adiabatic times for Markov chains and applications (J. Stat. Phys., 2011)
by K. Bradford and Y. Kovchegov

A note on adiabatic theorem for Markov chains (Stat.&Prob. Letters, 2010)
by Y. Kovchegov


