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Abstract

In this work we show how coupling and stochastic dominance methods can be
successfully applied to a classical problem of rigorizing Pearson’s skewness. Here, we
use Fréchet means to define generalized notions of positive and negative skewness that
we call truly positive and truly negative. Then, we apply stochastic dominance approach
in establishing criteria for determining whether a continuous random variable is truly
positively skewed. Intuitively, this means that scaled right tail of the probability density
function exhibits strict stochastic dominance over equivalently scaled left tail. Finally,
we use the stochastic dominance criteria and establish some basic examples of true
positive skewness, thus demonstrating how the approach works in general.

1 Introduction

Consider a positively skewed (right-skewed) unimodal distribution with finite second mo-
ment. It is expected that the mode, the median, and the mean line up in an increasing
order, i.e.,

mode < median < mean.

Symmetrically, for a negatively skewed (left-skewed) unimodal distribution with finite second
moment,

mean < median < mode.

Here, when saying that a distribution is positively skewed we usually mean Pearson’s mo-
ment coefficient of skewness (the standardized third central moment) is positive. However,
there are notable exceptions to the above orderings, also known as the mean-median-mode
inequalities. See [1, 17]. It all depends on how we measure skewness. Indeed, there are other
measurements of skewness besides the moment coefficient such as Pearson’s first skewness
coefficient also known as mode skewness defined as

mean−mode

standard deviation

and Pearson’s second skewness coefficient also known as median skewness defined as

3× mean−median

standard deviation
.
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The sign of the latter two measurements of skewness is consistent with the above discussed
ordering of the mode, the median, and the mean.

Thus, whether the signs of the mode skewness, the median skewness, and the moment
coefficient of skewness align depends on how we define skewness. First, we need an approach
that unifies the different measurements of skewness in determining the sign of skewness (this
is done in Def. 3 and 4 below). Second, when defining positive skewness, the objective is to
characterize the distributions for which the left tail is “spreading short” and the right tail is
“spreading longer”. If looking at this problem from the stochastic dominance perspective,
we want to dissect the distribution into the left and the right parts so that when we reflect
the left part, align both at zero, and multiply each by a certain monotone function (positive
constant times a power of x) so that each part is converted into a distribution over positive
half-line. If the distribution obtained from the right part exhibits stochastic dominance
over the distribution obtained from the left part, then this should imply that the left tail
is “spreading short” and the right tail is “spreading longer”. Hence, such distribution is
positively skewed (reverse left and right for the negatively skewed distributions). Thus it is
natural to consider finding criteria for the skewness to be positive or negative that is based
on stochastic dominance of one tail over the other. Definition 3 of true positive skewness
and its variation Def. 4 for unimodal distributions yield such stochastic dominance criteria
which we establish in Sect. 2, and apply in Sect. 3.

We will generalize positive and negative skewness by consider the following class of centroids
known as Fréchet p-means [4].

Definition 1. For p ∈ [1,∞) and a random variable X with the finite p-th moment, the
quantity

νp = argmina∈RE
[
|X − a|p

]
(1)

is called Fréchet p-mean, or simply the p-mean.

The theoretical p-mean νp is uniquely defined for all p ≥ 1 as E
[
|X−a|p

]
is a strictly convex

function of a. Moreover, the p-mean νp is a unique solution of

E
[
(X − νp)p−1

+

]
= E

[
(νp −X)p−1

+

]
. (2)

Notice that (2) can be used as an extended definition of the p-mean that only requires
finiteness of the (p− 1)-st moment.

Definition 2. For p ∈ [1,∞) and a continuous random variable X with the finite (p− 1)-st
moment, the unique solution νp of (2) is the p-mean of X.

For the rest of the paper the p-mean νp of X is as defined in Def. 2, and we let

D =
{
p ≥ 1 : E[|X|p−1] <∞

}
denote the domain of νp. Next, we observe that ν1 and ν2 are respectively the median (in
continuous case) and the mean of X. If the distribution of X is unimodal, we let ν0 denote
the mode. In the unimodal case, we will use the domain D0 = D ∪ {0}.
For p ∈ (0, 1), there are examples of no uniqueness of νp in (1). For instance, if X is
a Bernoulli random variable with parameter 1/2, there will be two values of νp for each
p ∈ (0, 1). In Sect. 4, we will observe that often Definition 2 can be extended to include
p ∈ (0, 1).
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Next, we observe that the p-means ν0, ν1, ν2, and ν4 are definitive for the notion of positive
skewness defined via the Pearson’s first and second skewness coefficients, as well as the
Pearson’s moment coefficient of skewness. Indeed, Karl Pearson’s first skewness coefficient
(mode skewness) for a unimodal random variable is expressed as ν2−ν0

σ
, where σ denotes the

standard deviation, while Pearson’s second skewness coefficient (median skewness) is given

by 3(ν2−ν1)
σ

. Finally, the renown Pearson’s moment coefficient of skewness

γ = E

[(
X − ν2

σ

)3
]

is also related to the p-means via the following proposition.

Proposition 1. Consider a random variable X with a finite third moment. The Pearson’s
moment coefficient of skewness γ is positive if and only if ν4 > ν2.

Proof. Notice that the following cubic equation in a,

E
[
(X − a)3

]
= 0, (3)

can be rewritten as
(a− ν2)3 + 3σ2(a− ν2)− σ3γ = 0. (4)

The 4-mean ν4 is the only real root of (3), and thus of (4). Therefore, ν4 is now being
obtained from (4) as follows:

γ =

(
ν4 − ν2

σ

)3

+ 3

(
ν4 − ν2

σ

)
. (5)

Throughout the rest of the paper, we consider a continuous random variable X with density
function f(x). Furthermore, we suppose f(x) has support supp(f) = (L,R), where L may
take value at −∞ and R may take value at ∞.

By Proposition 1, the second skewness coefficient and the moment coefficient of skewness
are both positive if and only if

ν1 < ν2 < ν4.

In the case of unimodal continuous distribution, both, the moment coefficient of skewness is
positive and the mean-median-mode inequality holds if and only if

ν0 < ν1 < ν2 < ν4.

See Fig. 1. This observation suggests the notion of true positive skewness defined below.

Definition 3. We say that a random variable X, or its distribution, is truly positively skewed
if and only if νp is an increasing function of p in the domain D, provided the interior of D
is nonempty. Analogously, X is truly negatively skewed if and only if νp is a decreasing
function of p in D.

The above defined true positive skewness insures ν1 < ν2 < ν4.
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Definition 4. We say that a unimodal distribution is truly mode positively skewed if and
only if νp is an increasing function of p in the domain D0. Analogously, it is truly mode
negatively skewed if and only if νp is a decreasing function of p in D0.

Observe that true mode positive skewness guarantees ν0 < ν1 < ν2 < ν4. Notice also
that a distribution can be truly positively skewed or truly mode positively skewed even in the
absence of finite second moment.

Besides obtaining the sign of skewness, Definitions 3 and 4 do not immediately provide a
way of measuring the magnitude of skewness. Defining the corresponding measures of skew-
ness and extending the approach to multidimensional distributions is touched upon in the
discussion section (Sect. 5). Importantly, this theoretical work concentrates on the problem
of rigorously defining the sign of skewness. We do not intend to venture into statistical anal-
ysis or statistical applications of here defined concepts. In general, the question of centroids
and their role in rigorously defining skewness that we considered in this paper has a long
and interesting history; see for example [7, 16, 19, 20, 12, 5, 6, 3, 2]. Yet, this problem can
still generate new challenges for theoretical probabilists and statisticians alike.

In this paper we will show how true positive skewness (and analogously, true negative
skewness) can be validated using the methods of coupling and stochastic dominance. These
methods are widely used in statistical mechanics and interacting particle systems, the theory
of mixing times, and beyond. See [8, 9, 10, 11, 13] and references therein. Specifically we
will need the following well known result.

Lemma 1 ([11, 13]). Suppose X and Y are real valued random variables with cumulative
distribution functions denoted by FX and FY respectively and satisfying FX(x) ≥ FY (x), i.e.,
Y exhibits stochastic dominance over X, then, for any increasing function h : R → R we
have E[h(Y )] ≥ E[h(X)]. Moreover, if FX 6≡ FY , i.e., Y exhibits strict stochastic dominance
over X, and if h(x) is strictly increasing, then E[h(Y )] > E[h(X)].

Lemma 1 is usually proved via a coupling argument. If X and Y are continuous random
variables, the inequality in Lemma 1 follows from the integration by parts. In some in-
stances, instead of stating that one random variable exhibits (strict) stochastic dominance
over another, it is more convenient to say that one distribution or p.d.f. exhibits (strict)
stochastic dominance over the other.

Before presenting the general approach in Sect. 2, we show how stochastic dominance method
can be used to establish true positive skewness of exponential random variables.

Example 1 (Exponential distribution). Consider an exponential random variable X with
parameter λ > 0. Without loss of generality let λ = 1. Equation (2) implies

νp∫
0

(νp − x)p−1e−x dx =

∞∫
νp

(x− νp)p−1e−x dx.

This simplifies to
νp∫

0

xp−1ex dx = Γ(p). (6)
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Figure 1: For the log-normal density function with parameters µ = σ2 = 1/2 and
p.d.f. f(x) = 1√

πx
exp {−(log x− 1/2)2}, we have the following centroids indicated on

the plot: the mode ν0 = exp {µ− σ2} = 1, the median ν1 = exp {µ} = e1/2, the mean

ν2 = exp
{
µ+ σ2

2

}
= e3/4, and the 4-mean ν4 = exp

{
µ+ 3σ2

2

}
= e5/4.

Differentiating d
dp

in (6) yields

νp−1
p eνp

dνp
dp

+

νp∫
0

xp−1ex log x dx =

∞∫
0

xp−1 e−x log x dx (7)

Next, we observe that the gamma distribution with the p.d.f. 1
Γ(p)

xp−1 e−x1(0,∞)(x) stochasti-

cally dominates the distribution with the p.d.f. 1
Γ(p)

xp−1 ex1(0,νp)(x). Thus, Lemma 1 implies

νp∫
0

xp−1ex log x dx <

∞∫
0

xp−1 e−x log x dx (8)

as log x is an increasing function. Consequently, equations (7) and (8) imply dνp
dp

> 0 for all

p > 0. Hence, exponential random variables are proved to be truly positively skewed (Def. 3)
and, as the mode ν0 = 0, truly mode positively skewed (Def. 4).

2 True positive skewness via stochastic dominance

For a given p ∈ D, the theoretical p-mean νp defined in (2) solves

Hp :=

νp−L∫
0

xp−1 f(νp − x) dx =

R−νp∫
0

xp−1 f(νp + x) dx. (9)

Next, we state and prove a criterion for νp to be increasing, and therefore for the p.d.f. f(x)
to be truly positively skewed.
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Theorem 1. Consider a continuous random variable with p.d.f. f(x) supported on supp(f) =
(L,R), and a real number p in the interior of D. If p.d.f. 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) ex-

hibits strict stochastic dominance over p.d.f. 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x), then function νp

is increasing at p. Consequently, if the above stochastic dominance holds for all p in the
interior of D, the distribution is truly positively skewed (Def. 3).

Proof. For p in the interior of D, we use Leibniz integral rule to obtain

0 =
d

dp

 νp∫
L

(νp − x)p−1 f(x) dx −
R∫

νp

(x− νp)p−1 f(x) dx


=

(p− 1)

νp∫
L

(νp − x)p−2 f(x) dx +

νp∫
L

(νp − x)p−1 f(x) dx

 dνp
dp

+

(p− 1)

R∫
νp

(x− νp)p−2 f(x) dx −
R∫

νp

(x− νp)p−1 f(x) dx

 dνp
dp

+

νp−L∫
0

xp−1 log x f(νp − x) dx −
R−νp∫
0

xp−1 log x f(νp + x) dx,

which simplifies to

dνp
dp

=

R−νp∫
0

xp−1 log x f(νp + x) dx−
νp−L∫

0

xp−1 log x f(νp − x) dx

(p− 1)

[
νp−L∫

0

xp−2f(νp − x)dx+
R−νp∫

0

xp−2f(νp + x)
]
dx

] . (10)

Under the strict stochastic dominance assumption of the theorem, Lemma 1 implies

R−νp∫
0

xp−1 log x f(νp + x) dx >

νp−L∫
0

xp−1 log x f(νp − x) dx. (11)

Together, equations (10) and (11) imply dνp
dp

> 0 for all p in the interior of D.

Remark 1. Returning to the discussion in the introduction of this paper (Sec. 1), Thm. 1
states that if we dissect f(x) at νp into the left and the right parts so that when we reflect the
left part, and align both at zero, and multiply each by 1

Hp
xp−1, then each part is converted

into a distribution over positive half-line, i.e., densities 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x) and

1
Hp
xp−1 f(νp + x)1(0,R−νp)(x). If p.d.f. 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) obtained from the right

part exhibits stochastic dominance over p.d.f. 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x) obtained from

the left part, then this should imply that the left tail is “spreading short” and the right tail
is “spreading longer”. Hence, such distribution is truly positively skewed.
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Importantly, this stochastic dominance argument remains valid and true positive skew-
ness can be established even in the case of a distribution with infinite first moment and
D ⊆ [1, 2). See Pareto distribution example in Sect. 3.4. This is one of the advantages of
using Def. 3 and 4 in determining the sign of skewness.

Next, we present a criterion for the p.d.f. 1
Hp
xp−1 f(νp + x)1(0,R−νp)(x) to exhibit strict

stochastic dominance over the p.d.f. 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x).

Lemma 2. Consider a continuous random variable supported over (L,R) with p.d.f. f(x),
and a real number p ∈ D. Suppose there exists c > 0 such that f(νp − c) = f(νp + c), and
f(νp−x) > f(νp +x) for x ∈ (0, c), while f(νp−x) < f(νp +x) for x > c. Suppose also that
νp − L ≤ R − νp. Then, a random variable with p.d.f. 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits

strict stochastic dominance over a random variable with p.d.f. 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x).

Proof. Observe that c is the maximum and the only local extrema of

x∫
0

1

Hp

yp−1 f(νp − y) dy −
x∫

0

1

Hp

yp−1 f(νp + y) dy

for x ∈ [0, νp − L], while

νp−L∫
0

1

Hp

yp−1 f(νp − y) dy −
νp−L∫
0

1

Hp

yp−1 f(νp + y) dy ≥ 0,

where
νp−L∫

0

1
Hp
yp−1 f(νp − y) dy = 1. Hence,

x∫
0

1

Hp

yp−1 f(νp − y) dy −
x∫

0

1

Hp

yp−1 f(νp + y) dy > 0

for all x ∈ (0, R− νp).

The following simple criterion follows immediately from the definition of stochastic domi-
nance.

Proposition 2. Consider a continuous random variable supported over (L,R) with p.d.f.
f(x). Suppose f(x) is a decreasing function for x ∈ (L,R). Then, for all p ∈ D, den-
sity function 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict stochastic dominance over density

function 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x).

3 Examples of true positive skewness

In this section, we will use stochastic dominance method and the toolbox developed in
Sect. 2 for establishing true positive skewness for the gamma distribution, the unimodal
beta distribution with the mode in the first half interval, the log-normal distribution, and
Pareto distribution.
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3.1 Gamma distribution

Consider a gamma random variable with p.d.f.

f(x) =
1

Γ(α)
λαxα−1e−λx

over (L,R) = (0,∞), with parameters α > 0 and λ > 0. We will consider cases α > 1 and
0 < α < 1 separately.

Case i: α > 1. Here, the mode equals ν0 = α−1
λ

. Differentiating

log f(νp − x)− log f(νp + x) = 2λx+ (α− 1) log(νp − x)− (α− 1) log(νp + x)

with respect to x and setting it equal to zero yields

x2 = ν2
p −

(α− 1)νp
λ

= νp(νp − ν0). (12)

Suppose 0 < νp ≤ ν0 for some p, then (12) has no positive real solution. Thus, since
f(0) = 0 < f(2νp), we have f(νp − x) < f(νp + x) for all x > 0. Therefore, assumption
0 < νp ≤ ν0 contradicts (9).

Therefore, νp > ν0 for all p ∈ D. Function f(νp−x)

f(νp+x)
equals 1 at x = 0 and equals 0 at x = νp

with the only extremum at c∗ =
√
νp(νp − ν0). Since by (9), function f(νp−x)

f(νp+x)
cannot be ≤ 1

for all x > 0, the extremum c∗ is the location of the maximum of f(νp−x)

f(νp+x)
. Function f(νp−x)

f(νp+x)

increases on [0, c∗), and decreases on (c∗, νp). Thus, there is a point c ∈ (c∗, νp) such that
f(νp−c)
f(νp+c)

= 1 and the conditions in Lemma 2 are satisfied.

We conclude that 1
Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict stochastic dominance over

1
Hp
xp−1 f(νp−x)1(0,νp−L)(x). Hence, f(x) is truly mode positively skewed (Def. 4) by Thm. 1.

Case ii: 0 < α < 1. Here, f(x) is truly positively skewed (Def. 3) by Prop. 2 and Thm. 1.

3.2 Beta distribution

Consider a beta random variable with p.d.f.

f(x) =
1

B(α, β)
xα−1(1− x)β−1

over (L,R) = (0, 1), with parameters β > α > 1. Here, B(α, β) = Γ(α)Γ(β)
Γ(α+β)

denotes the beta

function. The mode equals ν0 = α−1
α+β−2

< 1
2
. Differentiating

log f(νp − x)− log f(νp + x) =(α− 1) log(νp − x)− (α− 1) log(νp + x)

+ (β − 1) log(1− νp + x)− (β − 1) log(1− νp − x)

with respect to x and setting it equal to zero, we obtain

(α− 1)
νp

ν2
p − x2

= (β − 1)
1− νp

(1− νp)2 − x2
,
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yielding

x2 = −(1− νp)νp
α− 1− (α + β − 2)νp
β − 1− (α + β − 2)νp

= (1− νp)νp
νp − ν0

(1− ν0)− νp
. (13)

Recall that ν0 <
1
2
. Suppose 0 < νp ≤ ν0 for p > 0, then (13) has no positive real solution.

Thus, since f(νp − νp) = f(0) = 0 < f(2νp) = f(νp + νp), we have f(νp − x) < f(νp + x) for
all x ∈ (0, 1− νp). Therefore, assumption 0 < νp ≤ ν0 contradicts (9). Hence, νp > ν0.

Next, suppose νp ≥ 1
2

for p > 0, then 1− νp ≤ νp and(
1− νp + x

1− νp − x

)β−1

>

(
νp + x

νp − x

)α−1

∀x ∈ (0, 1− νp).

Thus, f(νp − x) > f(νp + x) for all x ∈ (0, νp). Hence, assumption νp ≥ 1
2

also contradicts
equation (9).

Consequently, ν0 < νp <
1
2

for all p ∈ D, and c∗ =
√

(1− νp)νp νp−ν0
(1−ν0)−νp is the only extremum

of f(νp−x)

f(νp+x)
in (0, νp). Now, f(νp−0)

f(νp+0)
= 1 and f(νp−νp)

f(νp+νp)
= f(0)

f(2νp)
= 0. Since by (9), f(νp−x)

f(νp+x)
cannot

be ≤ 1 for all x > 0, the extremum c∗ is the point of the maximum of f(νp−x)

f(νp+x)
. Therefore,

there is a point c ∈ (c∗, νp) such that f(νp−c)
f(νp+c)

= 1 and the conditions in Lemma 2 are satisfied.

We conclude that 1
Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict stochastic dominance over

1
Hp
xp−1 f(νp− x)1(0,νp−L)(x). Thus, f(x) is truly mode positively skewed (Def. 4) by Thm. 1.

3.3 Log-normal distribution

Consider a log-normal random variable with p.d.f.

f(x) =
1

x
√

2πσ2
exp

{
−(log x− µ)2

2σ2

}
over (L,R) = (0,∞), with parameters µ and σ2. Here, the mode equals ν0 = exp {µ− σ2},
the median is ν1 = exp {µ}, and the mean ν2 = exp

{
µ+ σ2

2

}
. Next, we find νp and

conclude that νp increases as a power of p. See Fig. 1.

Theorem 2. For a log-normal random variable with parameters µ and σ2,

νp = exp

{
µ+

p− 1

2
σ2

}
solves (9) for all p ∈ (0,∞).

Proof. Without loss of generality, let µ = 0. We need to show that νp = exp
{
p−1

2
σ2
}

with

f(x) = 1

x
√

2πσ2
exp

{
− (log x)2

2σ2

}
satisfy (9) for all p ∈ (0,∞).

First, letting z = log νp − log(νp − x) in the left hand side of (9), we have

νp∫
0

xp−1 f(νp − x) dx =
1√

2πσ2
νp−1
p

∞∫
0

(
1− e−z

)p−1
exp

{
−(z − log νp)

2

2σ2

}
dz

=
1√

2πσ2
νp−1
p

∞∫
0

(
ez − 1

)p−1
exp

{
−z

2 + (log νp)
2

2σ2
+

(
log νp
σ2

+ 1− p
)
z

}
dz. (14)
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Next, we let z = log(νp + x)− log νp in the right hand side of (9), obtaining

∞∫
0

xp−1 f(νp + x) dx =
1√

2πσ2
νp−1
p

∞∫
0

(
ez − 1

)p−1
exp

{
−(z + log νp)

2

2σ2

}
dz

=
1√

2πσ2
νp−1
p

∞∫
0

(
ez − 1

)p−1
exp

{
−z

2 + (log νp)
2

2σ2
− log νp

σ2
z

}
dz. (15)

Hence, the integrals in (14) and (15) are equal if and only if νp = exp
{
p−1

2
σ2
}

.

Corollary 1. A log-normal random variable is truly mode positively skewed (Def. 4).

Observe that ν2 = exp
{
µ+ σ2

2

}
and ν4 = exp

{
µ+ 3σ2

2

}
together with the standard

deviation
√

exp {σ2} − 1 exp
{
µ+ σ2

2

}
and the Pearson’s moment coefficient of skewness

γ = (exp {σ2}+ 2)
√

exp {σ2} − 1 satisfy the equality in (5).

3.4 Pareto distribution

For a given parameter α > 0, consider a random variable with p.d.f.

f(x) =
α

xα+1

over (L,R) = (1,∞). Here, the mode equals ν0 = 1, and D = [1, α + 1). Equation (9)
implies

νp−1∫
0

xp−1

(νp − x)α+1
dx =

∞∫
0

xp−1

(νp + x)α+1
dx. (16)

Substituting z = x/νp into (16), we have

Zp :=

1−1/νp∫
0

zp−1

(1− z)α+1
dz =

∞∫
0

zp−1

(1 + z)α+1
dz, (17)

where Zp = α−1ν1+α−p
p Hp. Thus, νp > 1 = ν0. Now, since zp−1

Zp(1+z)α+1 1(0,∞)(z) exhibits strict

stochastic dominance over zp−1

Zp(1−z)α+1 1(0,1−1/νp)(z), Lemma 1 implies

∞∫
0

log z
zp−1

(1 + z)α+1
dz >

1−1/νp∫
0

log z
zp−1

(1− z)α+1
dz. (18)

Next, we differentiate both integrals in (17) with respect to p, obtaining

να−pp (νp − 1)p−1dνp
dp

+

1−1/νp∫
0

log z
zp−1

(1− z)α+1
dz =

∞∫
0

log z
zp−1

(1 + z)α+1
dz.

10



Therefore, by (18),

dνp
dp

= νp−αp (νp − 1)1−p

 ∞∫
0

log z
zp−1

(1 + z)α+1
dz −

1−1/νp∫
0

log z
zp−1

(1− z)α+1
dz

 > 0.

Hence, f(x) is truly mode positively skewed. Notice that for α ∈ (0, 1), the quantities ν1, ν2,
and γ do not exist. Yet, using Def. 3 and stochastic dominance, we established the positive
sign of skewness. Naturally, this was expected of a distribution with only right tail and no
left tail. This sends us back to the discussion in Remark 1.

4 Extending to p ∈ (0, 1)

In this section we will show that Definition 2 of p-mean can often be extended to include all
p ∈ (0, 1). For instance, in the case when X is an exponential random variable, equation (6)
defines νp uniquely for all real p > 0.

Similarly, in the case of a gamma random variable with parameters α, λ > 0, equation (9)
implies

νp∫
0

xp−1 (νp − x)α−1e−λ(νp−x) dx =

∞∫
0

xp−1 (νp + x)α−1e−λ(νp+x) dx. (19)

Substituting z = x/νp into (19), we obtain

Zp :=

1∫
0

zp−1 (1− z)α−1eλνpz dz =

∞∫
0

zp−1 (1 + z)α−1e−λνpz dz, (20)

where Zp = ν1−α−p
p eλνpHp. Thus, for a gamma distribution, equation (20) also defines νp

uniquely for all p > 0.

For the log-normal random variables, equations (14) and (15) imply the uniqueness of νp for
all p > 0. Moreover, Thm. 2 finds the close form expression for the unique νp that solves (2)
for all p > 0. Finally, for the Pareto random variables, (17) also defines νp uniquely for all
real p > 0.

Even for a Bernoulli random variable with parameter 1/2 and p ∈ (0, 1), νp defined as in
Def. 2 is unique, while νp defined as in Def. 1 is not.

We will try to give an argument for extending Definition 2 to p ∈ (0, 1) in a more general
way. Suppose f(x) is differentiable in (L,R), then, by (9), we have

0 =
d

dp

 νp−L∫
0

xp−1 f(νp − x) dx −
R−νp∫
0

xp−1 f(νp + x) dx


=
dνp
dp

(νp − L)p−1f(L) + (R− νp)p−1f(R) +

νp−L∫
0

xp−1f ′(νp − x)dx−
R−νp∫
0

xp−1f ′(νp + x)dx


+

νp−L∫
0

xp−1 log x f(νp − x) dx −
R−νp∫
0

xp−1 log x f(νp + x) dx,

11



and therefore,

dνp
dp

=

R−νp∫
0

xp−1 log x f(νp + x) dx−
νp−L∫

0

xp−1 log x f(νp − x) dx

(νp − L)p−1f(L) + (R− νp)p−1f(R) +
νp−L∫

0

xp−1f ′(νp − x)dx−
R−νp∫

0

xp−1f ′(νp + x)dx

.

(21)
Quantities (νp − L)p−1f(L) and (R − νp)p−1f(R) are interpreted as the corresponding left
and right limits. This includes the case when L = −∞ and the case when R =∞.

Now, by the Picard-Lindelöf existence and uniqueness theorem [18], if the right hand side in
(21) is a Lipschitz function in νp, then the solution νp of (21) extends uniquely to p ∈ (0, 1).

So, if we can extend the Definition 2 of p-mean to all p ∈ (0, 1), then we can extend the
definition of true positive skewness (Def. 3). Here, we say that a random variable (or its
distribution) is truly positively skewed over the full domain if νp is increasing for p in the
domain (0, 1) ∪D. In the unimodal case, we say that a distribution is truly mode positively
skewed over the full domain if νp is increasing for p in the domain [0, 1) ∪ D.

In order to establish true positive skewness over the full domain, we need to show that
dνp
dp

> 0 for all p ∈ (0, 1)∪D. Often, we can show that the numerator and the denominator

in (21) are both positive. Notice that the criteria in Lemma 2 and Prop. 2 work for p ∈ (0, 1)
as well, establishing stochastic dominance of density 1

Hp
xp−1 f(νp+x)1(0,R−νp)(x) over density

1
Hp
xp−1 f(νp − x)1(0,νp−L)(x). Hence, Lem. 2 and Prop. 2 can be used to prove positivity of

the numerator in the RHS of (21) via equation (11). Finally, we notice that the denominator
in the RHS of (21) is positive if log f(x) is concave over (L,R).

Lemma 3. Consider a continuous random variable supported over (L,R) with p.d.f. f(x)
differentiable on supp(f) = (L,R). Suppose Definition 2 of p-mean νp can be extended to
p ∈ (0, 1), and suppose log f(x) is concave. If a random variable with density function

1
Hp
xp−1 f(νp+x)1(0,R−νp)(x) exhibits strict stochastic dominance over a random variable with

density function 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x), then function νp is increasing at p ∈ (0, 1).

Proof. Suppose log f(x) is concave, then f ′(x)
f(x)

= d
dx

log f(x) is nonincreasing, and

νp−L∫
0

xp−1f ′(νp − x)dx−
R−νp∫
0

xp−1f ′(νp + x)dx

=

νp−L∫
0

xp−1f
′(νp − x)

f(νp − x)
f(νp − x)dx−

R−νp∫
0

xp−1f
′(νp + x)

f(νp + x)
f(νp + x)dx

≥ f ′(νp)

f(νp)

 νp−L∫
0

xp−1f(νp − x)dx−
R−νp∫
0

xp−1f(νp + x)dx

 = 0 (22)

by (9). If log f(x) is not constant in (L,R), then the inequality in (22) is strict. If log f(x)
is constant in (L,R), then L needs to be finite, and therefore

(νp − L)p−1f(L) > 0.

12



In either case,

(νp − L)p−1f(L) + (R− νp)p−1f(R) +

νp−L∫
0

xp−1f ′(νp − x)dx−
R−νp∫
0

xp−1f ′(νp + x)dx > 0. (23)

Additionally, for p = 1, integration yields

f(L) + f(R) +

ν1−L∫
0

f ′(ν1 − x)dx−
R−ν1∫
0

f ′(ν1 + x)dy = 2f(ν1) > 0,

whence, from equations (11) and (21), we have

dνp
dp

∣∣∣∣∣
p=1

=
1

2f(ν1)

 R−ν1∫
0

log x f(ν1 + x) dx−
ν1−L∫
0

log x f(ν1 − x) dx

 > 0. (24)

Next, we go through some examples of true positive skewness over the full domain.

Example 2 (Exponential distribution). For an exponential random variable, equations (7)
and (8) imply true mode positive skewness over the full domain.

Example 3 (Gamma distribution). Consider a gamma distribution. If α > 1, then, the
calculations in Sect. 3.2 yield Lemma 2 is satisfied for all p ∈ (0, 1) ∪ D. Therefore, den-
sity function 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict stochastic dominance over density

function 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x). Moreover,

d

dx
log f(x) =

f ′(x)

f(x)
=
α− 1

x
− λ

is a decreasing function over (0,∞) as α > 1. Hence, log f(x) is concave, and Lem. 3 implies
true mode positive skewness over the full domain.

If 0 < α < 1, equation (20) implies that 1
Zp
zp−1 (1 + z)α−1e−λνpz1(0,∞)(z) exhibits strict

stochastic dominance over 1
Zp
zp−1 (1− z)α−1eλνpz1(0,νp)(z), and therefore, Lemma 1 implies

∞∫
0

(log z) zp−1 (1 + z)α−1e−λνpz dz >

1∫
0

(log z) zp−1 (1− z)α−1eλνpz dz. (25)

We differentiate both integrals in (20) with respect to p, obtaining

1∫
0

(log z) zp−1 (1− z)α−1eλνpz dz +
dνp
dp

1∫
0

zp (1− z)α−1eλνpz dz

=

∞∫
0

(log z) zp−1 (1 + z)α−1e−λνpz dz − dνp
dp

∞∫
0

zp (1 + z)α−1e−λνpz dz.
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Thus, for all p > 0, we have

dνp
dp

=

∞∫
0

(log z) zp−1 (1 + z)α−1e−λνpz dz −
1∫
0

(log z) zp−1 (1− z)α−1eλνpz dz

∞∫
−1

|z|p (1 + z)α−1e−λνpz dz

> 0

by (25). Hence, f(x) is truly positively skewed over the full domain.

Example 4 (Beta distribution). For a beta distribution with parameters β > α > 1,
Sect. 3.2 yields Lemma 2 is satisfied. Hence, 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict

stochastic dominance over 1
Hp
xp−1 f(νp − x)1(0,νp−L)(x). Next,

d

dx
log f(x) =

f ′(x)

f(x)
=
α− 1

x
− β − 1

1− x

is a decreasing function over (0, 1) as both, α > 1 and β > 1. Hence, log f(x) is concave,
and Lem. 3 implies true mode positive skewness over the full domain.

Example 5 (Log-normal distribution). Consider a log-normal distribution. Observe that
Thm. 2 works for all real p > 0. Hence, a log-normal distribution is truly mode positively
skewed over the full domain.

Example 6 (Pareto distribution). For a Pareto distribution, calculations in Sect. 3.4 stay
valid for all p ∈ (0, α + 1). Thus, it is truly mode positively skewed over the full domain.

Notice that even in the case of a unimodal continuous random variable with probability
density function (p.d.f.) in C∞, the mode ν0 does not have to be equal lim

p↓0
νp. Indeed, the

case of log-normal random variables is an example of discontinuity of νp at 0 as

ν0 = exp
{
µ− σ2

}
< exp

{
µ− σ2

2

}
= lim

p↓0
νp. (26)

5 Discussion

While the unification of the three classical characterizations of skewness introduced here is
important in its own right, the main insight of true positive/negative skewness was ar-
ticulated in Remark 1 following Theorem 1. Specifically, for p ∈ D, let us break the
probability density function f(x) into the left and right parts, f(νp − x)1(0,νp−L)(x) and
f(νp + x)1(0,R−νp)(x). We multiply the two parts by 1

Hp
xp−1 to make the two probability

density functions, 1
Hp
xp−1 f(νp−x)1(0,νp−L)(x) and 1

Hp
xp−1 f(νp+x)1(0,R−νp)(x). It is natural

to expect that if f(x) is positively skewed, the right tail p.d.f. would exhibit stochastic domi-
nance over the left tail p.d.f. for all p ∈ D. Theorem 1 asserts that this stochastic dominance
holds if the distribution is truly positively skewed. The proposed principle of the dominating
left tail p.d.f. over the right tail p.d.f. works regardless of the size of the domain D, and
the main advantage of this new approach is that true positive (or negative) skewness can
be established even in the case of infinite first moment when all three of Pearson’s skewness
measures (and even their numerators) are undefined. This was demonstrated in Sect. 3.4
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for Pareto distribution with α ∈ (0, 1), while the most compelling example was established
in the work [14] of students advised by the author of this current manuscript, where it was
shown that Lévy distribution is truly positively skewed. This result will be published in a
separate paper.

Now, we will proceed by mentioning some precursors of the approach to skewness presented
in this current paper. There is a relation between the results in [20] and this current paper.
In [20], van Zwet proves that the mean-median-mode inequality

mode ≤ median ≤ mean

holds whenever the cumulative distribution function F (x) satisfies

F (ν1 − x) + F (ν1 + x) ≥ 1 ∀x > 0. (27)

Observe that for a continuous unimodal random variable with p.d.f. f(x), condition (27) is
equivalent to

1

H1

x∫
0

f(ν1 + y) dy ≥ 1

H1

x∫
0

f(ν1 − y) dy,

where H1 = 1
2

for the median (p = 1). In other words, the mean-median-mode inequal-
ity holds whenever p.d.f. 1

H1
f(ν1 + x)1(0,R−ν1)(x) exhibits stochastic dominance over p.d.f.

1
H1
f(ν1 − x)1(0,ν1−L)(x). That is, the stochastic dominance condition required for the true

positive skewness criteria established in Sect. 2 holds for p = 1. This connection of (27) to
stochastic dominance was also noticed by Dharmadhikari and Joag-dev [5, 6]. Observe that
in the unimodal case, the above result of van Zwet [20] (with strict inequalities) together
with Thm. 1 imply that if 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) exhibits strict stochastic dominance

over 1
Hp
xp−1 f(νp−x)1(0,νp−L)(x) for all p ∈ D, then the distribution is truly mode positively

skewed.

As we have seen, the notion of true skewness (i.e., monotonicity of νp) is based on the
comparison of the left and right halves of a continuous distribution dissected at the centroids
νp for p ∈ D. As such, true mode positive skewness is a more restrictive property than
positivity of all three Pearson’s skewness metrics. For instance, in [1] there is an example
of a unimodal continuous random variable with positive Pearson’s moment coefficient of
skewness γ and negative median skewness. Naturally, in this example ν2 < ν1 while Prop. 1
yields ν2 < ν4. Thus, the distribution is not truly positively or negatively skewed.

Finally, Oja [15] used convexity of order k notion to extend the convex transformation
approach to skewness and kurtosis developed in van Zwet [19].

Next, we outline some potentially advantageous directions spinning out of this work. First,
in this paper, Definition 3 only speaks of the sign of skewness (i.e., positive or negative).
Yet, we would like to consider measures of skewness based on the trajectory of νp. One may
consider the following approach generating a family of skewness measures. For a probability
density function ϕ over [0,∞), let

`ϕ =
1

dνp
dp

∣∣
p=1

∫
D
ϕ(p− 1) dνp∫
D
ϕ(p− 1) dp

.
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Figure 2: The log-normal density functions with different parameter values: (µ = 0, σ = 0.6)
in red, (µ = 0, σ = 0.8) in magenta, (µ = 0, σ = 1) in light blue, (µ = 0, σ = 1.2) in dark
blue. Evidently, as parameter µ does not affect the skewness, the distribution skews more
to the right with greater values of σ.

Then, for truly positively/negatively skewed continuous distributions, positive quantities `ϕ,
if finite, may be used to measure the magnitude of skewness.

In the case of log-normal distribution, Pearson’s moment coefficient of skewness equals
γ = (exp {σ2}+ 2)

√
exp {σ2} − 1. Thus, γ is an increasing function of σ2, reflecting evident

increase in skewness as one increases the value of σ2. At the same time, contrary to the
observed evolution of log-normal density (see Fig. 2), Pearson’s first and second skewness
coefficients would decrease down to zero as σ2 →∞. See [3] for a relevant discussion. Now,
Thm. 2 yields

`ϕ =
1

dνp
dp

∣∣
p=1

∫
D
ϕ(p− 1) dνp

dp
dp∫

D
ϕ(p− 1) dp

=

∞∫
0

ϕ(x)exσ
2/2dx.

Observe that in this case, if lim
x→∞

− lnϕ(x)
x

= ∞, then `ϕ is a well-defined quantity that

increases with increasing σ2.

Second, in a multidimensional case, for a random vector X ∈ Rd, consider Fréchet p-means
νp ∈ Rd as defined in Def. 1. We believe that the trajectory of νp can be interpreted as a
tailbone of the distribution, or the trajectory of skewness. Moreover, if the asymptotic limit

ζ = lim
p→∞

(
dνp
dp

/∥∥∥∥dνpdp
∥∥∥∥
)
,

exists, then ζ can be interpreted as the asymptotic direction of skewness in Rd. Estimating
this tailbone trajectory and its limit ζ can be done numerically.
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