A new life of Pearson's skewness

Yevgeniy Kovchegov Oregon State University

Skewness and Stochastic Dominance.

In this talk, we will connect the following two concepts.

1

• Skewness

 $F_X(x) \ge F_Y(x) \qquad \forall x \in \mathbb{R},$

then Y exhibits **stochastic dominance** over X.

Furthermore, if $F_X \not\equiv F_Y$, then, Y exhibits **strict stochastic dominance** over X.

Lemma. If Y exhibits stochastic dominance over X, then, for any increasing function $h : \mathbb{R} \to \mathbb{R}$ we have $E[h(Y)] \ge E[h(X)]$. Moreover, if Y exhibits strict stochastic dominance over X, and if h(x) is strictly increasing, then E[h(Y)] > E[h(X)].

Lemma. If Y exhibits stochastic dominance over X, then, for any increasing function $h : \mathbb{R} \to \mathbb{R}$ we have $E[h(Y)] \ge E[h(X)]$. Moreover, if Y exhibits strict stochastic dominance over X, and if h(x) is strictly increasing, then E[h(Y)] > E[h(X)].

The above lemma is usually proved via a coupling argument. For continuous random variables, sometimes can use integration by parts:

$$\int_{a}^{b} h(x) f_{Y}(x) dx = h(b) - \int_{a}^{b} h'(x) F_{Y}(x) dx \ge h(b) - \int_{a}^{b} h'(x) F_{X}(x) dx = \int_{a}^{b} h(x) f_{X}(x) dx$$

Skewness.

Let
$$\mu = E[X]$$
 and $\sigma = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]}$.

Pearson's moment coefficient of skewness

$$\gamma = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$$

The sign of γ determines positive/negative skewness.

Positive skewness \Rightarrow mean-median-mode inequality:

mode < median < mean.

Skewness.

Positive skewness \Rightarrow mean-median-mode inequality:

mode < median < mean.

Negative skewness \Rightarrow mean < median < mode.

Positive skewness \Rightarrow mean-median-mode inequality:

mode < median < mean.

Pearson's first skewness coefficient (mode skewness):

mean – mode

standard deviation

Pearson's second skewness coefficient (median skewness):

 $3 \times \frac{\text{mean} - \text{median}}{\text{standard deviation}}$.

Fréchet *p*-mean.

For $p \in [1, \infty)$ and a random variable X with the finite (p-1)-st moment, $E[|X|^{p-1}] < \infty$, the p-mean ν_p is the unique solution of

$$E[(X - \nu_p)_+^{p-1}] = E[(\nu_p - X)_+^{p-1}],$$

where $x_{+} = \max\{0, x\}.$

The above defined *p*-mean is extending the notion of the **Fréchet** *p*-mean:

 $\nu_p = \operatorname{argmin}_{a \in \mathbb{R}} E\big[|X - a|^p \big]$

- required finiteness p-th moment, $E[|X|^p] < \infty$.

Notice that ν_1 is the **median**:

$$P(X > \nu_1) = P(X < \nu_1).$$

Fréchet *p*-mean.

For $p \in [1, \infty)$ and a random variable X with the finite (p-1)-st moment, $E[|X|^{p-1}] < \infty$, the p-mean ν_p is the unique solution of

$$E[(X - \nu_p)_+^{p-1}] = E[(\nu_p - X)_+^{p-1}],$$

where $x_{+} = \max\{0, x\}.$

Notice that ν_1 is the **median**:

$$P(X > \nu_1) = P(X < \nu_1).$$

Similarly, ν_2 is the mean:

$$E[(X - \nu_2)_+] = E[(\nu_2 - X)_+] \quad \Leftrightarrow \quad E[X] = \nu_2.$$

Fréchet *p*-mean.

$$E[(X - \nu_p)_+^{p-1}] = E[(\nu_p - X)_+^{p-1}]$$

Notice that ν_1 is the **median**:

$$P(X > \nu_1) = P(X < \nu_1).$$

Similarly, ν_2 is the **mean**:

$$E[(X - \nu_2)_+] = E[(\nu_2 - X)_+] \quad \Leftrightarrow \quad E[X] = \nu_2.$$

Proposition. Consider a random variable X with $E[|X|^3] < \infty$. The Pearson's moment coefficient of skewness $\gamma > 0$ if and only if $\nu_4 > \nu_2$.

Proof.

$$\gamma = \left(\frac{\nu_4 - \nu_2}{\sigma}\right)^3 + 3\left(\frac{\nu_4 - \nu_2}{\sigma}\right)$$

Skewness.

Pearson's moment coefficient of skewness

$$\gamma = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] > 0 \quad \Leftrightarrow \quad \nu_4 > \nu_2$$

In the **unimodal case** let ν_0 denote the **mode**.

Positive skewness $\Rightarrow \nu_0 < \nu_1 < \nu_2$.

Pearson's first skewness coefficient (mode skewness):

$$\frac{\nu_2 - \nu_0}{\sigma}$$

Pearson's second skewness coefficient (median skewness):

$$\frac{3(\nu_2-\nu_1)}{\sigma}$$

True positive skewness.

Let

 $\mathcal{D} = \{ p \ge 1 : E[|X|^{p-1}] < \infty \}$

and, in the unimodal case, $\mathcal{D}_0 = \mathcal{D} \cup \{0\}$.

Definition. A random variable X is truly positively skewed if and only if ν_p is an increasing function of $p \in \mathcal{D}$. Analogously, for true negative skewness.

The above defined true positive skewness insures

$$\nu_1 < \nu_2 < \nu_4.$$

Definition. A unimodal distribution is truly mode positively skewed if and only if ν_p is an increasing function of of $p \in \mathcal{D}_0$. Analogously, for true negative skewness.

Exponential distribution.

Exponential random variable X: $f(x) = \lambda e^{-\lambda x} \mathbf{1}_{(0,\infty)}(x)$. W.I.o.g. let $\lambda = 1$. Equation

$$\int_{0}^{\nu_{p}} (\nu_{p} - x)^{p-1} e^{-x} dx = \int_{\nu_{p}}^{\infty} (x - \nu_{p})^{p-1} e^{-x} dx.$$

simplifies to

$$\int_{0}^{\nu_{p}} x^{p-1} e^{x} dx = \Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} dx.$$

Differentiating $\frac{d}{dp}$ yields

$$\nu_p^{p-1} e^{\nu_p} \frac{d\nu_p}{dp} + \int_0^{\nu_p} x^{p-1} e^x \log x \, dx = \int_0^\infty x^{p-1} e^{-x} \log x \, dx.$$

Exponential distribution.

$$\int_{0}^{\nu_{p}} x^{p-1}e^{x} dx = \Gamma(p) = \int_{0}^{\infty} x^{p-1}e^{-x} dx.$$

Since $\frac{1}{\Gamma(p)}x^{p-1}e^{-x}\mathbf{1}_{(0,\infty)}(x)$ stochastically dominates $\frac{1}{\Gamma(p)}x^{p-1}e^{x}\mathbf{1}_{(0,\nu_{p})}(x),$

$$\nu_p^{p-1} e^{\nu_p} \frac{d\nu_p}{dp} = \int_0^\infty x^{p-1} e^{-x} \log x \, dx - \int_0^\infty x^{p-1} e^x \log x \, dx > 0$$

by

Lemma. If Y exhibits stochastic dominance over X, then, for any increasing function $h : \mathbb{R} \to \mathbb{R}$ we have $E[h(Y)] \ge E[h(X)]$. Moreover, if Y exhibits strict stochastic dominance over X, and if h(x) is strictly increasing, then E[h(Y)] > E[h(X)].

Skewness and stochastic dominance.

Let X be a continuous random variable with density f(x) and supp(f) = (L, R). Then

$$H_p := \int_{0}^{\nu_p - L} x^{p-1} f(\nu_p - x) \, dx = \int_{0}^{R - \nu_p} x^{p-1} f(\nu_p + x) \, dx.$$

Positive skewness: the left tail is "spreading short" and the right tail is "spreading longer".

Interpretation: $\frac{1}{H_p}x^{p-1}f(\nu_p + x)\mathbf{1}_{(0,R-\nu_p)}(x)$ to exhibit strict stochastic dominance over $\frac{1}{H_p}x^{p-1}f(\nu_p-x)\mathbf{1}_{(0,\nu_p-L)}(x)$.

Skewness and stochastic dominance.

Positive skewness: the left tail is "spreading short" and the right tail is "spreading longer".

Interpretation: $\frac{1}{H_p}x^{p-1}f(\nu_p + x)\mathbf{1}_{(0,R-\nu_p)}(x)$ to exhibit strict stochastic dominance over $\frac{1}{H_p}x^{p-1}f(\nu_p-x)\mathbf{1}_{(0,\nu_p-L)}(x)$.

Theorem. If $\frac{1}{H_p}x^{p-1}f(\nu_p+x)\mathbf{1}_{(0,R-\nu_p)}(x)$ exhibits strict stochastic dominance over $\frac{1}{H_p}x^{p-1}f(\nu_p-x)\mathbf{1}_{(0,\nu_p-L)}(x)$, then function ν_p is increasing at p.

Consequently, if the above stochastic dominance holds for all p in the interior of D, the distribution is truly positively skewed

True positive skewness: examples.

• Gamma random variable: $f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}$ with parameters $\alpha > 0$ and $\lambda > 0$ is truly (mode) positively skewed.

• Beta random variable: $f(x) = \frac{1}{\mathcal{B}(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$ with parameters $\beta > \alpha > 1$ (and mode $\nu_0 = \frac{\alpha-1}{\alpha+\beta-2} < \frac{1}{2}$) is truly mode positively skewed.

• Pareto random variable: $f(x) = \frac{\alpha}{x^{\alpha+1}}$ with parameter $\alpha > 0$ is truly mode positively skewed.

Notice that for $\alpha \in (0, 1)$, the quantities ν_1 , ν_2 , and γ do not exist.

• Log-normal random variable:

$$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(\log x - \mu)^2}{2\sigma^2}\right\}$$

over $(L,R) = (0,\infty)$, with parameters μ and σ^2 .

Theorem.

$$\nu_p = \exp\left\{\mu + \frac{p-1}{2}\sigma^2\right\}$$

have shown that

• Lévy distribution is truly positively skewed:

$$\nu_p \uparrow$$
 for $p \in \mathcal{D} = [1, 3/2)$.