Cross-Multiplicative Coalescence and Minimal Spanning Trees of Irregular Graphs

Yevgeniy Kovchegov
Oregon State University

joint work with
Peter T. Otto (Willamette U.) and
Anatoly Yambartsev (IMS, U. of São Paulo)
A quote.

Aldous (1998): *It turns out that there is a large scientific literature relevant to the Marcus-Lushnikov process, mostly focusing on its deterministic approximation. Curiously, this literature has been largely ignored by random graph theorists.*
Erdős-Rényi random graph.

Erdős-Rényi random graph on K_n:

- Edge e is associated with a uniform random variable U_e over $[0, 1]$. The random variables $\{U_e\}_e$ are assumed to be independent.

- For the “time” parameter $p \in [0, 1]$, an edge e is considered “open” if $U_e \leq p$. Obtaining the Erdős-Rényi random graph $G(n, p)$.

Minimal spanning tree in K_n:

- A spanning tree in K_n with minimal $\sum_e U_e$ is called the **minimal spanning tree**. Let $L_n = \sum_e U_e$ denote its length.
The length of the minimal spanning tree in K_n.

A. Frieze (1985) using the results of P. Erdős and A. Rényi (1960) showed for Erdős-Rényi random graph on K_n:

The limiting mean length of the minimal spanning tree in K_n is

$$
\lim_{n \to \infty} E[L_n] = \sum_{k=1}^{\infty} \int_0^{\infty} \frac{k^{k-2}t^{k-1}}{k!} e^{-kt} dt = \zeta(3),
$$

where

$$
\zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3} = 1.202 \ldots
$$

is the value of the Riemann zeta function at 3.
The minimal spanning tree in a regular graph.

Frieze and McDiarmid (1989) derive the formula for the limiting mean length of the minimal spanning tree of the Erdős-Rényi random graph process on regular graphs, as multiples of $\zeta(3)$.

In particular, for the Erdős-Rényi random graph process on $K_{n,n}$,

$$\lim_{n \to \infty} E[L_n] = 2\zeta(3)$$
Main results

Novel approach to finding minimal spanning tree asymptotics via the hydrodynamic limits and the analysis of the corresponding ‘reduced’ Smoluchowski coagulation equations.

Theorem [YK, Otto, and Yambartsev, 2017]. Let $\alpha, \beta > 0$, $\gamma = \alpha / \beta$, and $L_n = L_n(\alpha, \beta)$ be the length of a minimal spanning tree on a complete bipartite graph $K_{\alpha[n], \beta[n]}$ with partitions of size

$$\alpha[n] = \alpha n + o(\sqrt{n}) \quad \text{and} \quad \beta[n] = \beta n + o(\sqrt{n})$$

and independent uniform edge weights over $[0, 1]$. Then

$$\lim_{n \to \infty} E[L_n] = \gamma + \frac{1}{\gamma} + \sum_{i_1 \geq 1; i_2 \geq 1} \frac{(i_1 + i_2 - 1)!}{i_1! i_2!} \frac{\gamma^{i_1} i_2^{i_2-1} i_1^{i_1-1}}{(i_1 + \gamma i_2)^{i_1+i_2}}.$$
A formula for $E[L_n]$.

S. Janson (1995) for K_n

Beveridge, Frieze, and McDiarmid (1998) in general:

For all connected graphs with i.i.d. uniform $[0, 1]$ edge lengths,

$$E[L_n] = \int_{0}^{1} E[\kappa(G(n, p))] dp - 1,$$

where $\kappa(G(n, p))$ is the number of components in the Erdős-Rényi random graph $G(n, p)$.

Coalescent processes.

• The process begins with n singletons (clusters of mass one).

• The cluster formation is governed by a symmetric collision rate kernel $K(i, j) = K(j, i) > 0$.

• A pair of clusters with masses (weights) i and j coalesces at the rate $K(i, j)/n$, independently of the other pairs, to form a new cluster of mass $i + j$.

• The process continues until there is a single cluster of mass n.

Famous kernels: Kingman’s $K(i, j) \equiv 1$, Additive $K(i, j) = i + j$, and Multiplicative $K(i, j) = ij$.
Marcus-Lushnikov processes.

The Marcus-Lushnikov process

$$\text{ML}_n(t) = \left(\zeta_{1,n}(t), \zeta_{2,n}(t), \ldots, \zeta_{n,n}(t), 0, 0, \ldots \right)$$

is an auxiliary process to the corresponding coalescent process that keeps track of the numbers of clusters in each weight category.

Here $\zeta_{k,n}(t)$ denotes the number of clusters of weight k at time $t \geq 0$.

Since the coalescent process begins with n singletons,

$$\text{ML}_n(0) = (n, 0, 0, \ldots).$$
Marcus-Lushnikov processes.

For the multiplicative kernel $K(i,j) = ij$, the process $\text{ML}_n(t)$ describes cluster size dynamics of the Erdős-Rényi random graph process $G(n,p)$ on K_n with $p = 1 - e^{-t/n}$.

$$
\lim_{n \to \infty} E[L_n] = \lim_{n \to \infty} \int_0^1 E[\kappa(G(n,p))] \, dp - 1
$$

$$
= \lim_{n \to \infty} \int_0^\infty \frac{1}{n} E[\kappa(G(n,1-e^{-t/n}))] e^{-t/n} dt - 1
$$

$$
= \lim_{n \to \infty} \int_0^\infty \sum_{k=1}^\infty \frac{E[\zeta_{k,n}(t)]}{n} e^{-t/n} dt - 1.
$$
Smoluchowski coagulation equations.

Smoluchowski coagulation equations for the multiplicative kernel $K(i, j) = ij$ are

$$\frac{d}{dt} \zeta_k = -k \zeta_k \sum_{j=1}^{\infty} j \zeta_j + \frac{1}{2} \sum_{j=1}^{k-1} j (k-j) \zeta_j \zeta_{k-j}, \quad \zeta_k(0) = \delta_{1,k}.$$

They are suppose to describe the deterministic dynamics of the limiting fractions in the Marcus-Lushnikov processes,

$$\zeta_k(t) = \lim_{n \to \infty} \frac{\zeta_{k,n}(t)}{n}.$$

BUT...
Problem with conservation of mass.

McLeod (1962) showed that the Smoluchowski coagulation equations

\[\frac{d}{dt} \zeta_k = -k \zeta_k \sum_{j=1}^{\infty} j \zeta_j + \frac{1}{2} \sum_{j=1}^{k-1} j(k-j) \zeta_j \zeta_{k-j}, \quad \zeta_k(0) = \delta_{1,k} \]

have no solution past \(T_{gel} = 1 \).

Issue: Conservation of mass \(\sum_{j=1}^{\infty} j \zeta_j(t) = 1 \).

The problem is solved by introducing the reduced Smoluchowski system also known as the Flory’s coagulation system:

\[\frac{d}{dt} \zeta_k = -k \zeta_k + \frac{1}{2} \sum_{j=1}^{k-1} j(k-j) \zeta_j \zeta_{k-j}, \quad \zeta_k(0) = \delta_{1,k}. \]
Flory's coagulation system.

The solutions of the two systems

\[\frac{d}{dt} \zeta_k = -k \zeta_k \sum_{j=1}^{\infty} j \zeta_j + \frac{1}{2} \sum_{j=1}^{k-1} j(k-j) \zeta_j \zeta_{k-j}, \quad \zeta_k(0) = \delta_{1,k} \]

and

\[\frac{d}{dt} \zeta_k = -k \zeta_k + \frac{1}{2} \sum_{j=1}^{k-1} j(k-j) \zeta_j \zeta_{k-j}, \quad \zeta_k(0) = \delta_{1,k} \]

coincide up until the gelation time \(T_{gel} = 1 \).

They are

\[\zeta_k(t) = \frac{k^{k-2} t^{k-1}}{k!} e^{-kt}. \]
Flory’s coagulation system.

The solutions of Flory’s coagulation (reduced Smoluchowski) system

$$\zeta_k(t) = \frac{k^{k-2}t^{k-1}}{k!}e^{-kt}$$

satisfy the conservation of mass up until $T_{gel} = 1$:

$$\begin{align*}
\sum_{k=1}^{\infty} k\zeta_k(t) &= 1 \quad \text{if } t \leq T_{gel} \\
\sum_{k=1}^{\infty} k\zeta_k(t) &< 1 \quad \text{if } t > T_{gel}.
\end{align*}$$

This phenomenon is known as gelation. It reflects the emergence of a unique giant component in the Erdős-Rényi random graph process.
The hydrodynamic limit.

We use the weak law of large numbers of T. Kurtz to show the hydrodynamic limit

$$\lim_{n \to \infty} \frac{\zeta_{k,n}(t)}{n} = \zeta_k(t),$$

where for a fixed time $T > 0$ and a given integer $K > 0$, we have

$$\lim \sup_{n \to \infty} \left| \sum_{k=1}^{K} n^{-1} \zeta_{k,n}(s) - \sum_{k=1}^{K} \zeta_k(s) \right| = 0 \quad \text{a.s.}$$

using the limit theorems of T. Kurtz for density dependent population processes.
The minimal spanning tree on K_n.

Informally,

\[
\lim_{n \to \infty} E[L_n] = \lim_{n \to \infty} \int_{0}^{\infty} \sum_{k=1}^{\infty} \frac{E[\zeta_{k,n}(t)]}{n} e^{-t/n} dt - 1
\]

\[
= \sum_{k=1}^{\infty} \int_{0}^{\infty} \zeta_k(t) dt + \lim_{n \to \infty} \int_{T_{gel}}^{\infty} \frac{1}{n} e^{-t/n} dt - 1
\]

\[
= \sum_{k=1}^{\infty} \int_{0}^{\infty} \zeta_k(t) dt + \lim_{n \to \infty} e^{-T_{gel}/n} - 1 = \sum_{k=1}^{\infty} \int_{0}^{\infty} \zeta_k(t) dt.
\]

Here $\int_{T_{gel}}^{\infty} \frac{1}{n} e^{-t/n} dt$ represents the emergence of one giant component at time $T_{gel} = 1$.

We formalize the above argument.
BIG picture.

We prove that

$$\lim_{n \to \infty} E[L_n] = \sum_{k=1}^{\infty} \int_0^\infty \zeta_k(t) dt = \sum_{k=1}^{\infty} \int_0^\infty \frac{k^{k-2}t^{k-1}}{k!} e^{-kt} dt = \zeta(3).$$

General graphs: Consider a Marcus-Lushnikov processes equivalent to the cluster size dynamics in a general graph, e.g. K_n, $K_{n,n}$, $K_{5n,7n}$, etc. The solutions $\zeta_k(t)$ for the corresponding reduced Smoluchowski coagulation equations are considered with k in a certain index space. Then,

$$\lim_{n \to \infty} E[L_n] = \sum_k \int_0^\infty \zeta_k(t) d(t).$$
Erdős-Rényi process on $K_{\alpha n, \beta n}$.

For $\alpha, \beta > 0$, consider two integer valued functions, $\alpha[n] = \alpha n + o(\sqrt{n})$ and $\beta[n] = \beta n + o(\sqrt{n})$.

Consider an Erdős-Rényi random graph process on the bipartite graph $K_{\alpha[n], \beta[n]}$.

In the coalescent process corresponding to an Erdős-Rényi random graph process on $K_{\alpha[n], \beta[n]}$, each cluster is assigned a weight vector $i = [i_1, i_2]$.

The coalescence kernel for any pair of clusters with weight vectors $i = [i_1, i_2]$ and $j = [j_1, j_2]$ is

$$K(i, j) := i_1 j_2 + i_2 j_1.$$
Cross-multiplicative coalescent process.

- The process begins with $\alpha[n] + \beta[n]$ singletons, of which $\alpha[n]$ of weight $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\beta[n]$ of weight $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- The cluster formation is governed by kernel
 \[
 K(i, j) := i_1 j_2 + i_2 j_1.
 \]

- A pair of clusters with weight vectors i and j would coalesce into a cluster of weight $i + j$ with rate $K(i, j)/n$.

- The process continues until there is a single cluster of weight $\begin{bmatrix} \alpha[n] \\ \beta[n] \end{bmatrix}$.

We will call this a cross-multiplicative coalescent process.
Coalescence and Minimal Spanning Trees

Smoluchowski coagulation equations.

\[
\frac{d}{dt}\zeta_{i_1,i_2}(t) = -\zeta_{i_1,i_2}(t)\sum_{j_1,j_2}(i_1j_2 + i_2j_1)\zeta_{j_1,j_2}(t) \\
+ \frac{1}{2}\sum_{\ell_1,k_1: \ell_1+k_1=i_1, \ell_2,k_2: \ell_2+k_2=i_2}(\ell_1k_2 + \ell_2k_1)\zeta_{\ell_1,\ell_2}(t)\zeta_{k_1,k_2}(t)
\]

with the initial conditions \(\zeta_{1,0}(0) = \alpha\) and \(\zeta_{0,1}(0) = \beta\).

Gelation: \(T_{gel}\) solves

\[
1 - (\alpha \land \beta)t + \ln((\alpha \lor \beta)t) = 0.
\]
Reduced Smoluchowski system.

\[
\frac{d}{dt} \zeta_{i_1, i_2}(t) = - (\beta i_1 + \alpha i_2) \zeta_{i_1, i_2}(t) \\
+ \frac{1}{2} \sum_{\ell_1, k_1: \ell_1 + k_1 = i_1, \ell_2, k_2: \ell_2 + k_2 = i_2} (\ell_1 k_2 + \ell_2 k_1) \zeta_{\ell_1, \ell_2}(t) \zeta_{k_1, k_2}(t)
\]

with the initial conditions \(\zeta_{1,0}(0) = \alpha \) and \(\zeta_{0,1}(0) = \beta \).

Solution:

\[
\zeta_{i_1, i_2}(t) = \frac{i_2^{i_2-1} i_1^{i_1-1} \alpha^{i_1} \beta^{i_2}}{i_1! i_2!} e^{-(\beta i_1 + \alpha i_2) t} t^{i_1 + i_2 - 1}
\]

Theorem [YK, Otto, and Yambartsev, 2017]. Let $\alpha, \beta > 0$ and $L_n = L_n(\alpha, \beta)$ be the length of a minimal spanning tree on a complete bipartite graph $K_{\alpha[n], \beta[n]}$ with partitions of size

$$\alpha[n] = \alpha n + o(\sqrt{n}) \text{ and } \beta[n] = \beta n + o(\sqrt{n})$$

and independent uniform edge weights over $[0, 1]$. Then

$$\lim_{n \to \infty} E[L_n] = \sum_{i_1, i_2}^{\infty} \int_0^{\infty} \zeta_{i_1, i_2}(t) d(t),$$

where $\zeta_{i_1, i_2}(t)$ indexed by $\mathbb{Z}^2_+ \setminus \{(0, 0)\}$ is the solution of

$$\frac{d}{dt} \zeta_{i_1, i_2}(t) = - (\beta i_1 + \alpha i_2) \zeta_{i_1, i_2}(t) + \frac{1}{2} \sum_{\ell_1, k_1: \ell_1 + k_1 = i_1, \ell_2, k_2: \ell_2 + k_2 = i_2} (\ell_1 k_2 + \ell_2 k_1) \zeta_{\ell_1, \ell_2}(t) \zeta_{k_1, k_2}(t)$$

with $\zeta_{i_1, i_2}(0) = \alpha \delta_{1,i_1} \delta_{0,i_2} + \beta \delta_{0,i_1} \delta_{1,i_2}$.
The length of the minimal spanning tree on $K_{\alpha n, \beta n}$.

Theorem [YK, Otto, and Yambartsev, 2017]. Let $\alpha, \beta > 0$, $\gamma = \alpha / \beta$, and $L_n = L_n(\alpha, \beta)$ be the length of a minimal spanning tree on a complete bipartite graph $K_{\alpha[n], \beta[n]}$ with partitions of size $\alpha[n] = \alpha n + o(\sqrt{n})$ and $\beta[n] = \beta n + o(\sqrt{n})$ and independent uniform edge weights over $[0, 1]$. Then

$$
\lim_{n \to \infty} E[L_n] = \gamma + \frac{1}{\gamma} + \sum_{i_1 \geq 1; \ i_2 \geq 1} \frac{(i_1 + i_2 - 1)!}{i_1!i_2!} \frac{\gamma^{i_1-i_1-1}i_2^{-1}}{(i_1 + \gamma i_2)^{i_1+i_2}}.
$$

The above theorem recovers the result of **Frieze and McDiarmid (1989)** for $K_{n,n}$:

Corollary. If $\gamma = 1$, then $\lim_{n \to \infty} E[L_n] = 2\zeta(3)$.