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ABSTRACT. The Cole-Cole model is known to accurately describe the dielectric response to a pulse
over a wide range of frequencies. The model, however, does not lend itself easily to the Finite Dif-
ference Time Domain (FDTD) method, as it requires the computation of fractional-order derivatives
and a more complicated implementation. Researchers have instead often used the multi-pole Debye
model, which is characterized by the same dielectric parameters as the Cole-Cole model, but has less
accuracy in describing the dielectric response. In this paper, we seek to reconcile the difficulty of
implementing the Cole-Cole model by presenting an approximation of dispersive mechanisms and
the Cole-Cole model using distributions of parameters within the Debye model.

1. INTRODUCTION

Over the past century, researchers have made many strides toward better understanding the De-
bye model and Debye mechanisms. The Debye model is commonly defined as a physically derived
model of dipolar relaxation. On the other hand, less is knownabout the multiple dispersive mech-
anisms approximated by the Cole-Cole model. While the Cole-Cole model is simply a heuristic
generalization of the Debye model, understanding the mechanisms it describes is of importance
because of the model’s great accuracy in matching experimental observations. Another divide be-
tween the two models arises when looking at their dielectricresponse functions (DRF). Due to the
complex nature of the Cole-Cole model’s DRF, computationaland numerical methods that attempt
to simulate the Cole-Cole model require the need to approximate fractional-order derivatives [4].
The Debye model, alternatively, can be implemented rather easily. In this paper, we propose ways
in which the Debye model can be adjusted to better approximate both the Cole-Cole model and
true data.

We begin by displaying background material related to how wecan simulate electromagnetic
waves moving through a dielectric. First, the Finite-Difference Time Domain (FDTD) method
is thoroughly explained and used to derive expressions for the electric field and polarization in
one-dimension. After this, we present a new version of the standard FDTD procedure to allow for
distributions of dielectric parameters in the Debye model along with multiple polarization factors.
We proceed to formulate an inverse problem to determine the distribution parameters that make
the distributed Debye model as accurate as possible. Dry skin tissue is used as an example of a
material for which such an inverse problem is possible.

To display the efficacy of using a distribution of parameters, we will perform forward simula-
tions using an ultra-wideband (UWB) electromagnetic pulsethrough a dielectric with the parame-
ters of dry skin using our revised FDTD model. A UWB pulse, which is defined over a wide range
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of frequencies, is used to determine how well the Debye modelwith distributed dielectric parame-
ters describes a material with a frequency dependent dielectric response. The forward simulations
with dielectric parameter distributions could also be utilized in a standard time domain inverse
problem to recover dielectric parameters, however that is not the object of this effort. We provide a
general form of the inverse problem and forward simulations, so that they can be extended to other
human tissue samples and dielectric materials.

2. BACKGROUND

Since we are interested in observing electromagnetic wavesgenerated by a pulse, we must start
with the system of Maxwell’s equations, as found in [7], which are

(1)
∂D
∂t

+J = ∇×H

(2)
∂B
∂t

= −∇×E

(3) ∇ ·D = ρ

(4) ∇ ·B = 0.

Additional vital equations, the constitutive laws, are

(5) D = εE+P

(6) B = µH+M

(7) J = σE+Js,

whereε = ε0ε∞. The electric and magnetic fields are represented byE andH, respectively,D and
B represent the electric and magnetic flux densities, respectively, M is the magnetization, andP
is the polarization. The two currents are give by the conduction current density,J, and the source
current density,Js. The scalar quantities areρ, the density of free electric charges unaccounted for
in the electric polarization;ε0, the electric permittivity of free space;ε∞, the electric permittivity
in the limit of infinite frequencies;µ, the magnetic permeability; andσ, the electric conductivity.
For future reference, we also will be consideringεs, the static electric permittivity i.e. the limit of
zero frequency. The dielectric parameters describe the polarizationP. The polarization, written in
the convolution form, is

(8) P(t,x) = g⋆E(t,x) =

Z t

0
g(t−s,x;ν)E(s,x)ds,

whereg(t,x) andν is a set of dielectric parameters is a dielectric response function (DRF). The
DRF for a Debye Medium is

(9) g(t,x) =
ε0(εs− ε∞)

τ
e−t/τ

with ν = {εs,ε∞,τ}. Polarization in (8) defined by (9) can be shown to be equivalent to the solution
of the ordinary differential equation,

(10) τṖ+P = ε0εdE,

whereεd = εs− ε∞.
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To simulate the waves, we must know how the electromagnetic fields behave in time and space.
This is uniquely determined by Maxwell’s curl equations, with appropriate initial and boundary
conditions, and substitutions from Equations 5 and 6. Making the assumption that there is no
magnetization, we have

(11) ε
∂E
∂t

= ∇×H−J−
∂P
∂t

= ∇×H−σE−
∂P
∂t

.

(12) µ
∂H
∂t

= −∇×E.

For our purposes, we will simplify the problem to one-dimensional space, similar to the approach
in [9], with the assumption that the electric field oscillates only in thexz-plane and propagates in
thez direction. This leaves us with only two relevant equations for the one-dimensional problem,
which are

(13) ε
∂Ex

∂t
= −

∂Hy

∂z
−σEx−

∂Px

∂t
.

(14) µ
∂Hy

∂t
= −

∂Ex

∂z
.

From now on, we will now letE = Ex,H = Hy andP = Px.

3. THE FDTD METHOD

Using Maxwell’s equations, it is apparent that one can solvefor both the electric and magnetic
fields at different points in time and space, when given necessary boundary conditions. One method
to solve these equations is the Finite Difference Time Domain (FDTD) method. This method uses
a staggered grid withE on integer points in space and half-steps in time andH on half-steps in
space and integer points in time. A detailed explanation of this can be found in [9].

To use the FDTD method, we need to be able to approximate bothEx andHy at the appropriate
grid points. This can be done using a central difference approximation for both the time and spacial
derivatives. Applying the central difference approximation, as used in [9], (13) can be written as

(15)
E

n+ 1
2

k −E
n− 1

2
k

∆t
= −

1
ε

Hn
k+ 1

2
−Hn

k− 1
2

∆z
−

σ
ε

E
n+ 1

2
k +E

n− 1
2

k

2
−

1
ε

P
n+ 1

2
k −P

n− 1
2

k

∆t
.

Since the electric field updates prior to the polarization, we must find an expression forP
n+ 1

2
k . From

(10), once again using the central difference approximation, we have

(16) τ
P

n+ 1
2

k −P
n− 1

2
k

∆t
+

P
n+ 1

2
k +P

n− 1
2

k

2
= ε0εd

E
n+ 1

2
k +E

n− 1
2

k

2
.

Solving forP
n+ 1

2
k , we see

(17) P
n+ 1

2
k =

∆tε0εd

[

E
n+ 1

2
k +E

n− 1
2

k

]

+(2τ−∆t)P
n− 1

2
k

2τ+∆t
.
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Substituting the expression forP
n+ 1

2
k into (15), we have

E
n+ 1

2
k −E

n− 1
2

k

∆t
=−

1
ε

Hn
k+ 1

2
−Hn

k− 1
2

∆z
−

σ
ε

E
n+ 1

2
k +E

n− 1
2

k

2
−

1
ε

∆tε0εd
2τ+∆t

[

E
n+ 1

2
k +E

n− 1
2

k

]

+ 2τ−∆t
2τ+∆t P

n− 1
2

k −P
n− 1

2
k

∆t

Arranging theE
n+ 1

2
k terms together in the process of solving forE

n+ 1
2

k , we see

E
n+ 1

2
k

[

1+
σ∆t
2ε

+
∆tεd

ε∞(2τ+∆t)

]

=−
∆t

ε∆z

[

Hn
k+ 1

2
−Hn

k− 1
2

]

+E
n− 1

2
k

[

1−
σ∆t
2ε

−
∆tεd

ε∞(2τ+∆t)

]

+
2∆t

ε(2τ+∆t)
P

n− 1
2

k .

We will defineθ = − ∆t
ε∆z and the loss termδ = σ∆t

2ε + ∆tεd
ε∞(2τ+∆t) , which gives us

(18) E
n+ 1

2
k =

θ
1+δ

[

Hn
k+ 1

2
−Hn

k− 1
2

]

+
1−δ
1+δ

E
n− 1

2
k +

2∆t
ε(2τ+∆t)(1+δ)

P
n− 1

2
k .

This can be viewed as a variation of Equation (2.21a) used by Sullivan [9]. We can similarly find
an expression for the magnetic field

(19) Hn+1
k+ 1

2
= −

∆t
µ∆z

[

E
n+ 1

2
k −E

n− 1
2

k

]

+Hn
k+ 1

2
.

These are explicit update rules that requires no past history to be stored.

4. DISTRIBUTIONS OFDIELECTRIC PARAMETERS AND MULTIPLE POLARIZATIONS

4.1. Uniform Distribution for τ. Since we are looking to simulate the Debye model using distri-
butions of parameters, we first must restate our polarization term to include such distributions. We
begin by applying a distribution to the dielectric parameter τ. We build upon the framework used
by Banks and Gibson [2], where equation (15) stated

(20) P(t,z) =

Z τb

τa

P (t,z;τ)dF(τ) =
1

τb− τa

Z τb

τa

P (t,z;τ)dτ,

sincedF(τ) = 1
τb−τa

dτ for a uniform distribution. Banks and Gibson discuss the difficulty of
arriving at an analytical solution for such an integral and the need to use the Composite Simpson’s
rule approximation [2]. Using this rule, we see that polarization can be approximated asP(t,z) =

∑ℓ
i=0αiP (t,z;τi), whereαi =

cℓ
i
ℓ andτ is modeled by a uniform distribution. This approximation

holds whenℓ is even and

cℓ
i =























1
3 if i = 0 or i = ℓ

4
3 else if i odd

2
3 else if i even

.

Using this substitute for polarization, (13) can now be written as

(21) ε
∂E
∂t

= −
∂H
∂z

−σE−
ℓ

∑
i=0

αi
∂Pi

∂t
,



Electromagnetic Inverse Problems to Solve for Dielectric Parameters 5

wherePi = P (t,z;τi). Applying FDTD, we find

ℓ

∑
i=0

αi
∂Pi

∂t
≈

ℓ

∑
i=0

αi
[(Pi)

n+ 1
2

k − (Pi)
n− 1

2
k ]

∆t
.

We can use this polarization, which includes a uniformly distributedτ, to update Equations (17)
and (18), which are now written as

(22) (Pi)
n+ 1

2
k =

∆tε0εd[E
n+ 1

2
k +E

n− 1
2

k ]+(2τi −∆t)(Pi)
n− 1

2
k

2τi +∆t

(23) E
n+ 1

2
k =

θ
1+δ

[Hn
k+ 1

2
−Hn

k− 1
2
]+

1−δ
1+δ

E
n− 1

2
k +

ℓ

∑
i=0

2∆tαi

ε(2τi +∆t)(1+δ)
(Pi)

n− 1
2

k ,

whereδ = σ∆t
2ε +∑ℓ

i=0αi
∆tεd

ε∞(2τi+∆t) .

4.2. Uniform Distribution for εd. The above shows the electric field and polarization equations
with a distribution included only for the parameterτ. We can additionally add in a uniform dis-
tribution for the dielectric parameterεd, whereεd = εs− ε∞. Applying the Composite Simpson’s
approximation for polarization and updating (21), we find that

(24) ε
∂E
∂t

= −
∂H
∂z

−σE−
ℓ

∑
j=0

ℓ

∑
i=0

β jαi
∂Pi j

∂t
,

wherePi j = P (t,z;τi,εd j ). Once again, using FDTD

ℓ

∑
j=0

ℓ

∑
i=0

β jαi
∂Pi j

∂t
≈

ℓ

∑
j=0

ℓ

∑
i=0

β jαi
[(Pi j )

n+ 1
2

k − (Pi j )
n− 1

2
k ]

∆t
.

Equations (22) and (23) are amended as follows:

(25) (Pi j )
n+ 1

2
k =

∆tε0εd j [E
n+ 1

2
k +E

n− 1
2

k ]+(2τi −∆t)(Pi j )
n− 1

2
k

2τi +∆t
.

(26) E
n+ 1

2
k =

θ
1+δ

[Hn
k+ 1

2
−Hn

k− 1
2
]+

1−δ
1+δ

E
n− 1

2
k +

ℓ

∑
j=0

ℓ

∑
i=0

2∆tαiβ j

ε(2τi +∆t)(1+δ)
(Pi j )

n− 1
2

k

whereδ = σ∆t
2ε +∑ℓ

j=0∑ℓ
i=0

αiβ j ∆tεdj

ε∞(2τi+∆t) andεd j = εsj − ε∞.

4.3. Multiple Polarizations. We now begin to examine the situation in which a material displays
multiple polarizations. Since a human tissue sample is madeup of different components, within
one sample there may be multiple relaxation time and static permittivity parameters. In the example
of dry skin, there are two polarization terms, implying twoτm and twoεdm. We will use, for the
purposes of consistency with the Cole-Cole and Debye models, ∆εm, as opposed toεdm, where
∆εm = εsm − εsm−1 (except for∆ε1, since∆ε1 = εs1 − ε∞). Our total polarization is simply the sum
of the polarizations present in the material, so polarization reduces to

(27) P(t,z) = P1+P2.
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Each polarization term is a function of a different relaxation time parameter. We begin by defining
P1 in a similar manner to Equation (20),

(28) P1 =
Z τb

1

τa
1

P (t,z;τ)dF1(τ),

whereτa
1 = (1−a1) · τ1 andτb

1 = (1+ b1) · τ1. The values ofa1 andb1 are determined by where
we want the lower and upper limits of the uniform distribution, τa

1 andτb
1, to be located.P2 can be

similarly defined.
By inputting the density of the uniform distribution, (28) is written as

(29) P1 =
1

τb
1− τa

1

Z τb
1

τa
1

P (t,z;τ)dτ,

sincedF1(τ) = 1
τb

1−τa
1
dτ for a uniform distribution. Therefore, we can express the material’s total

polarization as

(30) P(t,z) =
1

τb
1− τa

1

Z τb
1

τa
1

P (t,z;τ)dτ+
1

τb
2− τa

2

Z τb
2

τa
2

P (t,z;τ)dτ.

The above considers looking at polarization with distributions for the relaxation time parameters.
We now adjust the multiple polarization model to also include distributions for the static permit-
tivity parameters. For the uniform distribution, we havedG1(∆ε) = 1

∆εd
1−∆εc

1
d∆ε anddG2(∆ε) =

1
∆εd

2−∆εc
2
d∆ε, where∆εc

1 = (1−c1) ·∆ε1 and∆εd
1 = (1+d1) ·∆ε1. The values ofc1 andd1 are de-

termined by where we want the lower and upper limits of the uniform distribution,∆εc
1 and∆εd

1, to
be located. Equations (28) and (29) now update to be

(31) P1 =
Z ∆εd

1

∆εc
1

Z τb
1

τa
1

P (t,z;τ,εs)dF1(τ)dG1(∆ε).

(32) P1 =
1

∆εd
1−∆εc

1

1

τb
1− τa

1

Z ∆εd
1

∆εc
1

Z τb
1

τa
1

P (t,z;τ,εs)dτd∆ε.

Once againP2 can be solved similarly. We use theseP1 andP2 values in (27) to obtain a new
polarization term.

Both our electric field and polarization equation must be updated to account for the multiple
polarizations. We can start by amending (24) to include bothpolarization terms

(33) ε
∂E
∂t

= −
∂H
∂z

−σE−
ℓ

∑
j=0

ℓ

∑
i=0

β jαi
∂P1i j

∂t
−

ℓ

∑
j=0

ℓ

∑
i=0

β jαi
∂P2i j

∂t
,

whereP1i j = P (t,z;τ1i ,∆ε1 j ). Using FDTD, we see that

ℓ

∑
j=0

ℓ

∑
i=0

β jαi
∂P1i j

∂t
≈

ℓ

∑
j=0

ℓ

∑
i=0

β jαi
[(P1i j )

n+ 1
2

k − (P1i j )
n− 1

2
k ]

∆t
.
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By combining the summations, Equation (33) updates to be

(34) ε
∂E
∂t

= −
∂H
∂z

−σE−
ℓ

∑
j=0

ℓ

∑
i=0

β jαi
(P1i j )

n+ 1
2

k − (P1i j )
n− 1

2
k +(P2i j )

n+ 1
2

k − (P2i j )
n− 1

2
k

∆t
.

We also revise (25) to solve for(P1i j )
n+ 1

2
k :

(35) (P1i j )
n+ 1

2
k =

∆tε0εd1 j [E
n+ 1

2
k +E

n− 1
2

k ]+(2τ1i −∆t)(P1i j )
n− 1

2
k

2τ1i +∆t
.

We can similarly find an equation for(P2i j )
n+ 1

2
k . Using these new expressions for(P1i j )

n+ 1
2

k and

(P2i j )
n+ 1

2
k , (34) becomes

(36) E
n+ 1

2
k =

θ
1+δ

[Hn
k+ 1

2
−Hn

k− 1
2
]+

1−δ
1+δ

E
n− 1

2
k +

ℓ

∑
j=0

ℓ

∑
i=0

2∆tαiβ j

ε(1+δ)





(P1i j )
n− 1

2
k

2τ1i +∆t
+

(P2i j )
n− 1

2
k

2τ2i +∆t



 ,

whereδ = σ∆t
2ε +∑ℓ

j=0∑ℓ
i=0

αiβ j ∆t
ε∞

( εd1 j
2τ1i +∆t +

εd2 j
2τ2i +∆t

)

andεd1 j = εs1 j − ε∞.

5. INVERSE PROBLEM FORDISTRIBUTION PARAMETERS

5.1. Motivation for Distributing Dielectric Parameters of Debye Model. The Cole-Cole model
has been considered an excellent way to approximate the trueproperties of dielectric materials in
which multiple mechanisms are present. While uncertain about the true nature of the mechanisms
being described by this model, we find that the model is more accurate in comparison to other
known models. The data that models such as Cole-Cole attemptto approximate isε(ω), a complex
value that reveals measured permittivities and conductivities at different frequencies. In the case
of the Cole-Cole model,

(37) ε(ω)CC = ε∞ +
n

∑
m=1

∆εm

1+(iωτm)(1−αm)
+

σ
iωε0

,

where eachτm represents one of the relaxation time parameters,∆εm = εsm−εsm−1 (except for∆ε1,
since∆ε1 = εs1 − ε∞), andn is the number of poles. We get thisε(ω) term by converting Equation
(5) to the frequency domain and arriving at

(38) D̂ = ε(ω)Ê

The FDTD method, as seen earlier, helps to provide researchers with a way of simulating the
behavior of electromagnetic fields inside a dielectric. Forthe Cole-Cole model, however, the
FDTD method does not apply because the time domain formulation contains a fractional-order
derivative [4]. This eliminates the ease of using FDTD and has encouraged many researchers to
use the Cole-Cole model’s predecessor, the Debye model, forwhich the value ofε(ω) is computed
as

(39) ε(ω)D = ε∞ +
n

∑
m=1

∆εm

1+(iωτm)
+

σ
iωε0

.
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FIGURE 1. Real part ofε(ω), ε, or the permittivity.
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FIGURE 2. Imaginary part ofε(ω), σ, or the conductivity.

Figures 1 and 2, which display the complex permittivity and conductivity, show how effective
both the Debye model and Cole-Cole model are in approximating the true data for a dry skin tissue
sample. It is evident that the Cole-Cole model provides a better fit to the true data than the Debye
model. The computational difficulty associated with the Cole-Cole model and the relative ease
for the Debye model, however, motivates us to enhance the Debye model in such a way that it
better estimates the true data, but is still straight forward to simulate. While the current literature
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already suggests [2] that distributed relaxation times make the Debye model a more accurate fit,
the question of whether a distribution on the static permittivity parameters improves the model has
yet to be considered. We seek to show that with such additional distributions, the Debye model
becomes more realistic, as materials actually do display both a range of relaxation times (τ) and a
range of static permittivities (εs).

5.2. Inverse Problem Formulation. Using data forε∞,τm, andεsm from Gabriel [6], we were
able to produce plots for both the real and imaginary parts ofε(ω) for a number of human tissue
samples. Each of theτm and∆εm in the Debye model are given a uniform distribution, using the
framework discussed in Section 4. We choose to distribute∆εm, as opposed toεsm, since each of
the∆εm appear in the actual Cole-Cole and Debye models ofε(ω). The distribution of the∆εm,
though, in effect, creates a distribution on each of the static permittivity parameters (excludingε∞).
Attempting to determine parameters of the distributions, in the case of dry skin where there are two
τm and two∆εm (the case wheren = 2), results in an eight parameter inverse problem – as each
uniform distribution has both a lower and upper limit.

Our Debye model with uniformly distributed dielectric parameters calculatesε(ω) differently
from the basic Debye model. Performing this calculation requiresN Monte Carlo (MC) simula-
tions. For each MC simulation, we randomly sample eachτmk and∆εmk, which are distributed as
follows

τmk ∼U [(1−am)τm,(1+bm)τm]

and
∆εmk ∼U [(1−cm)∆εm,(1+dm)∆εm] ,

wheream,bm,cm anddm are the values of interest in our inverse problem for the distributions of
τm and∆εm. Therefore, each MC simulation yieldsn of both the∆εmk and theτmk terms, which
together produce

ε(ω)k = ε∞ +
n

∑
m=1

∆εmk

1+(iωτmk)
+

σ
iωε0

The termε(ω) for the distributed Debye model is simply computed as the sample mean of the
ε(ω)k,

(40) ε(ω)DD =
1
N

N

∑
k=1

ε(ω)k.

We performed two inverse problems: one which looked to retrieve theam,bm,cm anddm that fit
the Debye model with uniformly distributed dielectric parameters to the true data and another that
sought to discover thoseam,bm,cm anddm that would bring the distributed Debye model as close
as possible to the Cole-Cole model. To begin the inverse problem we created a cost functional
of the relative least squares error form that looked at the difference between both the real and
imaginary parts ofε(ω). The real part ofε(ω) wasε or the permittivity, while the imaginary part
was conductivity. We scaled the conductivity as follows

σ = R(ε(ω)iωε0) .

To further simplify calculations, we defineq = [ε,σ]. Our cost functional was simply

(41) J =
n

∑
i=1

(

qDDi −qi

qi

)2

= RTR,
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whereqDD represents the vector for the distributed Debye model,q is the vector for the true data
andRi =

qDDi−qi

qi
. For the inverse problem that attempted to approximate the Cole-Cole model, the

cost functional is instead

(42) J =
n

∑
i=1

(

qDDi −qCCi

qCCi

)2

,

whereqCC represents the vector for the Cole-Cole model.
Before beginning the optimization routine to minimize the cost functional, we must select an

appropriate number,N, of MC simulations to computeε(ω)DD. To do this, we chooseN such
that the variability of theε(ω) term begins to converge to zero. Figure 3 displays the variability
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FIGURE 3. This figure shows five random plots of conductivity for eachof N =
10,000, 100,000, and 1,000,000 at a very high resolution.

of σ for a varying number of MC simulations. At this resolution, the figure suggests that the
variability of σ converges to zero asN increases. By the Kramer-Kronig relationship [7], we can
infer that the same holds true for permittivity and therefore the entireε(ω) term. For this reason,
we believeN = 1,000,000 to be a sufficient number of MC simulations for our inverseproblem,
while recognizing that increasingN further could produce more exact results.

5.3. Distributed Debye Fit to Cole-Cole Model. Before performing the eight parameter inverse
problem for the Cole-Cole model, we attempted to solve the four parameter inverse problem, which
only placed distributions on theτm (from here on referred to as Model A). Our first step in min-
imizing the cost functional was to search for the region in which a global minimum occurs. We
recognized that we could place some constraints on our optimization problem that we believed to
be reasonable for an inverse problem of this nature. We restricted theam values to be less than or
equal to one, so that we would never sample a value of the relaxation time,τm, that was less than
zero. These values were also restricted to be greater than orequal to zero, so that sampling does
not occur only at values that are strictly larger than those of Gabriel’s Cole-Coleτ values i.e. the
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values found in [6] are inside the intervals defining the distributions. Based on observations, we
noticed that bothτ1 andτ2 tended towards distributions where the mean was slightly greater than
the data’s parameter values. This encouraged us to allow both b1 andb2 to be less than or equal to
two. The set of constraints on the problem was

(43)
a1 ∈ [0,1] b1 ∈ [0,2]
a2 ∈ [0,1] b2 ∈ [0,2].

We ran Finkel’s Direct program [5], a MATLAB code which performs constrained optimiza-
tion in order to approximate the global minimum subject to the constraints mentioned above. The
algorithm [8] works by determining a region that may containthe solution, then the program con-
tinuously refines this region until it exceeds the allowablenumber of function evaluations. The only
value that Direct retrieved that pushed against the bounds of the constraints wasa2, which stayed
quite close to one. Figure 4 indicates that the optimal valueof a2 to achieve a minimal cost is one.
In Appendix A is the entire set of plots that display how sensitive cost is when varying distribution
parameters. Since none of the other values that Direct foundwere pushing against the bounds of
the constraints set in the program, we were satisfied that these were reasonable constraints.

The Direct program’s retrieved values and the corresponding cost of the distributed Debye model
with these distribution parameters versus the Cole-Cole model were

a1 = 0.5554 b1 = 1.3347
a2 = 0.9980 b2 = 1.3329

J = 1.7910.
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FIGURE 4. The relative cost, with all other distribution parameters constant, asa2 varies.
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We proceeded to perform the same optimization problem with distributions on both relaxation
time and static permittivity parameters (from here on referred to as Model B). The constraints for
cm values were reasoned in a similar fashion to theam values. Observations did not point to any
special constraints fordm. Since we believe Gabriel’s values to be fairly reasonable for each∆εm
and did not want to go more than 100% on either side, we restricted thedm values to be less than
one as well. The updated constraint set is

(44)

a1 ∈ [0,1] b1 ∈ [0,2]
a2 ∈ [0,1] b2 ∈ [0,2]
c1 ∈ [0,1] d1 ∈ [0,1]
c2 ∈ [0,1] d2 ∈ [0,1].

After running the Direct program, we found the solution to the eight parameter inverse problem
matching to Cole-Cole and the corresponding cost to be

a1 = 0.8882 b1 = 1.5569
a2 = 0.9938 b2 = 1.3329
c1 = 0.5544 d1 = 0.8169
c2 = 0.5123 d2 = 0.4922

J = 1.4651.
Figures 5 and 6 show how well both Model A and Model B match up tothe actual Cole-Cole model.
While it is clear from Figures 5 and 6 that both models match upwell with Cole-Cole, it remains
to be shown that adding distributions to the static permittivity parameters is an improvement over
Model A. To do this, we plot the relative costs, in comparisonto the Cole-Cole model, in Figure 7.
We believe that Model B presents a much better fit to Cole-Coleprimarily because of its low costs
at high frequencies.

10
2

10
4

10
6

10
8

10
10

10
12

10
1

10
2

10
3

10
4

f (Hz)

ε

 

 

Cole−Cole
Model A (1.795)
Model B (1.471)

FIGURE 5. Real part ofε(ω), ε, or the permittivity.



Electromagnetic Inverse Problems to Solve for Dielectric Parameters 13

10
2

10
4

10
6

10
8

10
10

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

f (Hz)

σ

 

 

Cole−Cole
Model A (1.791)
Model B (1.465)

FIGURE 6. Imaginary part ofε(ω), σ, or the conductivity.

10
2

10
4

10
6

10
8

10
10

10
12

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

f (Hz)

R
el

at
iv

e 
C

os
t

 

 

Model A relative cost
Model B relative cost

FIGURE 7. The relative costs between Model A and the Cole-Cole modeland be-
tween Model B and the Cole-Cole model.



14 K Barrese and N Chugh

It is worth mentioning, however, that while it appears that Model B is definitely a better match
to Cole-Cole than Model A, the static permittivity parameters used in Model A were discrete
estimates supplied by [6]. We did not perform an optimization routine to search for a minimum
cost with distributions of relaxation times along with permittivity parameters varying at different
discrete values. Further research could be done to discoverif the permittivity parameters truly
should be distributed or if they should be discrete but at values other than the ones provided by [6].

5.4. Distributed Debye Fit to True Data. In this section, we attempt to determine distribution
parameters for the dry skin Debye model that make the model a closer fit to the true data. As a basis
of comparison, we will use both the Debye and Cole-Cole models. Using Equation (41), the cost
for the Debye model (substitutingqD for qDD) is JD = 27.7908, while the cost for the Cole-Cole
(substitutingqCC for qDD) is JCC = 10.4027. We once again begin by looking at the four parameter
inverse problem in which distributions are included only for relaxation time parameters (from here
on referred to as Model C). We use the same constraints as in (43). The solution garnered by Direct
and the corresponding cost are

(45)
a1 = 0.5508 b1 = 1.5569
a2 = 0.9938 b2 = 1.5542

J = 13.6037.

As has been documented [2, 3], distributing the relaxation time parameters presents a significant
improvement in cost on the basic Debye model, while still falling short of the Cole-Cole model in
approximating the true data. We proceed to extend this to theeight parameter inverse problem with
distributions on both the relaxation time and static permittivity parameters (from here on referred
to as Model D1). Using the same constraints as in (44), the results and cost are

(46)

a1 = 0.6522 b1 = 1.5844
a2 = 0.9870 b2 = 1.3320
c1 = 0.6522 d1 = 0.8402
c2 = 0.6358 d2 = 0.4620

J = 12.7981.

The lower cost signifies a marked upgrade on Model C. Observing the output of the Direct program
clued us in to the general trends of the distribution parameters. While the output often stated that
a2 was marginally less than one, we believed that by starting the optimization routine at one,a2
would stay at one and give us a lower cost. The other side of theτ2 distribution seemed to be
seeking a higher value. Figure 8 displays that higher valuesof b2 are related with lower costs. For
a full set of figures showing how cost was affected by varying distribution parameter values, refer
to Appendix B. We wanted to make sure that all constraints hadunit length, so other constraints
were adjusted accordingly. The update of the constraint set(for what we refer to as Model D2)
from (44) is

(47)

a1 ∈ [0,1] b1 ∈ [0,1]
a2 ∈ [.5,1.5] b2 ∈ [1,2]
c1 ∈ [0,1] d1 ∈ [0,1]
c2 ∈ [0,1] d2 ∈ [0,1].



Electromagnetic Inverse Problems to Solve for Dielectric Parameters 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

20

30

40

50

60

70

b
2

J

FIGURE 8. The relative cost, with all other distribution parameters constant, asb2 varies.

We ran Direct to see if this updated set of constraints had anyeffect on the cost. The results were

(48)

a1 = 0.1337 b1 = 0.6646
a2 = 1.0000 b2 = 1.7840
c1 = 0.4630 d1 = 0.5000
c2 = 0.5988 d2 = 0.4630

J = 12.1945.
The uniform distributions that correspond with our output values can be found in Figures 9 and 10.

While our intuition was correct, the cost did become lower, there remained questions about the
new output values because each function evaluation is afterall a random process. Producing 50
random costs between Model D1 and the true data, we found there to be a variance of 9.6242×
10−6. Producing another 50 random costs using the values from Model D2, we found there to be
a variance of 9.5164×10−5. This variance is small enough to conclude that this model is, with
near certainty, a lower cost model than D1. Also note that thevalues of the solution parameters in
(46) and (48) are significantly different. This underscoresthe difficulty of minimizing such a cost
functional and is part of the reason that gradient-based methods fail.

Figures 11 and 12 show how well Model C, Model D1, and Model D2 match up to the true data.
While it is clear from Figures 11 and 12 that all three models fit closely to the data, it needs to be
shown that adding distributions to the static permmittivity parameters is an improvement over the
model which only distributes relaxation times. To do this, we plot the relative costs, in comparison
to true data, in Figure 13. It is apparent that at the higher frequencies, Model D2 has a significantly
lower cost than Model C. We believe that the extra distributions on static permittivity parameters
are causing this better fit.
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As a note, much time was devoted to the search for a local minimum in the area of the solu-
tions retrieved by Direct. A code implementing the Gauss-Newton Algorithm was developed and
geared towards solving this specific inverse problem. In addition, MATLAB programs such as
fminsearch andfmincon (fminsearch subject to a set of constraints) were also used. In each
attempt the algorithms failed to traverse a descent direction. Mentioned in [6] is the difficulty of
using classical numerical least-squares minimization techniques. The randomness of the inverse
problem will often send the algorithm in the wrong direction. Figure 14 shows that in the presence
of a “trench”, gradient-based approaches can be unreliable. Methods for determining the minimum
of stochastic cost functionals is another area which can be explored further.

6. FORWARD SIMULATION

6.1. Setup of Simulator. In practice, known dielectric parameters of a material are used in com-
putational methods to simulate sending a pulse into a dielectric. To display the practicality of
the distributed Debye model, we must show that it is possibleto run simulations with uniformly
distributed dielectric parameters. Using the FDTD equations described in Section 4, we created a
code comparable to that used by Banks et al [1]. Since our codeused the updated FDTD equa-
tions, however, it also allowed for distributions on the dielectric parameters. We seek to reproduce
Figures 4.2 and 4.4 in [1], which display simulations of a truncated sine wave att = 5.0 ns and
t = 10.0 ns, respectively, through a dielectric material with parameter values

σ = 1.0×10−2Ohm−1

τ = 1.0×10−11 seconds

εs = 35 relative static permittivity

ε∞ = 5.

By setting theam,bm,cm anddm values equal to zero in our code, we no longer had distributions
on the dielectric parameters. The lack of distributions on the parameters leaves Figure 15 as com-
parable to the figures in [1].
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FIGURE 15. Debye model simulations, as done in Figures 4.2 and 4.4 in[1], for
(t = 5.0 ns) and (t = 10.0 ns).

The pulse used in [1] was a truncated sine pulse. We, however,wish to use a UWB pulse to fully
excite all poles in the polarization model since the dielectric parameters vary over a broad range of
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frequencies. We define our UWB pulse as

(49)
n

∑
i=1

αisin(2π fi(t)),

where fi is linearly spaced from zero to 1×1010 andαi is defined by the beta distribution,β(2,5).
After adding this to our code, we needed to ensure that this addition was done correctly. First, we
wanted to make sure that the pulse sent through the dielectric attenuated properly in comparison
to the pulse sent through free space. We also plotted the FastFourier Transform (FFT) of the
signal through both free space and the dielectric to ensure that the breadth of the FFT plot for the
dielectric was smaller than that of the FFT plot for free space. Figure 16 confirms that the UWB
pulse acts in accordance with these properties.
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FIGURE 16. The top plot shows the value of the electric field at x=0.0155 as time
varies. The dielectric begins at x=0.005 and ends at x=0.015. The bottom plot
shows the FFT of the two signals.

6.2. Forward Simulations. The applications of forward simulations in computational electro-
magnetics are abundant and varied. The ability to observe a pulse moving through a dielectric
allows us to learn more about both the dielectric propertiesand geometry of the material in ques-
tion [1]. Possibly of more significance, however, is the rolethat forward simulations play in inverse
problems which seek to reconstruct the values of dielectricparameters. The forward simulation
provides us with a prediction and the object is to “minimize asuitable measure of the difference
between the simulated prediction and a set of data taken fromexperiments”[1]. The benefits of
retrieving such parameter values are wide-ranging and welldocumented [1]. Therefore, for the
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distributed Debye model to hold much relevance in the field and for it to be used in a constructive
way, it must be applicable to forward simulations.
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FIGURE 17. Time plot of Electric Field with receiver at x=0.0155. The Debye
model with no distributions is plotted against the Debye model with distribution
parameters that match up to Cole-Cole and the Debye model with distribution pa-
rameters that match up to the true data.

Our choice of dielectric material, for the purpose of example, remains the dry skin tissue inves-
tigated in the inverse problem in Section 5. Using dielectric parameter data from [6], we began by
running simulations of the Debye model with no distributions on the parameters. We proceeded
to run further simulations, distributing the parameters inaccordance with the results of our inverse
problems. Proper simulations of the distributed Debye model would show that the time trace of
the electric field at the receiver was changed only a reasonable amount. Figure 17 shows a simula-
tion of the Debye model with no distribution on dielectric parameters, with distribution parameters
found in Model B and with distribution parameters found in Model D2. The fact that the distributed
Debye models show some movement away from the Debye model is apositive sign. We, however,
cannot be sure how realistic this simulation is until properinterrogation experiments are done with
human dry skin tissue samples.

7. CONCLUSION

The Debye model with uniformly distributed relaxation timeparameters provides a much closer
fit to the Cole-Cole model or the true data than the basic Debyemodel. Both plots and cost func-
tional outputs suggest that additionally distributing static permittivity parameters is a significant
addition to the distributed Debye model, making it a much better approximation than any other
Debye model. Although as previously mentioned, using discrete values different from those found
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in [6] may produce a different outcome. We have shown that it is straight-forward to implement
an FDTD method for the forward solution of our Debye model with distributions, as opposed to
the Cole-Cole model. Simulations of the Debye model with uniformly distributed dielectric pa-
rameters display a noticeable difference in the behavior ofthe dielectric material, in comparison to
the basic Debye model, that we believe make the simulations more realistic – this, however, can-
not be verified without an actual interrogation experiment.There remain many other unanswered
questions about this new model and open areas for future research.

The variance of our cost was of the order of 10−5 when usingN = 1,000,000 Monte Carlo
simulations. In optimization routines, it is possible thatan arbitrary set of distribution parameters
will give an abnormally low cost by chance. With access to greater computing speeds, we can run
more Monte Carlo simulations and be more confident that the answers we receive are stable and
producing more consistent costs.

A possibility for future research is including a pole to the low frequency section of data. Figures
11 and 12 display how poorly all of these models fit to the true data at lower frequencies. We
believe that by adding another pole to the data in [6], these models can do a more effective job
of approximating the true values. Local minimization and gradient based methods for stochastic
problems is another area that needs to be improved upon.

Lastly, the distributed Debye model never provides a closerapproximation to the true data than
the Cole-Cole model. Our cost outputs always displayed costs greater than 10.4027, the cost
between the Cole-Cole model and true data. This implies thatthere remains room for improvement
in approximating the true data. An area for future research is applying distributions other than the
uniform distribution to multiple dielectric parameters. We believe that distributions such as the
normal or log-normal could provide interesting insight into how a Debye model with distributed
dielectric parameters can better approximate true data.
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8. APPENDIX A

Appendix A uses the data retrieved in the eight parameter fit to the Cole-Cole model. Each figure
shows how the relative cost is affected by varying distribution parameters.
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FIGURE 18. The relative cost, with all other distribution parameters constant, asa1 varies.
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FIGURE 19. The relative cost, with all other distribution parameters constant, asa2 varies.
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FIGURE 20. The relative cost, with all other distribution parameters constant, asb1 varies.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

b
2

J

FIGURE 21. The relative cost, with all other distribution parameters constant, asb2 varies.
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FIGURE 22. The relative cost, with all other distribution parameters constant, asc1 varies.
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FIGURE 23. The relative cost, with all other distribution parameters constant, asc2 varies.
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FIGURE 24. The relative cost, with all other distribution parameters constant, asd1 varies.
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FIGURE 25. The relative cost, with all other distribution parameters constant, asd2 varies.
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FIGURE 26. The relative cost, with all other distribution parameters constant, asa1
andb1 vary.
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FIGURE 27. The relative cost, with all other distribution parameters constant, asa2
andb2 vary.
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FIGURE 28. The relative cost, with all other distribution parameters constant, asc1
andd1 vary.
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9. APPENDIX B

Appendix B uses the data retrieved in the eight parameter fit to true data. Each figure shows how
the relative cost is affected by varying distribution parameters.
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FIGURE 30. The relative cost, with all other distribution parameters constant, asa1 varies.
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FIGURE 31. The relative cost, with all other distribution parameters constant, asa2 varies.
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FIGURE 32. The relative cost, with all other distribution parameters constant, asb1 varies.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

20

30

40

50

60

70

b
2

J

FIGURE 33. The relative cost, with all other distribution parameters constant, asb2 varies.
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FIGURE 34. The relative cost, with all other distribution parameters constant, asc1 varies.
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FIGURE 35. The relative cost, with all other distribution parameters constant, asc2 varies.
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FIGURE 36. The relative cost, with all other distribution parameters constant, asd1 varies.
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FIGURE 37. The relative cost, with all other distribution parameters constant, asd2 varies.
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FIGURE 38. The relative cost, with all other distribution parameters constant, asa1
andb1 vary.
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FIGURE 39. The relative cost, with all other distribution parameters constant, asa2
andb2 vary.
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FIGURE 40. The relative cost, with all other distribution parameters constant, asc1
andd1 vary.
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FIGURE 41. The relative cost, with all other distribution parameters constant, asc2
andd2 vary.
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10. APPENDIX C

In Appendix C, we provide a figure similar to Figure 16. Here, the peak frequency occurs at
1×109(Hz) as opposed to 2×109(Hz).
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FIGURE 42. The top plot shows the value of the electric field at x=0.0155 as time
varies. The dielectric begins at x=0.005 and ends at x=0.015. The bottom plot
shows the FFT of the two signals.
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