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ABSTRACT. The Cole-Cole model is known to accurately describe thiediigc response to a pulse
over a wide range of frequencies. The model, however, doelend itself easily to the Finite Dif-
ference Time Domain (FDTD) method, as it requires the compur of fractional-order derivatives
and a more complicated implementation. Researchers hatesithoften used the multi-pole Debye
model, which is characterized by the same dielectric patarsas the Cole-Cole model, but has less
accuracy in describing the dielectric response. In thisspape seek to reconcile the difficulty of
implementing the Cole-Cole model by presenting an appration of dispersive mechanisms and
the Cole-Cole model using distributions of parametersiwithe Debye model.

1. INTRODUCTION

Over the past century, researchers have made many stridasdtbetter understanding the De-
bye model and Debye mechanisms. The Debye model is commefihed as a physically derived
model of dipolar relaxation. On the other hand, less is knaout the multiple dispersive mech-
anisms approximated by the Cole-Cole model. While the @uke model is simply a heuristic
generalization of the Debye model, understanding the nmesims it describes is of importance
because of the model’'s great accuracy in matching expetahebservations. Another divide be-
tween the two models arises when looking at their dielectisponse functions (DRF). Due to the
complex nature of the Cole-Cole model’'s DRF, computatianal numerical methods that attempt
to simulate the Cole-Cole model require the need to appratarfractional-order derivatives [4].
The Debye model, alternatively, can be implemented ratasihye In this paper, we propose ways
in which the Debye model can be adjusted to better approxinath the Cole-Cole model and
true data.

We begin by displaying background material related to howcase simulate electromagnetic
waves moving through a dielectric. First, the Finite-Difflece Time Domain (FDTD) method
is thoroughly explained and used to derive expressionshierelectric field and polarization in
one-dimension. After this, we present a new version of taaddrd FDTD procedure to allow for
distributions of dielectric parameters in the Debye modi@hg with multiple polarization factors.
We proceed to formulate an inverse problem to determine i$teilwition parameters that make
the distributed Debye model as accurate as possible. Drytsdue is used as an example of a
material for which such an inverse problem is possible.

To display the efficacy of using a distribution of paramet&rs will perform forward simula-
tions using an ultra-wideband (UWB) electromagnetic ptiseugh a dielectric with the parame-
ters of dry skin using our revised FDTD model. A UWB pulse, @¥his defined over a wide range
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of frequencies, is used to determine how well the Debye mwidkldistributed dielectric parame-
ters describes a material with a frequency dependent diieleesponse. The forward simulations
with dielectric parameter distributions could also beimgitl in a standard time domain inverse
problem to recover dielectric parameters, however thapishre object of this effort. We provide a
general form of the inverse problem and forward simulatjeasthat they can be extended to other
human tissue samples and dielectric materials.

2. BACKGROUND

Since we are interested in observing electromagnetic wgeasrated by a pulse, we must start
with the system of Maxwell’s equations, as found in [7], whare

oD
1 — +J=0xH
(1) 5 T9=0x
0B

(2) i —0OxE
3) O-D=p
4) 0-B=0.
Additional vital equations, the constitutive laws, are
5) D=¢e+P
(6) B=pH+M
() J=0E+Js,

wheree = £0€. The electric and magnetic fields are represente® byndH, respectivelyD and

B represent the electric and magnetic flux densities, resgdgtM is the magnetization, ané

is the polarization. The two currents are give by the conduaaturrent densityJ, and the source
current densityJs. The scalar quantities ape the density of free electric charges unaccounted for
in the electric polarizatiorgg, the electric permittivity of free spaceg, the electric permittivity

in the limit of infinite frequenciesy, the magnetic permeability; ara the electric conductivity.
For future reference, we also will be considermgthe static electric permittivity i.e. the limit of
zero frequency. The dielectric parameters describe tharigationP. The polarization, written in
the convolution form, is

®) P(t,x):g*E(t,x):/otg(t—s,x;v)E(s,x)ds

whereg(t,x) andv is a set of dielectric parameters is a dielectric responeetion (DRF). The
DRF for a Debye Medium is

(9) g(t)x) — Me‘tﬁ

with v = {&s, €, T}. Polarization in (8) defined by (9) can be shown to be equintatethe solution
of the ordinary differential equation,

(10) TP+ P = goeq4E,

wheregq = €5 — €.
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To simulate the waves, we must know how the electromagnetisfbehave in time and space.
This is uniquely determined by Maxwell’s curl equationstiwappropriate initial and boundary
conditions, and substitutions from Equations 5 and 6. Makhre assumption that there is no
magnetization, we have

oE oP oP
oH
(12) p S = ~OxE.

For our purposes, we will simplify the problem to one-dimenal space, similar to the approach
in [9], with the assumption that the electric field osciliatnly in thexzplane and propagates in
thez direction. This leaves us with only two relevant equatiamsthe one-dimensional problem,
which are

0Ex  OHy 9P
(13) & = oz BT
oH oE.
14 Ty %=
(14) M5t 3z

From now on, we will now leE = Ex,H = Hy andP = P.

3. THEFDTD METHOD

Using Maxwell's equations, it is apparent that one can stvdoth the electric and magnetic
fields at different points in time and space, when given resrgdoundary conditions. One method
to solve these equations is the Finite Difference Time Donfl@DTD) method. This method uses
a staggered grid witlt on integer points in space and half-steps in time Endn half-steps in
space and integer points in time. A detailed explanatiohisf¢an be found in [9].

To use the FDTD method, we need to be able to approximatethaihdHy at the appropriate
grid points. This can be done using a central difference@ppration for both the time and spacial
derivatives. Applying the central difference approximatias used in [9], (13) can be written as

1 1 1 1 1 1
ay BB e Mo ogTPeg”r 1Rt oA
At € Az € 2 € At

1
Since the electric field updates prior to the polarizatioamust find an expression f8£+2. From
(10), once again using the central difference approximatie have

1 1 1
N+ n—s n+5 n—s>
P 2+P °? E °+E °?
k k K k

—€oso|—2

(16) T

. n+3
Solving forR,~ ?, we see

1

1 — 1
Mteoeg [EQ*Z +E, 2] +(2T— AP, 2
I’H’z

17) P =

21+ At
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1
Substituting the expression fﬁf+2 into (15), we have

1 | —
n+2 1 AtSOSd |:Ek+2+E 2:| _|_2T AtP PE 2

E 2_ 1|'I 1 HL% oEk+2+E 2 12T+At 2T+t
€

E 2
Az € 2 s At

At

1 1
Arranging theEl?+2 terms together in the process of solving Ep?rJrz, we see

n+3 oAt Ateq }_ At[ oAt Ateg } 20t _n-
(

1 1—— — P,
* 2¢ +800(2T+At) 28 £o(2T+A) |  g(214At) K

NI

E

ez

n n 2
Hy, ka%} +E|

We will define® = — 4L and the loss terd = %t + %, which gives us

9 1—6 nfl 2At nfl
18 En+2— HY , —H" |+ E, 2 P2,
(18) 1+ 6[ k-3 k—%]+1+6 K +s(2t+At)(1+6) K

This can be viewed as a variation of Equation (2.21a) usedulliv& [9]. We can similarly find
an expression for the magnetic field

At n+l n—1
n+1 __ 2 2 n
(19) Hk+2 iz {E —E, } +HE

These are explicit update rules that requires no past ligbdre stored.

4. DISTRIBUTIONS OFDIELECTRIC PARAMETERS AND MULTIPLE POLARIZATIONS

4.1. Uniform Distribution for 1. Since we are looking to simulate the Debye model using distri
butions of parameters, we first must restate our polarindagan to include such distributions. We
begin by applying a distribution to the dielectric paramateWe build upon the framework used
by Banks and Gibson [2], where equation (15) stated

Tp 1 Th
(20) P(t,2) = P(t,z1)dF(1) =
Ta Tp—TaJt

P(t,z1)dt,

sincedF(1) = -2
arriving at an analytical solution for such an integral anel heed to use the Composite Simpson’s
rule approximation [2]. Using this rule, we see that polatian can be approximated B$t,z) =

st 00iP(t,z 1), whereaj = % andt is modeled by a uniform distribution. This approximation
holds wherY is even and

3 fi=0ori=/
¢ =< 3 elseifi odd
2 elseifi even

Using this substitute for polarization, (13) can now be teritas

6E
(21) R Z -
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where?®, = P(t,z1;). Applying FDTD, we find

cx. at ~ Zjon

We can use this polarizatlon, which includes a uniformiytrihsitedt, to update Equations (17)
and (18), which are now written as

1 1
ned _ Oteoed[Ey +2+E 2]+(2r. A)(B), 2

22 P

9 n— 2Ata| n—s
23 E”*z Hn _H" E 3 P 5
(23) T35 ki3 kf%]+1+a K +% G
whered = G + 51 o0 5

4.2. Uniform Distribution for 4. The above shows the electric field and polarization equation
with a distribution included only for the parameter We can additionally add in a uniform dis-
tribution for the dielectric parameteg, whereeq = €5 — €. Applying the Composite Simpson’s
approximation for polarization and updating (21) we findtth

(OB _ : aaﬂ.,

24) 0= ok~ Z)%B, =l

where®j = T(t,Z;Ti,de). Once again, using FDTD

%iﬁl lafpIJ ~ jiiiﬁjai [(ﬂj)ﬂﬂ&(ﬂj)ﬂ_z}'

Equations (22) and (23) are amended as follows:
1

1 _ L
wi  Dteosq [Ee 2 +En 2]+ (20— B)(B)p

(25) (—'P|J>k = 2T + At

6 1- 5 e} £ 20tai B n1
2 M2 = HY , —HD ' D2
(26) 1+6[ k+3 kf%] +JZ).Z>5 21 + At) 1+6)( i)k

IB] tdJ

ot _
whered = 5= +ZJ ozl 0 (21 A andeg, = €s; — €.

4.3. Multiple Polarizations. We now begin to examine the situation in which a material ldigp
multiple polarizations. Since a human tissue sample is nugdef different components, within
one sample there may be multiple relaxation time and statimjttivity parameters. In the example
of dry skin, there are two polarization terms, implying twg and twoeqy,,. We will use, for the
purposes of consistency with the Cole-Cole and Debye mpde}s as opposed teq,,, Where
Aem = €5, — €5, , (EXCeEpt forAgy, sinceAg; = €5, — €,). Our total polarization is simply the sum
of the polarizations present in the material, so polararateduces to

(27) P(t,z2) =P+ P,.
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Each polarization term is a function of a different relagattime parameter. We begin by defining
Py in a similar manner to Equation (20),

(28) P = /T:lfP(t,z;T)dFl(T),

wheret] = (1—-ay) - 11 andr‘{ = (1+b1)-11. The values ofy andb; are determined by where
we want the lower and upper limits of the uniform distributjo? andt?, to be locatedP, can be
similarly defined.

By inputting the density of the uniform distribution, (28)written as

b
1 T1

—T? 15

(29) Pl )

= P(t,z1)drT,
T

sincedF (1) = ﬁdt for a uniform distribution. Therefore, we can express theemal’s total
1~ "1
polarization as

(30) P(t,2) =

i 1[5
/fP(tZT)dT—i—T /fP(t,Z;T)dT.

b a a
L1/t —TyJt

The above considers looking at polarization with distribas for the relaxation time parameters.
We now adjust the multiple polarization model to also in@utistributions for the static permit-
tivity parameters. For the uniform distribution, we hay@; (Ag) = —d—dAe anddGy(Ag) =

WdAe, whereAe$ = (1—c;) - Agq andAgd = (14dp)-Agg. The values ot; andd; are de-
2772

termined by where we want the lower and upper limits of théarni distribution,Ae§ andAs‘l‘, to
be located. Equations (28) and (29) now update to be

Aed
(31) Pl_/ i _‘Pt 21, 86)dF (1)d Gy (Ae).

Ae§
32 P = / / P(t,z1,e5)dTdAs.
(32) ' Asd Ne§ 19 — 18 @ o

Once agairP, can be solved similarly. We use theBgand P, values in (27) to obtain a new
polarization term.

Both our electric field and polarization equation must beaipd to account for the multiple
polarizations. We can start by amending (24) to include Ipotlarization terms

_jiiiﬁjaiag%7

JOE _

(33) 5 = ——Z— oE — Z}Z}BJ.

where?y; = _‘P(t,Z;Tli,Aelj). Using FDTD, we see that

5 5pe = g 5pe

1|]
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By combining the summations, Equation (33) updates to be
1 1 1

+1 n—3s n+3 n—
oE £P1” n z (fplij)k 2+<T2ij)k 2_(?2ij)k ’
(34) SE___Z_ oE— %%BJ ! At '

)rH"z:

We also revise (25) to solve fomry,,
1

)n+1 Ateoedlj[E 2+E 2] (2T1i_At)(-rP1ij>E_z

(35) (Tllj - 2.[1_ +At

n+§

1
We can similarly find an equation fdt?, ), *. Using these new expressions {ah,, )E+2 and

(P, )E+2, (34) becomes

_1 1
n+2 e ZAta B] fP]-ij)n : (fpzu) 2

— Hn Hn
T4 a0 k—%] % g(1+0) | 21y, +At ' 215 +A |

(36) E,

_ oAt | <l <f CiBjAt [ Edy Ed2;
whered = 5 + 3100

J — —
€00 2T1i +At + 2T2i +At) andsdlj - sSlj €oo.
5. INVERSE PROBLEM FORDISTRIBUTION PARAMETERS

5.1. Motivation for Distributing Dielectric Parametersof DebyeModel. The Cole-Cole model
has been considered an excellent way to approximate th@toperties of dielectric materials in
which multiple mechanisms are present. While uncertairuaithe true nature of the mechanisms
being described by this model, we find that the model is moceirate in comparison to other
known models. The data that models such as Cole-Cole atterapproximate ig(w), a complex
value that reveals measured permittivities and condu@s/at different frequencies. In the case
of the Cole-Cole model,

n Agm o
37 e(W)cc = € +
(37) (W)ce El

(i(x)'[m)(lfam) + iweEp

where each, represents one of the relaxation time parametssg,= €s,, — €s,, , (except forAey,
sincel\g; = €5, — £,), andn is the number of poles. We get thigw) term by converting Equation
(5) to the frequency domain and arriving at

(38) D =¢g(w)E

The FDTD method, as seen earlier, helps to provide researetith a way of simulating the
behavior of electromagnetic fields inside a dielectric. Hwr Cole-Cole model, however, the
FDTD method does not apply because the time domain fornomlatbntains a fractional-order
derivative [4]. This eliminates the ease of using FDTD ansl @éacouraged many researchers to
use the Cole-Cole model’s predecessor, the Debye modeiHich the value o€(w) is computed
as

Y

Aem o

(39) e(W)p = € + le 1+ (iwtm) * iweg
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FIGURE 1. Real part oE(w), €, or the permittivity.
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FIGURE 2. Imaginary part o€(w), g, or the conductivity.

Figures 1 and 2, which display the complex permittivity aoaductivity, show how effective
both the Debye model and Cole-Cole model are in approximgéiie true data for a dry skin tissue
sample. It is evident that the Cole-Cole model provides tebét to the true data than the Debye
model. The computational difficulty associated with thee=Gble model and the relative ease
for the Debye model, however, motivates us to enhance thgéstndel in such a way that it
better estimates the true data, but is still straight fodsarsimulate. While the current literature
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already suggests [2] that distributed relaxation timeserthle Debye model a more accurate fit,
the question of whether a distribution on the static pemiytparameters improves the model has
yet to be considered. We seek to show that with such additais@ibutions, the Debye model
becomes more realistic, as materials actually do displély @aoange of relaxation times)(and a
range of static permittivitiesf).

5.2. Inverse Problem Formulation. Using data fore., T, andes,, from Gabriel [6], we were
able to produce plots for both the real and imaginary parg @i for a number of human tissue
samples. Each of the, andAgy, in the Debye model are given a uniform distribution, using th
framework discussed in Section 4. We choose to distribiatg as opposed tes,, since each of

the Aer, appear in the actual Cole-Cole and Debye modelg(@)j. The distribution of the\ep,,
though, in effect, creates a distribution on each of thecspatrmittivity parameters (excludirg,).
Attempting to determine parameters of the distributionshie case of dry skin where there are two
Tm and twoAgn, (the case whera = 2), results in an eight parameter inverse problem — as each
uniform distribution has both a lower and upper limit.

Our Debye model with uniformly distributed dielectric paraters calculates(w) differently
from the basic Debye model. Performing this calculatiorurezs N Monte Carlo (MC) simula-
tions. For each MC simulation, we randomly sample eaghandAer, , which are distributed as
follows

Tm ~ U[(1—am)Ttm, (1+ bm)Tm|
and
Aem, ~ U[(1— Ccm)Aem, (14 dm)Aem],
wheream, bm, cn anddy, are the values of interest in our inverse problem for therithstions of
Tm andAep,. Therefore, each MC simulation yielasof both theAey, and thety, terms, which
together produce
o

=€w .
+ Z 1+ |0)ka |weo

The terme(w) for the distributed Debye model is simply computed as theptamrmean of the
(W),

1 N
(40) gWop== Y Wk

N &

We performed two inverse problems: one which looked toeeé&itheay,, by, cm anddy, that fit
the Debye model with uniformly distributed dielectric par@ters to the true data and another that
sought to discover thosg,, bm, cm anddy, that would bring the distributed Debye model as close
as possible to the Cole-Cole model. To begin the inversel@molive created a cost functional
of the relative least squares error form that looked at tlferdince between both the real and
imaginary parts of(w). The real part of(w) wase or the permittivity, while the imaginary part
was conductivity. We scaled the conductivity as follows

0 =R (e(w)iwep).

To further simplify calculations, we defirge= [, 0]. Our cost functional was simply

(41) J— Zi (CIDD(.Ji Q|) _R'R
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whereqpp represents the vector for the distributed Debye mogléd,the vector for the true data
andR, = w. For the inverse problem that attempted to approximate tile-Cole model, the
cost functional is instead

n 2
(42) =3 <7qDDa;QqCQ ) :

whereqcc represents the vector for the Cole-Cole model.

Before beginning the optimization routine to minimize thasicfunctional, we must select an
appropriate numbe\, of MC simulations to compute(w)pp. To do this, we choosdl such
that the variability of thee(w) term begins to converge to zero. Figure 3 displays the véitiab

-0.01 7 o -

10 7 -7 = -7 i

-0.02 xo = T
10 o - -
- .- e — ——
B - — —
- = —

e e
10003 - /;//?;?///%/ — |
o /////}/ /// _—
s //// //
- —
— ’///?/ //// ///
- // - // ///
W - ]
= ’*//// //// -
— _— -
- - —%- N = 10,000
1070% / _ ~-*|—~—N=100,000 [
T N = 1,000,000
1 1 1 [ 1 T T
109.03 109.04 109.05 109.06 109.07 109.08 109.09

f (Hz)

FIGURE 3. This figure shows five random plots of conductivity for eadhN =
10,000, 100,000, and 1,000,000 at a very high resolution.

of o for a varying number of MC simulations. At this resolutiohgtfigure suggests that the
variability of o converges to zero a¥ increases. By the Kramer-Kronig relationship [7], we can
infer that the same holds true for permittivity and thereftiie entiree(w) term. For this reason,
we believeN = 1,000,000 to be a sufficient number of MC simulations for our invgrsgblem,
while recognizing that increasing further could produce more exact results.

5.3. Distributed Debye Fit to Cole-Cole Model. Before performing the eight parameter inverse
problem for the Cole-Cole model, we attempted to solve theparameter inverse problem, which
only placed distributions on the,, (from here on referred to as Model A). Our first step in min-
imizing the cost functional was to search for the region irickta global minimum occurs. We
recognized that we could place some constraints on our gqattian problem that we believed to
be reasonable for an inverse problem of this nature. Weicestrthea,, values to be less than or
equal to one, so that we would never sample a value of theatiaxtime,1y,, that was less than
zero. These values were also restricted to be greater thagual to zero, so that sampling does
not occur only at values that are strictly larger than thds@abriel's Cole-Cole values i.e. the
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values found in [6] are inside the intervals defining therithstions. Based on observations, we
noticed that botlt; andt, tended towards distributions where the mean was slightgtgr than
the data’s parameter values. This encouraged us to alldnmda@ndb, to be less than or equal to
two. The set of constraints on the problem was

a1 €1[0,1] by €]0,2]
ap€[0,1] bp€]0,2.

We ran Finkel’'s Direct program [5], a MATLAB code which penfos constrained optimiza-
tion in order to approximate the global minimum subject te tonstraints mentioned above. The
algorithm [8] works by determining a region that may contia solution, then the program con-
tinuously refines this region until it exceeds the allowahlenber of function evaluations. The only
value that Direct retrieved that pushed against the bouhtteeaconstraints waay, which stayed
quite close to one. Figure 4 indicates that the optimal vafus to achieve a minimal cost is one.
In Appendix A is the entire set of plots that display how sewmsicost is when varying distribution
parameters. Since none of the other values that Direct faerd pushing against the bounds of
the constraints set in the program, we were satisfied thaetivere reasonable constraints.

The Direct program’s retrieved values and the correspancdast of the distributed Debye model
with these distribution parameters versus the Cole-Coldehwere

a; = 0.5554 by =1.3347
ap =0.9980 by =1.3329

J=1791Q

(43)

35 T T T T T T T T T

FIGURE 4. The relative cost, with all other distribution parameteonstant, aa, varies.
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We proceeded to perform the same optimization problem wigtridutions on both relaxation
time and static permittivity parameters (from here on nefdrto as Model B). The constraints for
cm Values were reasoned in a similar fashion to dhevalues. Observations did not point to any
special constraints fal,,. Since we believe Gabriel’s values to be fairly reasonabteefichAen,
and did not want to go more than 100% on either side, we réstrithed,, values to be less than
one as well. The updated constraint set is

a € [O, 1] by € [O, 2]
ax€ (0,1 bxe]0,2]
c1€[0,1] di€[0,1]
c2€[0,1] dxe€0,1].

After running the Direct program, we found the solution te #ight parameter inverse problem
matching to Cole-Cole and the corresponding cost to be

a; = 0.8882 b; = 1.5569
ap =0.9938 by =1.3329
c; =0.5544 d; =0.8169
c; =0.5123 dy =0.4922

J=14651

Figures 5 and 6 show how well both Model A and Model B match upéactual Cole-Cole model.
While it is clear from Figures 5 and 6 that both models matchvep with Cole-Cole, it remains
to be shown that adding distributions to the static perwmifjtiparameters is an improvement over
Model A. To do this, we plot the relative costs, in comparismthe Cole-Cole model, in Figure 7.
We believe that Model B presents a much better fit to Cole-@ohaarily because of its low costs
at high frequencies.

(44)

10°F

I

Cole-Cole ]
— = ~Model A (1.795) ||
-+ -Model B (1.471) ||

10° 3 .\ .

10;

10
10 10 10 10 10 10
f (Hz)

FIGURE 5. Real part oE(w), €, or the permittivity.
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10° ¢ :
g Cole—Cole
[| - % -~ Model A (1.791)
10" { - + ~Model B (1.465) .
10° 3 E
o} 10_1§ .
107
10_3§ E
—4
10 L L L L
10° 10" 10° 10° 10"
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FIGURE 6. Imaginary part o€(w), g, or the conductivity.
10° ¢ ‘

—=— Model A relative cost
Nl Model B relative cost
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-5

lo 1 1 1 1 ]

10° 10° 10° 10° 10" 10"
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FIGURE 7. The relative costs between Model A and the Cole-Cole maxdélbe-
tween Model B and the Cole-Cole model.

13
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It is worth mentioning, however, that while it appears thaidél B is definitely a better match
to Cole-Cole than Model A, the static permittivity paramstesed in Model A were discrete
estimates supplied by [6]. We did not perform an optimizatioutine to search for a minimum
cost with distributions of relaxation times along with péttivity parameters varying at different
discrete values. Further research could be done to disebtlee permittivity parameters truly
should be distributed or if they should be discrete but atesbther than the ones provided by [6].

5.4. Distributed Debye Fit to True Data. In this section, we attempt to determine distribution
parameters for the dry skin Debye model that make the modetaurcfit to the true data. As a basis
of comparison, we will use both the Debye and Cole-Cole nsddsing Equation (41), the cost
for the Debye model (substitutingy for gpp) is Jp = 27.7908, while the cost for the Cole-Cole
(substitutinggcc for gpp) is Joc = 10.4027. We once again begin by looking at the four parameter
inverse problem in which distributions are included onlyrelaxation time parameters (from here
on referred to as Model C). We use the same constraints a8)nT#e solution garnered by Direct
and the corresponding cost are

(45) a1 = 0.5508 by = 1.5569
ap = 0.9938 b, = 1.5542

J =13.6037.

As has been documented [2, 3], distributing the relaxatime parameters presents a significant
improvement in cost on the basic Debye model, while stiliriglshort of the Cole-Cole model in
approximating the true data. We proceed to extend this teitfte parameter inverse problem with
distributions on both the relaxation time and static pelixiy parameters (from here on referred
to as Model D1). Using the same constraints as in (44), thdteeand cost are

a; = 0.6522 by =1.5844
ap=0.9870 b, =1.3320
c1 =0.6522 d; =0.8402
c; =0.6358 d, =0.4620

(46)

J=127981

The lower cost signifies a marked upgrade on Model C. Obsgthi@output of the Direct program
clued us in to the general trends of the distribution paransetWhile the output often stated that
a; was marginally less than one, we believed that by startiegotitimization routine at onep
would stay at one and give us a lower cost. The other side oftttstribution seemed to be
seeking a higher value. Figure 8 displays that higher vabfiés are related with lower costs. For
a full set of figures showing how cost was affected by varyirggridhution parameter values, refer
to Appendix B. We wanted to make sure that all constraintsuratlength, so other constraints
were adjusted accordingly. The update of the constrainffsetvhat we refer to as Model D2)
from (44) is

a;€1[0,1 by €][0,1]
ax€[.515 bye[l,2
c1€[0,1] d;€]0,1]
c2€[0,1] dxe]0,1].

(47)
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FIGURE 8. The relative cost, with all other distribution paramsteonstant, al, varies.

We ran Direct to see if this updated set of constraints haceéfiegt on the cost. The results were

a; = 0.1337 b; =0.6646
a, = 1.0000 by, =1.7840
¢, = 0.4630 d; =0.5000
¢, = 0.5988 d, =0.4630

J=121945

The uniform distributions that correspond with our outpailiies can be found in Figures 9 and 10.

While our intuition was correct, the cost did become lowkere remained questions about the
new output values because each function evaluation is @ftarrandom process. Producing 50
random costs between Model D1 and the true data, we found thdye a variance of.6242x
10-°. Producing another 50 random costs using the values fromelMd®a, we found there to be
a variance of $164x 10>, This variance is small enough to conclude that this modeith
near certainty, a lower cost model than D1. Also note thatv#tees of the solution parameters in
(46) and (48) are significantly different. This underscdhesdifficulty of minimizing such a cost
functional and is part of the reason that gradient-basetiodstfail.

Figures 11 and 12 show how well Model C, Model D1, and Model B2ahn up to the true data.
While it is clear from Figures 11 and 12 that all three modélsl@sely to the data, it needs to be
shown that adding distributions to the static permmityiygarameters is an improvement over the
model which only distributes relaxation times. To do thig, plot the relative costs, in comparison
to true data, in Figure 13. It is apparent that at the higherdencies, Model D2 has a significantly
lower cost than Model C. We believe that the extra distrimsion static permittivity parameters
are causing this better fit.

(48)
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FIGURE 9. Uniform distributions forr; andt, values.
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FIGURE 11. Real part o€(w), o, or the permittivity.
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FIGURE 12. Imaginary part of(w), o, or the conductivity.
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FIGURE 13. The relative costs between Model C and the true data amnekbe
Model D2 and the true data.

min=1.51105 @ a2:1.5 & b2:l

0
0 b2

FIGURE 14. The relative cost, with all other distribution paramstsonstant, ag,
andby vary.
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As a note, much time was devoted to the search for a local roiminm the area of the solu-
tions retrieved by Direct. A code implementing the Gaussvida Algorithm was developed and
geared towards solving this specific inverse problem. Intemg MATLAB programs such as
f m nsear ch andf m ncon (f m nsear ch subject to a set of constraints) were also used. In each
attempt the algorithms failed to traverse a descent doactMentioned in [6] is the difficulty of
using classical numerical least-squares minimizatiohrigpies. The randomness of the inverse
problem will often send the algorithm in the wrong directidilgure 14 shows that in the presence
of a “trench”, gradient-based approaches can be unrelidd¢hods for determining the minimum
of stochastic cost functionals is another area which canxpkeed further.

6. FORWARD SIMULATION

6.1. Setup of Simulator. In practice, known dielectric parameters of a material a®dun com-
putational methods to simulate sending a pulse into a dietecTo display the practicality of
the distributed Debye model, we must show that it is posgiblein simulations with uniformly
distributed dielectric parameters. Using the FDTD equeidescribed in Section 4, we created a
code comparable to that used by Banks et al [1]. Since our usdé the updated FDTD equa-
tions, however, it also allowed for distributions on theléatric parameters. We seek to reproduce
Figures 4.2 and 4.4 in [1], which display simulations of antrated sine wave at= 5.0 ns and

t = 10.0 ns, respectively, through a dielectric material with paeter values

0=10x1020hm*
1=1.0x 10 " seconds
€s = 35 relative static permittivity

By setting thean, bm, cm anddy, values equal to zero in our code, we no longer had distribstio
on the dielectric parameters. The lack of distributionslmngarameters leaves Figure 15 as com-
parable to the figures in [1].

Time=5.0ns Time=10.0ns

1000

401

500r H 201
0

w ot W w0l
40

-500
_60,
-1000 : -80 :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
z z

FIGURE 15. Debye model simulations, as done in Figures 4.2 and 4[4],irfior
(t =5.0 ns) andt(= 10.0 ns).

The pulse used in [1] was a truncated sine pulse. We, howsisdrto use a UWB pulse to fully
excite all poles in the polarization model since the diglegarameters vary over a broad range of
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frequencies. We define our UWB pulse as

n

(49) Zaisin(ZHfi (1)),

I=
wheref; is linearly spaced from zero t0x10'° anda; is defined by the beta distributio(2,5).
After adding this to our code, we needed to ensure that tldgiad was done correctly. First, we
wanted to make sure that the pulse sent through the digettenuated properly in comparison
to the pulse sent through free space. We also plotted theRéaster Transform (FFT) of the
signal through both free space and the dielectric to en$fiatethe breadth of the FFT plot for the
dielectric was smaller than that of the FFT plot for free spa€igure 16 confirms that the UWB
pulse acts in accordance with these properties.

T T T T I I
- — Free space
° - - - Dielectric
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Q
s}
@
w
| | | | | |
2 25 3 35 4 4.5 5
time (s) % 107°
12
x 10
(] 4 T T T T T T T T T
©
2
= 3
S
<2
[
©
[} S
o S9.¢
(,) ——————— o000 0000060606066000C
0 1 2 3 4 5 6 7 8 9 10
f (Hz) % 10°

FIGURE 16. The top plot shows the value of the electric field at x=bas time
varies. The dielectric begins at x=0.005 and ends at x=0.00t%e bottom plot
shows the FFT of the two signals.

6.2. Forward Simulations. The applications of forward simulations in computationkgcéo-

magnetics are abundant and varied. The ability to obseruglsee pnoving through a dielectric
allows us to learn more about both the dielectric propesdigs geometry of the material in ques-
tion [1]. Possibly of more significance, however, is the tblat forward simulations play in inverse
problems which seek to reconstruct the values of dielepai@ameters. The forward simulation
provides us with a prediction and the object is to “minimizeustable measure of the difference
between the simulated prediction and a set of data taken ésqmariments”[1]. The benefits of
retrieving such parameter values are wide-ranging and dedlmented [1]. Therefore, for the
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distributed Debye model to hold much relevance in the fieldifanit to be used in a constructive
way, it must be applicable to forward simulations.

x 10
2 T T T T T T T T T
Debye Model
15k A - — — Matchup to Cole-ColeH
-~ Matchup to Data

-2.5 : ;
0 .

FIGURE 17. Time plot of Electric Field with receiver at x=0.0155. eflbebye
model with no distributions is plotted against the Debye eladith distribution
parameters that match up to Cole-Cole and the Debye modeldigtribution pa-
rameters that match up to the true data.

Our choice of dielectric material, for the purpose of exampémains the dry skin tissue inves-
tigated in the inverse problem in Section 5. Using dieleqgiarameter data from [6], we began by
running simulations of the Debye model with no distribusan the parameters. We proceeded
to run further simulations, distributing the parameteradgordance with the results of our inverse
problems. Proper simulations of the distributed Debye rhaaild show that the time trace of
the electric field at the receiver was changed only a reasem@abount. Figure 17 shows a simula-
tion of the Debye model with no distribution on dielectric@ameters, with distribution parameters
found in Model B and with distribution parameters found indébD2. The fact that the distributed
Debye models show some movement away from the Debye modpbisitive sign. We, however,
cannot be sure how realistic this simulation is until propé&grrogation experiments are done with
human dry skin tissue samples.

7. CONCLUSION

The Debye model with uniformly distributed relaxation tip@ameters provides a much closer
fit to the Cole-Cole model or the true data than the basic Dehyeel. Both plots and cost func-
tional outputs suggest that additionally distributingtist@ermittivity parameters is a significant
addition to the distributed Debye model, making it a muchdyeapproximation than any other
Debye model. Although as previously mentioned, using discvalues different from those found
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in [6] may produce a different outcome. We have shown that dtiaight-forward to implement
an FDTD method for the forward solution of our Debye modehwdistributions, as opposed to
the Cole-Cole model. Simulations of the Debye model witHarmly distributed dielectric pa-
rameters display a noticeable difference in the behavith@tlielectric material, in comparison to
the basic Debye model, that we believe make the simulatiare mealistic — this, however, can-
not be verified without an actual interrogation experimdrtiere remain many other unanswered
guestions about this new model and open areas for futurangse

The variance of our cost was of the order of 20vhen usingN = 1,000,000 Monte Carlo
simulations. In optimization routines, it is possible thatarbitrary set of distribution parameters
will give an abnormally low cost by chance. With access tatgecomputing speeds, we can run
more Monte Carlo simulations and be more confident that tisevars we receive are stable and
producing more consistent costs.

A possibility for future research is including a pole to tba/lfrequency section of data. Figures
11 and 12 display how poorly all of these models fit to the tratadt lower frequencies. We
believe that by adding another pole to the data in [6], thesdeais can do a more effective job
of approximating the true values. Local minimization anddient based methods for stochastic
problems is another area that needs to be improved upon.

Lastly, the distributed Debye model never provides a clapgroximation to the true data than
the Cole-Cole model. Our cost outputs always displayedscgstater than 10.4027, the cost
between the Cole-Cole model and true data. This implieghiea¢ remains room for improvement
in approximating the true data. An area for future reseascpplying distributions other than the
uniform distribution to multiple dielectric parameters.eWelieve that distributions such as the
normal or log-normal could provide interesting insightaritow a Debye model with distributed
dielectric parameters can better approximate true data.
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8. APPENDIX A

Appendix A uses the data retrieved in the eight parametes fli¢ Cole-Cole model. Each figure
shows how the relative cost is affected by varying distitiuparameters.

FIGURE 18. The relative cost, with all other distribution parameteonstant, ag; varies.

35

FIGURE 19. The relative cost, with all other distribution parameteonstant, aa, varies.
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FIGURE 20. The relative cost, with all other distribution parameteonstant, ab; varies.
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FIGURE 21. The relative cost, with all other distribution paranigteonstant, ab, varies.
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FIGURE 22. The relative cost, with all other distribution paramgteonstant, as; varies.

100

FIGURE 23. The relative cost, with all other distribution paramigteonstant, as, varies.
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FIGURE 24. The relative cost, with all other distribution parameteonstant, ad; varies.

FIGURE 25. The relative cost, with all other distribution paranigteonstant, ad, varies.
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min=1.43245 @ a=15& blzl

0
0 b,

FIGURE 26. The relative cost, with all other distribution paramgteonstant, ag;
andb; vary.

min=1.51105 @ a,=15& b2:l

0
0 b,

FIGURE 27. The relative cost, with all other distribution paramsteonstant, as,
andby vary.
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min=1.46074 @ c=15& d121.25

0
0 d;

FIGURE 28. The relative cost, with all other distribution paramgteonstant, as;
andds vary.

min=1.48473 @ c,=2& d2:2

0
0 d,

FIGURE 29. The relative cost, with all other distribution parametgonstant, as,
andd, vary.
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9. APPENDIX B

Appendix B uses the data retrieved in the eight parametey fitie data. Each figure shows how
the relative cost is affected by varying distribution paedens.

FIGURE 30. The relative cost, with all other distribution parameteonstant, ag; varies.
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10 I I I I I I I I I
0

FIGURE 31. The relative cost, with all other distribution parameteonstant, aa, varies.
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FIGURE 32. The relative cost, with all other distribution parameteonstant, ab; varies.
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FIGURE 33. The relative cost, with all other distribution paramigteonstant, ab, varies.
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FIGURE 34. The relative cost, with all other distribution paramgteonstant, as; varies.
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FIGURE 35. The relative cost, with all other distribution paramigteonstant, as, varies.
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FIGURE 36. The relative cost, with all other distribution parameteonstant, ad; varies.
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FIGURE 37. The relative cost, with all other distribution paramigteonstant, ad, varies.
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min=12.1926 @ a,=125& b1:0.5

0
0 b,

FIGURE 38. The relative cost, with all other distribution paramgsteonstant, ag;
andb; vary.

min=12.2121 @ a,=1.75 & b2:l

0
0 b,

FIGURE 39. The relative cost, with all other distribution paramsteonstant, as,
andby vary.
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min=12.2275 @ c=15& d1=1.5

0
0 d;

FIGURE 40. The relative cost, with all other distribution parammgteonstant, as;
andds vary.

min=12.7953 @ c,=1.25& d2:l.5

0
0 d,

FIGURE 41. The relative cost, with all other distribution parametgonstant, as,
andd, vary.
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10. APPENDIXC

In Appendix C, we provide a figure similar to Figure 16. Heree peak frequency occurs at
1 x 10°(Hz) as opposed to 2 10°(Hz).
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FIGURE 42. The top plot shows the value of the electric field at x=bas time
varies. The dielectric begins at x=0.005 and ends at x=0.00te bottom plot
shows the FFT of the two signals.
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