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ABSTRACT. We will use a combinatorial approach to analyze the path of a light beam in the two-
dimensional lattice, L2, traveling through a randomly generated labyrinth of two-sided mirrors. We
will look at this specific case of the Lorentz Lattice Gas Model (LLGM) and utilize an analogue
of Russo’s Formula to further explore some of the intriguing details of the recurrence phenomenon
that arise in this model. We will simplify the question of recurrence by breaking it down into a two
case scenario that is significantly more tangible, and provide a theorem that brings the recurrence
hypothesis well within grasp.

1. INTRODUCTION

There is a very interesting question dating back to Hendrik Lorentz that deals with the behavior
of a particle traveling through Rd , encountering randomly placed reflecting obstacles along the
way. One notorious version of this problem, concerning a particle traveling along the integer
lattice, L2, has proven particularly difficult to solve. First of all, we begin with the lattice, L2, and
randomly place two-sided, reflecting mirrors at each of the vertices in the lattice with a particular
probability. A mirror can be placed at a vertex in one of two ways: a NW mirror can be applied
that will deflect a northward bound particle westward, and respectively, a southward bound particle
to the east, along the axes; similarly, a NE mirror will deflect a particle moving north to the east,
and south to the west, etc. (see Figure 1). Obviously, if there is no mirror present, then the particle
will continue through the vertex with its original trajectory, passing through un-deflected.

We will place a mirror at each individual vertex with a probability 0 ≤ p ≤ 1, where a NW
mirror and a NE mirror are equiprobable

(
i.e., P(NW ) = P(NE) = p

2

)
. On the other side of things,

the probability of having no mirror at a vertex is (1− p), so we are guaranteed to have one of
these three states for every vertex in the lattice. It is good to note at this point that the mirror
assignments of vertices are completely independent from one another and are determined based
upon the probability, p, alone. Using this method, we can randomly generate an infinite labyrinth
of mirrors on L2 for any particular probability p. Now, let’s consider what will happen if we shine
a flashlight northward from the origin of our lattice and let its light beam run through the labyrinth,
reflecting off each mirror it encounters. The question becomes: will this light beam ever return to
the origin and, furthermore, will the path be periodic, that is visit only finitely many points? Also,
if we observe that this phenomenon does occur, are we always guaranteed to have the light beam’s
path be periodic for any value of p?
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FIGURE 1. NW and NE Mirrors

While these questions seem relatively benign, the details of this system can be extremely difficult
to describe mathematically. With that in mind, let’s define exactly what we are looking for. We
will let

η(p) = Pp( the light ray returns to the origin) , (1)

and we wish to determine all values of p for which η(p) = 1. Obviously η(0) = 0, since this
corresponds to the case where the lattice is completely devoid of mirrors and, subsequently, the
light beam will continue northward indefinitely, unimpeded. It has also been well know for quite
some time that η(1) = 1. Geoffrey Grimmett offers a very nice proof of recurrence for the p = 1
case in [2]. Unfortunately, those are the only two values of p for which the question of recurrence
has been answered.

It has been conjectured by several mathematicians that η(p) = 1 for all 0 < p < 1, but while
some progress has been made using computational methods, it still remains a largely unsolved
problem. Working toward a better understanding of this model for 0 < p < 1 is the primary focus
of this paper. As such, we will first provide the reader with an intuitive argument for why the
recurrence hypothesis is almost certainly true, and then delve into a new mathematical approach
that will simplify the question and introduce an aspect of the problem that will almost surely lead
to a contradiction that will directly prove the recurrence hypothesis.

2. PRELIMINARY COMPUTATIONAL ANALYSIS

Before strictly analyzing the mathematics behind the Lorentz Lattice Gas Model problem, it is
important to come to an understanding of what exactly is happening in our system, and hopefully
get a better feeling for why so many mathematicians believe the recurrence hypothesis is true. The
way in which we first analyze the problem is to look at finite regions of L2 to see what happens on
average to light beams passing through random labyrinths generated for particular values of p. So,
in order to talk further about some of this computational analysis, let’s introduce a few definitions.

Definition 2.1. Let Dn be the square region in the lattice with n ∗ n total vertices, where n is odd
and our light origin is located at the center of the square, i.e. the vertex

(
(n−1)

2 , (n−1)
2

)
.

Now that we have a region, we need a way to describe what is happening inside of it.
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Definition 2.2. Let An be the event where a light beam, shone northward from the origin, reaches
the boundary of our region Dn. Similarly, let Ac

n (read An complement) be the event where the
light beam is completely contained in the region; that is to say it visits finitely many vertices and
is periodic inside of the region.

With these definitions in mind, we want to develop a way to computationally approximate

Pp(Ac
n) ,

the probability that for a given region, Dn, and a random labyrinth applied to it, a light beam
from the origin will be completely contained in the region. We wrote a program in Matlab to
help us out with the calculations. Essentially what the program does is randomly generate tens of
thousands of labyrinths for a given probability p, then run light beams through each labyrinth, and
find the proportion of light beams that stay inside of the region. This gives us a relatively accurate
estimation of the probability of such an event occurring, and we can plot a curve to tell us what
happens to the probability of the light beam being contained as we increase the size of the box.

Example 2.3. Not surprisingly, for the case of p=1, the probability of Ac
n steadily approaches a

value of 1. Using our program, we plotted the estimated probabilities for the values 3≤ n≤ 401,
with a step size of 2, when p= 1 (Figure 2). Although these probabilities are obviously estimations,
it is easy to see that this probability function will eventually approach 1 as n→ ∞, which is known
to happen.

The graph below is for relatively small values of n. To give the reader an idea of how slowly
this function increases, we found that a box of size n = 5003 completely contained the light beam
roughly 84.5% of the time for the p = 1 case. So, in order to get close to a probability of 1, the box
size must be extremely large.
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FIGURE 2. Pp(Ac
n) as a function of n, for p = 1

Example 2.4. Another example of what we have been working on computationally is the rela-
tionship between p values and the probability Pp(Ac

n) for a given value of n. The graph (Figure
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3) below is the result of 1,000,000 trials on randomly generated labyrinths, with n = 5, for each
value 0 ≤ p ≤ 1 with a step size of 0.05. As the reader can see, it produces a very smooth curve.
It makes sense that as we increase the value of p, and subsequently the number of mirrors in the
labyrinth, the probability that the light beam is contained in the box must also increases.

FIGURE 3. Pp(Ac
5) as a function of p

From these analyses and others like them, we can get a sense that as the size of the box increases,
the probability that the light beam will be entirely contained in it should increase proportionally.
Similarly, we can witness the relationship that as we increase the number of mirrors in a given
finite region, again the probability of the light beam being trapped inside the region will increase.
So, intuitively, it makes sense that if we make our box extremely large and put a lot of mirrors in it
(i.e., let p be very close to one), we should encounter a high probability of recurrence.

Now that the reader has somewhat of an intuitive understanding of what is happening in this
model, let’s look at some of the mathematical tools we have at our disposal that may help us to
start chipping away at the problem.

3. NEW METHOD

Over the past several years, some progress has been made on this problem by Yevgeniy Kovchegov.
In 2003 he wrote a paper concerning the recurrence phenomena of the LLGM [3] and he derived
some useful results that directly pertain to the recurrence hypothesis. The remainder of this sec-
tion will be dedicated to explaining some of his ideas and extending one of his theorems, to work
toward a solution to the problem.

3.1. An Introduction to Pivotal Points. Let’s start at the origin and again shine our flashlight
northward. Consider that in order for that light beam to ever form a closed loop and be periodic
(recurrent), it must return to and travel northward from the origin at another time step (actually
infinitely many since it is periodic, but we are only interested in the first time it comes back). We
can look at the mirror orientation of the origin to see what direction the end of the light beam must
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be traveling in order to close the loop off at the origin. If there is a NW mirror at the origin, the light
beam must return to that vertex moving westward, so it will be reflected to the north; similarly, if it
contains a NE mirror, the ray must be moving eastward; and if there is no mirror, obviously it has
to be moving northward. So, what we will do now is shine two flashlights: one to the north and
the other in the complementary direction we just figured out by looking at the mirror assignment
at the origin. This will create two independent light paths that will travel through the labyrinth,
undoubtedly cross, and, if the recurrence hypothesis holds, at some point meet each other in such
a way as to form a closed loop.

Kovchegov focuses on a new class of points that are found by looking at the intersections of
the two independent, yet complementary paths we just introduced. Pivotal points occur at vertices
where the two independent and complementary paths from the origin intersect and either pass
through each other (pivotal) or essentially bounce off one another due to a mirror being placed in
between them (pivotal+ or pivotal−). This results in the two paths continuing to be independent
rather than having their path closed off. There are always exactly two possible ways that the beams
can avoid being closed off, and exactly one way to be closed off (NW, NE, or no mirror, depending
on the situation) at any point of intersection of the two paths from the origin. [Note: it is advisable
to take some time to convince oneself that this is true]

If a point of intersection of the two complementary beams contains a NW mirror (NE mirror),
and subsequently the two paths are not closed, we call this a pivotal+ (pivotal−) point for the event
that the two light rays reach the boundary of a given box. If at a point of intersection the two paths
cross, as a result of no mirror being placed at the vertex, and continue on their respective ways,
then we denote that vertex as pivotal for the event An. For an illustration of the differences between
pivotal, pivotal+, and pivotal− vertices, please direct your attention to Figure 4.

FIGURE 4. Three Types of Pivotal Points

In the following subsection we will introduce some new notation. We will let Ep[N(An)|An]
denote the expected value of the number of pivotal points for two complementary paths from the
origin, conditional on the event that both paths reach the boundary of the box (the event An).
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Similarly, we will let Ep[N+(An)|An]) denote the expected value of pivotal+ points, conditional on
An. [Note: since NW and NE mirrors are equiprobable, Ep[N+(An)|An]) = Ep[N−(An)|An])]

3.2. A Simplification of the LLGM Problem. The following analysis was inspired by the ar-
guments on pages 36-38 of [2]. Our goal here is to investigate Theorem Two from [3] and solve
the differential equation with respect to Ac

n to see what we can find out about the structure of our
labyrinths and the paths of the light beams passing through them. The theorem states:

d
d p

Pp(An) =

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
Pp(An) . (2)

Let’s first take a look at Pp(Ac
n) to see how we can relate it to the above theorem.

Pp(Ac
n) = 1−Pp(An) (3)

If we differentiate the above equation with respect to p we obtain the following result:

d
d p

Pp(Ac
n) =−

d
d p

Pp(An).

So, if we make the appropriate substitutions, we have a restatement of Kovechegov’s theorem:

Theorem 3.1. For all n and 0 < p≤ 1,

d
d p

Pp(Ac
n) =−

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
(1−Pp(Ac

n)) .

Now that we have the probabilities in terms of Ac
n we can go ahead and solve the differential

equation for Pp(Ac
n). So, first of all, let’s separate the equation so we can integrate.

1
(1−Pp(Ac

n))

d
d p

Pp(Ac
n) =−

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)

1
(1−Pp(Ac

n))
dPp(Ac

n) =−
(

1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p

Additionally, let’s define our bounds of integration. We will let α and β be values of p such that
0 < α < β≤ 1. Thus, our integral becomes:∫

β

α

1
(1−Pp(Ac

n))
dPp(Ac

n) =−
∫

β

α

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p .

Evaluating the integral on the left hand side from α to β we are left with

− ln[1−Pβ(A
c
n)]+ ln[1−Pα(Ac

n)] =−
∫

β

α

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p
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ln[1−Pα(Ac
n)] = ln[1−Pβ(A

c
n)]−

∫
β

α

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p .

Now, we can take the exponential of both sides, which leaves us with

[1−Pα(Ac
n)] =

[1−Pβ(Ac
n)]

exp
(∫

β

α

(
1
pEp[N(An)|An]− 2

2−pEp[N+(An)|An]
)

d p
) . (4)

Additionally, let’s plug β = 1 into the equation because we know a fair amount about the p = 1
case. For this reason, the substitution will undoubtedly simplify the equation.

[1−Pα(Ac
n)] =

[1−P1(Ac
n)]

exp
(∫ 1

α

(
1
pEp[N(An)|An]− 2

2−pEp[N+(An)|An]
)

d p
)

Moreover, since we are interested in what happens to Pp(Ac
n) as we expand the size of our box for

a given p, let’s look at the limit of both sides as n→ ∞. In applying the limit, we are left with the
following theorem.

Theorem 3.2.

lim
n→∞

[1−Pα(Ac
n)] = lim

n→∞

[1−P1(Ac
n)]

exp
(∫ 1

α

(
1
pEp[N(An)|An]− 2

2−pEp[N+(An)|An]
)

d p
) .

The above theorem is a very interesting and important result because we can easily derive a
simplified restatement of the recurrence question for 0 < p < 1: If we can show that the right hand
side of Theorem 3.2 goes to 0, it follows that

lim
n→∞

[1−Pα(Ac
n)] = 0

for any 0 < α < 1, or alternatively that

lim
n→∞

Pα(Ac
n) = 1,

which is, of course, the case of recurrence for all 0 < p < 1.
We know that the limit of the numerator goes to 0. In addition, we have strong indications that

the limit of the denominator also goes to 0 (see figure 5). So, it remains to be shown that the
numerator goes to zero faster than the denominator. Thus, it will be the focus of the next section to
analyze the relative rates of convergence of the limits of the numerator and denominator. We will
discuss the necessary conditions for the limit of this quotient to go to 0, and narrow our analysis
down to two cases.
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FIGURE 5. Approximate area values inside of exponential as n increases

4. RELATIVE LIMITS

It will be the focus of this section to analyze the relative rates of convergence to zero of the
respective limits of the numerator and denominator of the right hand side of Theorem 3.2. It is our
goal to show that the limit of the entire right hand side goes to zero; that is, to prove the numerator
goes to zero faster than the denominator. In our attempts to do so, we have discovered and proven
the following theorem:

Theorem 4.1. Either the limn→∞ Pp(An) = 0 for all 0 < α ≤ p < 1, OR for some interval of
probabilities (p1, p2), where 0 < α ≤ p1 < p2 ≤ 1, in order for two complimentary paths from
the origin to be infinite - the event A∞ - there are necessarily infinitely many pivotal± points for
that event.

The proof of Theorem 4.1 follows from the next two subsections. We will provide some com-
mentary along with the proof to help explain some of the more crucial and less obvious steps.

4.1. Limit of the Numerator. Using techniques from [1] we can analyze the limit as n→ ∞ of
the numerator from Theorem 3.2 to figure out exactly how quickly it converges to zero. We know
from this book that
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[1−P1(Ac
n)] ≤

∞

∑
k=n

k−(1+
1
ρ
)(1+ε)

≈
∫

∞

n
x−(1+

1
ρ
)(1+ε)dx

=
ρ

1+ ε+ρ∗ ε
∗n−

(1+ε+ρ∗ε)
ρ

for any sufficiently small ε > 0 and ρ ≥ 3 (The basis for this argument is found in [1], on pages
236 and 279).

As a result, we know that the probability, in the case of p = 1, that our light beam escapes Dn
goes to zero at least as quickly as the right hand side of the above equation. That is,

[1−P1(Ac
n)]≈

ρ

1+ ε+ρ∗ ε
∗n−

(1+ε+ρ∗ε)
ρ . (5)

4.2. Limit of the Denominator. Now, let’s take a look at the limit as n→ ∞ of the denominator
of Theorem 3.2. Since p and Ep[N(An)|An] are always greater than or equal to zero, we know that

lim
n→∞

exp
(∫ 1

α

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p

)
≥ lim

n→∞
exp

(
−
∫ 1

α

2
2− p

Ep[N+(An)|An]d p
)

.

Furthermore, since 2≥ 2
2−p for all p,

lim
n→∞

exp
(
−
∫ 1

α

2
2− p

Ep[N+(An)|An]d p
)
≥ lim

n→∞
exp

(
−2∗

∫ 1

α

Ep[N+(An)|An]d p
)

.

Then obviously,

lim
n→∞

exp
(∫ 1

α

(
1
p
Ep[N(An)|An]−

2
2− p

Ep[N+(An)|An]

)
d p

)
≥ lim

n→∞
exp

(
−2∗

∫ 1

α

Ep[N+(An)|An]d p
)

,

which means that the limit of the denominator of Theorem 3.2 cannot converge to zero any faster
than

lim
n→∞

exp
(
−2∗

∫ 1

α

Ep[N+(An)|An]d p
)

.

We want to show that this limit converges to zero more slowly than ρ

1+ε+ρ∗ε ∗ n−
(1+ε+ρ∗ε)

ρ . If this
is the case, then we certainly have recurrence for all 0 < α ≤ p < 1. So, for the limit of the
denominator to go to zero more slowly than the numerator we need that

exp
(
−2∗

∫ 1

α

Ep[N+(An)|An]d p
)
>

ρ

1+ ε+ρ∗ ε
∗n−

(1+ε+ρ∗ε)
ρ ∗ (nε)
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for all n, where for any fixed ε > 0, the limn→∞ nε = ∞. Now, let’s simplify this equation a little
further:(

−2∗
∫ 1

α

Ep[N+(An)|An]d p
)

> ln(ρ)− ln(1+ ε+ρ∗ ε)− 1+ ε+ρ∗ ε

ρ
ln(n)+ ε ln(n)

> −1+ ε+ρ∗ ε

ρ
ln(n)+ ε ln(n)

Due to the fact that Ep[N+(An)|An] = Ep[N−(An)|An] for all p and n, we can make the following
adjustment: (∫ 1

α

Ep[N±(An)|An]d p
)
<

(
1+ ε+ρ∗ ε

ρ
ln(n)− ε ln(n)

)
. (6)

Obviously, if the above inequality holds, then the right hand side of Theorem 3.2 certainly goes
to zero, and we have recurrence for all 0 < α ≤ p < 1. But what happens if the above inequality
does not hold? Let’s assume(∫ 1

α

Ep[N±(An)|An]d p
)
≥
(

1+ ε+ρ∗ ε

ρ
ln(n)− ε ln(n)

)
=

(
1+ ε

ρ
ln(n)

)
. (7)

So, just to be clear, either Equation 6 or Equation 7 is true; there is no other option. From Equation
7, we know that for at least some interval (p1, p2) where 0 < α≤ p1 < p2 ≤ 1,

lim
n→∞

(
Ep[N±(An)|An]

)
≥ lim

n→∞

(
1+ ε

ρ(1−α)
ln(n)

)
= ∞ . (8)

This equation tells us that since the limit as n→ ∞ of the right hand side is ∞, the limit of the left
hand side must also be infinite. So in order for two complementary paths from the origin to visit
infinitely many vertices and remain unbounded, there must be infinitely many pivotal± points for
that event. Essentially what this means is that for two paths to remain independent forever, they
must intersect each other infinitely many times. At this point, we have arrived at Theorem 4.1.

4.3. Informal Explanation and Conjecture for Case 2 of Theorem 4.1. This is a very inter-
esting, and admittedly confusing result. What Theorem 4.1 essentially tells us is that, for some
values of p and very large n, the expectation of pivotal± points has to be proportionally large
(on the order of ln(n)). This is somewhat counterintuitive given that, if two paths from the origin
both reach the edge of the boundary, we expect those paths to intersect each other very rarely,
because each time they intersect there is a probability (> 0) that the path will be closed off at that
vertex. The probability that the path will be closed off at any given pivotal point is at the very
least min{(1− p), p

2}, because there is always exactly one mirror (or no mirror) that will close the
circuit when two paths intersect; see Figure 6. So, with this in mind, it does not make sense that
two paths that reach the edge of a boundary of arbitrary size (or even infinite in this case) would
intersect several (infinitely many) times.

After studying this question for quite some time, it becomes apparent that we should almost
certainly be able to derive a contradiction from Equation 8, and use it to our advantage. We can
express the probability that we do not form a loop in a finite region Dn in a very specific way.
In order for two paths to reach the edge of a finite box Dn, we know that each time they meet,
they must avoid the one situation that will close the loop (there is always exactly one: either a
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FIGURE 6. The Three Cases for Path Closure

NW mirror, NE mirror, or no mirror). So, at any given vertex of intersection there is at most a
probability of

(
1−min{(1− p), p

2}
)

that the path will not be closed. Obviously, the probability of
this event occurring is less than one for all 0< p< 1. All the information we have obtained pertains
to pivotal± points and we know that the probability of two paths continuing on from a pivotal±

vertex is still at most
(
1−min{(1− p), p

2}
)
. Thus, we can express an approximate probability that

the two independent paths from the origin will reach the boundary of our box Dn as the inequality:

Pp(An)≤ k ∗
(

1−min{(1− p),
p
2
}
)Ep[N±(An)|An]

,

for some constant, k, which depends upon the orientation of the rest of the lattice. However,
according to Equation 8, our expectation of the number of pivotal± points is increasing to the
order of ln(n) which goes to infinity. Thus, since we are raising something less than one to an
infinite power, the probability that two paths continue on forever without ever forming a closed
loop is:

lim
n→∞

Pp(An)≤ lim
n→∞

k ∗
(

1−min{(1− p),
p
2
}
)Ep[N±(An)|An]

= 0 . (9)

While the above argument is not stringent enough to deserve its own theorem, one can easily see
that:

Conjecture 4.2. For every α, there exists at least some interval, (p1, p2) where 0<α≤ p1 < p2≤ 1
such that

lim
n→∞

Pp(An) = 0

for all p ∈ (p1, p2), which is the case of recurrence for all such values of p.

Of course, this is essentially a conjecture inside of a conjecture, but we feel that Conjecture 4.2
is much more tangible than the main recurrence hypothesis. What this argument is lacking is a way
to tie Pp(An) to the Borel-Cantelli lemma. We feel that it is a very short jump from this point to the
lemma, which would show that the probability that two paths intersect at pivotal± points infinitely
many times is equal to zero. This, of course, is a contradiction of case two, which would leave us
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with only case one in Theorem 4.1. It remains to be shown that
∞

∑
N

Pp(Nth pivotal± point occuring)< ∞ ,

which will most likely involve a similar argument to the one outlined in this section.

5. CONCLUSION AND FUTURE WORK

At this point, the recurrence hypothesis remains relatively wide open. However, we have broken
the hypothesis down into two possible cases: one that proves recurrence; and another that tells us
that in order for some complementary paths from the origin to be infinite, they must intersect at
pivotal± points infinitely often, from which a contradiction can almost certainly be derived.

We are continuing work on this problem, and presently we will be attempting to derive the
aforementioned contradiction. It has proven relatively difficult to apply the Borel-Cantelli lemma
to this particular problem, but we are confident that there exists some sort of argument that will
allow us to apply the lemma and prove recurrence for all 0 < p < 1.

There is also another direction that could yield results if explored. If one could show that two
complimentary paths from the origin are guaranteed to meet even once at the same time step,
recurrence would follow almost directly. This is due to the fact that there is a strictly positive
probability that the loop will be closed off at that point, and even if the two paths continue on
independently, they would be guaranteed to meet at the same time step again and again until the
path was finally closed off.
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