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ABSTRACT. It is known that single particle edge reinforced random walks (ERRWs) on certain
acyclic graphs are recurrent, i.e. they return to the starting point infinitely often almost surely. It has
also been shown that a two particle ERRW on Z is recurrent, i.e. the particles meet infinitely often
almost surely. We extend this result and prove that for any number of particles k, the k particle ERRW
on Z is recurrent. Although the multiparticle ERRW is a non-exchangeable process, we couple it to a
similar exchangeable process, allowing us to use familiar results and methods to complete the proof.
We extend our result to the infinite binary tree and show that a multi particle ERRW is recurrent for
the range of initial weights in which the single particle ERRW is known to be recurrent.

1. INTRODUCTION

The concept of an edge reinforced random walk (ERRW) was first introduced by Coppersmith
and Diaconis in 1987 [1]. A particle walks on a weighted graph G, where each edge has initial
weight a. The particle moves randomly about the graph, choosing at each step one of the edges
leaving from the particle’s position with probabilities proportional to the weights of the edges.
Whenever the particle traverses an edge, the weight of that edge is increased by one, reinforcing
the likelihood of the particle traversing that edge again in the future.

1.1. Acyclic ERRWs. It is well known that for acyclic graphs, the ERRW can be modeled using
Polya’s urns [1]. At each vertex, we place an urn containing several colored marbles, with each
color corresponding to an edge connected to that vertex. For the vertex at which the particle starts,
we initially have a marbles of each color, corresponding to the initial weight of a on each edge.
The first move is chosen by randomly drawing a marble from the urn, and moving along the edge
corresponding to the resulting color. This is equivalent to choosing based on edge weights. Once
a marble is drawn, it is put back into the urn, along with two more marbles of the same color.
Because the graph is acyclic, if the particle ever returns to that vertex, it will do so by retraversing
that same edge. Thus when the next decision needs to be made at that vertex, the weight of the
chosen edge will have increased by exactly two, and a drawing from the urn can again be used to
determine the particle’s next move with the correct probabilities. All other vertices behave in the
same way, except that the urns start out with a marbles of each color, plus one extra marble of the
color corresponding to the edge that goes toward the particle’s starting position: the first time the
particle arrives at that vertex, it will do so by that edge, and the weight will already be a+1.
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Perhaps the simplest example of this model is when the graph is the integer line, Z. A particle
starts at 0, and at each step can move either one unit left or one unit right, based on the weights of
the edges (which connect adjacent integers). Assume for this example that a = 1. We can describe
the system by a Polya urn at each integer containing red and blue marbles. Blue corresponds to
moving right and red corresponds to moving left. The urn at the origin initially has one blue and
one red marble, while any urn to the right of the origin starts with two red, one blue, and any urn to
the left of the origin starts with two blue, one red (see Figure 1.1). At each step the random walker
draws a marble from the appropriate urn to decide which direction to go, and then adds two more
of the same color to the urn.

1 2 3-1 0-2-3

(particle)

FIGURE 1. Initial set up for Polya urns with initial weight a = 1

The connection between acyclic ERRWs and Polya’s urns is a powerful tool because Polya’s
urns have several nice and well understood properties. In particular, Polya’s urns are exchangeable.
That is, the results of any sequence of drawings can be permuted without changing the probability
of the overall sequence. For example, the chance of drawing three red marbles and then seven
blue marbles is the same as the probability of drawing seven blue marbles and then three red
marbles, or of drawing four blue, three red, three blue. The probability of a string of colors being
drawn depends only on the number of each color drawn and not on the order they are drawn
in. Because of this property, the specific but powerful de Finetti Theorem can be applied. For
a detailed discussion of how exchangeability and the de Finetti Theorem applies to ERRWs, see
Coppersmith and Diaconis [1]. Consider, for example, the ERRW on Z. The sequence of decisions
at a particular vertex can be treated as a sequence of Polya’s urn drawings from the urn at that
vertex. This sequence can be predrawn, independently of the urns at other vertices. In the urn
at each vertex v, let the number of red marbles and number of blue marbles after n drawings
be denoted Rn(v) and Bn(v), respectively. Then the proportion of red marbles in the urn after n
drawings is

ρn(v) =
Rn(v)

Rn(v)+Bn(v)
.

This ratio converges to some limiting fraction,

ρ∞(v) = lim
n→∞

ρn(v).

After sufficient time has passed, the drawings at vertex v are effectively independent Bernoulli
trials with constant probability ρ∞(v) of drawing a red marble. Thus the ERRW behaves like



Multiple Particle Edge Reinforced Random Walks on Z 51

a random walk in a random environment (RWRE). Due to exchangeability, we know that the
limiting fraction ρ∞(v) is distributed as a beta distribution (in the case of a random walk on Z,
or more generally as a Dirichlet distribution), with parameters based on the initial marbles in the
urn at vertex v. This fact, along with results from the study of RWRE’s, allows one to prove, for
instance, that an ERRW on Z is recurrent; that is, the particle returns to the origin with probability
1. Again, for the details of this argument, see [1]. Further, Pemantle has applied a similar method
to prove recurrence and non-recurrence under certain conditions on the infinite binary tree [5], also
an acyclic graph.

1.2. Non-exchangeable ERRWs. Significant study has been done on ERRWs on cyclic graphs.
However, these random walks are harder to work with due to the absence of exchangeability. A
cyclic graph can not be modeled by a Polya’s urn at each vertex as with acyclic graphs. When
the particle leaves a vertex, it is no longer required to return to that vertex by the same edge, so
adding two marbles of the selected color to the urn would not be accurate. Despite this difficulty
several notable results are known for ERRWs on cyclic graphs. Coppersmith and Diaconis found
results for some finite cyclic graphs [1]. Merkl and Rolles proved recurrence for and ERRW on the
infinite ladder (Z×{0,1}) for certain initial weights [3]. Rolles further showed recurrence on the
finite width infinite ladder (Z×{0, . . . ,d}) for any d, provided the initial weight is large enough
[6]. However, the recurrence of a single particle ERRW on Z2 still remains an open problem.

There is another type of ERRW on which exchangeability fails: acyclic graphs with multiple
particles. It is this class of ERRWs with which this paper is concerned. With multiple particles,
the system can not be modeled with Polya’s urns at each vertex. If particle 1 is initially at vertex
v and leaves via the edge e1, then in the Polya’s urn model it would add two extra marbles to the
urn. When particle 1 returns to vertex v, it is still guaranteed to do so by edge e1, since the graph is
acyclic. However, before that happens, particle 2 might arrive at vertex v by some other edge, say
e2. The correct edge weights would be a+1 for both e1 and e2 (where a is the initial weight), but
the urn would have a+2 marbles of the color corresponding to e1 and only a marbles of the color
corresponding to e2.

We are interested in multi-particle ERRWs because, though they are not exchangeable, they are
closely related to single particle ERRWs, which are exchangeable. Thus we can attempt to use the
powerful tools at our disposal for exchangeable processes to solve non-exchangeable problems.
Perhaps the simplest system of this type, the two particle ERRW on Z, is explored in [2]. It
is proved that the two particles are recurrent, that is they meet each other infinitely often with
probability 1. This is done by describing the movement of the particles using modified Polya’s
urns: the urn at each vertex contains red and blue marbles, but each urn also contains one ”magic
marble,” which becomes blue if the rightmost particle is at the vertex and red if the leftmost particle
is there. This single switching marble is enough to correct the discrepancies between a normal
Polya’s urn and the actual edge weights until the two particles meet. Thus this modified Polya’s
urn accurately describes the ERRW. It is no longer an exchangeable process, but one can construct
a right limiting particle, which behaves like the right particle would if the magic marble were
simply blue. This particle is guaranteed to be to the right of the right particle, and it is controlled
by a regular, exchangeable Polya’s urn. Likewise, a left limiting particle can be constructed that is
always to the left of the left particle, and is controlled by a regular Polya’s urn. It can be shown
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that these two limiting particles meet with probability 1, so the two real particles, sandwiched in
between, must also meet.

1.3. Goals of this paper. The aim of this paper is to generalize the method used in [2] for the
two particle ERRW on Z and extend the result to any number of particles. In addition to proving
the recurrence of the k particle ERRW on Z, our method of coupling non-exchangeable processes
to closely related exchangeable processes may prove valuable in solving other problems. The
principle theorem of this paper will be the following:

Theorem 1.1. Let x1(t), . . . ,xn(t) be the positions of n particles in and edge reinforced random
walk on Z. Then all n particles meet recurrently, for any ∈ Z+. That is,

Prob(x1(t) = · · ·= xn(t) for infinitely many t > 1) = 1

2. METHOD OF PROOF

In our proof of Theorem 1, we will not make use of the magic marbles or limiting particles that
appear in [2]. Nonetheless, our method of proof is motivated by that approach. The underlying
principles are exactly the same, but we state them without introducing magic marbles or limiting
particles. These constructions are excellent for understanding the intuition behind the argument,
and in fact they can be extended to prove Theorem 1. This alternate proof is included in Appendix
A. However, extending magic marbles to many particles gets somewhat messy. We are able to
avoid using magic marbles in our more general proof by noting that describing the movement of
the particles exactly is not necessary. What really matters is that a given particle in a multi-particle
ERRW is more inward drifting than a a single-particle ERRW would be. Our proof still makes
use of a modified Polya’s urn, but instead of magic marbles, we simply note that the drawings for
the actual particle are skewed to one side with respect to the drawings for a single-particle ERRW.
This skew can be thought of as removing and adding marbles from the urn temporarily, which in
the two particle case is completely equivalent to the magic marble. However, our model pays no
attention to how big the skew is at any given time, only that a skew exists. This aspect of the proof
is directly motivated by the magic marbles used in [2], but it is done in a less specific way that is
easier to generalize to many particles.

Another problem with extending the method in [2] is the use of strict limiting particles. [2] in-
troduces an actual right (left) limiting particle that moves independently of the right (left) particle,
except when the two are together, thus guaranteeing that the limiting particles are always on the
outside of the real particles. Not only is this method difficult to define without magic marbles, but
the right limiting particle, as defined in [2], is guaranteed to be to the right of the right-starting
particle, but not to the right of the left-starting particle. This works in the two particle system,
because if the left and right particles switch places they must have met somewhere. However, for
three or more particles, this is not true; particles can pass each other without all of them meeting at
one place. This problem can be fixed by adding more limiting particles (one on each side of each
particle). However, the motivation of these limiting particles is really to show that a particle in a
multi-particle ERRW is more inward drifting than a single particle ERRW would be. In our proof,
we able to couple the distributions obtained from our skewed Polya’s urn and a normal Polya’s
urn to show this same property without introducing limiting particles. Again, the motivation is the
same, but the method is more general and easier to apply to any number of particles.
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The basic outline of our proof is as follows: We describe particle movement in a k particle
ERRW on Z in terms of modified Polya’s urns. We find the distributions for the limiting ratio of
marbles in these urns, or rather how those distributions compare to the familiar beta distribution
obtained from a single-particle ERRW. Coupling these two distributions allows us to apply a result
from RWREs, since after sufficient time this is how the ERRW behaves. This proves that all k
particles return to a given finite region together infinitely often. Finally, we show that each time
this happens, there is a nonzero probability of the particles meeting, and so the walk is recurrent.

3. PROOF OF THEOREM 1

Recall that if a Polya’s urn initially has R0 red marbles and B0 blue marbles, and d marbles are
added on each step, then the limiting fraction ρ∞ of red marbles in the urn is distributed as the beta
distribution β R0

d ,
B0
d

, and the limiting fraction σ∞ of blue marbles in the urn is distributed as β B0
d ,

R0
d

.

The probability distribution function (pdf) for a beta distribution with parameters α and β, defined
for 0≤ x≤ 1, is

(1) βα,β(x) =
xα−1(1− x)β−1

B(α,β)
,

where B(α,β) denotes the beta function:

B(α,β) =
∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+β)
.

The cumulative distribution function (cdf) with the same parameters, defined for 0≤ t ≤ 1, is

(2) Iα,β(t) =
∫ t

0
βα,β(x)dx =

∫ t
0 xα−1(1− x)β−1dx∫ 1
0 xα−1(1− x)β−1dx

This cdf has a property that will be useful in our proof: for a given x, it is a non-increasing
function of α and a non-decreasing function of β.

Proposition 3.1. Let α′ ≥ α and β′ ≤ β. Then for all t ∈ [0,1], Iα′,β′(t)≤ Iα,β(t).

Proof.

1
Iα′,β′(t)

=

∫ 1
0 xα′−1(1− x)β′−1dx∫ t
0 xα′−1(1− x)β′−1dx

=

∫ t
0 xα′−1(1− x)β′−1dx+

∫ 1
t xα′−1(1− x)β′−1dx∫ t

0 xα′−1(1− x)β′−1dx

= 1+
∫ 1

t xα′−1(1− x)β′−1dx∫ t
0 xα−1(1− x)β−1dx

= 1+

∫ 1
t

xα′−α

(1−x)β−β′ x
α−1(1− x)β−1dx∫ t

0
xα′−α

(1−x)β−β′ xα−1(1− x)β−1dx

Now, xα−1(1− x)β−1 is nonnegative for all x ∈ [0,1], and since α′− α and β− β′ are both
nonnegative,

xα′−α

(1− x)β−β′
≤ tα′−α

(1− t)β−β′
∀x ∈ [0, t]
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xα′−α

(1− x)β−β′
≥ tα′−α

(1− t)β−β′
∀x ∈ [t,1]

Thus,

1
Iα′,β′(t)

= 1+

∫ 1
t

xα′−α

(1−x)β−β′ x
α−1(1− x)β−1dx∫ t

0
xα′−α

(1−x)β−β′ xα−1(1− x)β−1dx
≥ 1+

∫ 1
t

tα′−α

(1−t)β−β′ x
α−1(1− x)β−1dx∫ t

0
tα′−α

(1−t)β−β′ xα−1(1− x)β−1dx

= 1+
tα′−α

(1−t)β−β′
∫ 1

t xα−1(1− x)β−1dx

tα′−α

(1−t)β−β′
∫ t

0 xα−1(1− x)β−1dx
= 1+

∫ 1
t xα−1(1− x)β−1dx∫ t
0 xα−1(1− x)β−1dx

=

∫ 1
0 xα−1(1− x)β−1dx∫ t
0 xα−1(1− x)β−1dx

=
1

Iα,β(t)

∴ Iα′,β′(t)≤ Iα,β(t)
�

Now consider the left skewed Polya’s urn in which at each drawing, the probability may be
skewed slightly toward drawing red. More precisely, at the (n+ 1)th drawing, there are some
deviations in and jn s.t. 0≤ in ≤ k−1 and 0≤ jn ≤ k−1. The probability of drawing a red marble
from the urn is no longer Rn

Rn+Bn
, but the greater probability Rn+in

(Rn+in)+(Bn− jn)
. This can be thought

of in the following way: at the time of the drawing, we temporarily add in red marbles to the urn
and remove jn blue marbles. After the drawing, the number of red and blue marbles in the urn is
returned to normal, but the deviations affect the probability of drawing red on that drawing.

With the above description, it is clear that the left skewed Polya’s urn can describe the k particle
ERRW on Z for vertices to the right of r0. At each of these vertices, we place an urn initially
containing a+1 red marbles and a blue marbles (where a is the initial weight), just as in a single
particle ERRW. The decisions made at each vertex are described by a series of urn drawings, where
two marbles of the drawn color are added each time. However, special adjustments must be made
depending on which particle is doing the drawing. If the rightmost particle is at the vertex in
question, then in = jn = 0; the marbles accurately represent the weights in the ERRW. However,
if the second particle from the right is at the vertex, then the marbles in the urn do not accurately
represent. There is one too many blue marbles, since the last time the rightmost particle left that
vertex to the right it added two blue marbles, but only increased the weight of the right leaving
edge by 1. There are also too few red marbles, since the particle there now increased the weight of
the left leaving edge by 1, but no red marbles were added. So, to accurately describe the particle’s
movement with the urn, we must temporarily remove one blue marble and add one red marble. If
the third and fourth particles from the right are simultaneously at the vertex, we must remove two
blue marbles (because the right two particles have left to the right and not come back) and add
three red marbles (because the second, third, and fourth particles from the right have all arrived at
that vertex from the left). In general, to make an adjusted urn drawing at a vertex, we must remove
one blue marble for each particle currently to the right of that vertex, and add one red marble for
each particle at or to the right of that vertex, except for the rightmost particle. We at most have to
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remove k−1 blue marbles and add k−1 red marbles. Keeping track of exactly how many marbles
need to be added or removed would be difficult, but all that is important, we will see, is that any
adjustment made increases the probability of drawing a red marble and moving left. Thus in the
left skewed Polya’s urn, the probability of drawing a red marble is always greater than or equal to
the proportion of red marbles in the urn.

As in the case of a simple Polya’s urn, the proportion of red marbles in the skewed Polya’s urn
after n drawings, ρn, converges to a limiting fraction ρ∞, and the proportion of blue marbles after
n drawings, σn, converges to a limiting fraction σ∞ = 1−ρ∞. This may not seem as obvious for
the skewed Polya’s urn, since the probability of drawing blue, and thus adding more blue marbles,
is not equal to the fraction of blue marbles in the urn. However, since the deviations in and jn are
bounded by k, this discrepancy is negligible after enough time has passed. If the total number of
marbles in the urn is very large compared to k, then removing k blue marbles and adding k red
marbles does not make a significant difference in the probability of drawing blue, and furthermore
this difference goes to zero as n goes to infinity. So, the proportion of blue marbles in the left
skewed Polya’s urn still converges to a limiting fraction σ∞. We expect this limiting fraction to
be distributed between 0 and 1 with some probability distribution. For the simple Polya’s urn, we
can use exchangeability to show that the limiting fraction is distributed as a beta distribution with
parameters B0

2 and R0
2 , but in the absence of exchangeability we have no way of calculating the

distribution of σ∞. However, since in the left skewed Polya’s urn the probability of drawing blue
is always less than or equal to the proportion of blue marbles in the urn, it makes sense that the
distribution would be somehow shifted to the left from the distribution of limiting fractions for the
simple Polya’s urn with the same initial marbles. This notion is indeed true, and is formalized in
the following Lemma.

Lemma 3.2. Let the distribution of the limiting ratio σ∞ of blue marbles in the left skewed Polya’s
urn with parameters α and β (corresponding to the urn initially having 2α blue marbles and
2β red marbles) have the probability density function fα,β(x). Let the corresponding cumulative
distribution function be Cα,β(t) =

∫ t
0 fα,β(x)dx. Then Cα,β(t)≥ Iα,β(t) ∀t ∈ [0,1].

Proof. Essentially we prove this by showing that the effect of taking into account the “skew” on
any one particular drawing is to shift the distribution to the left (shift the cumulative distribution
function up). Thus when all the skews are taken into account, the cumulative distribution function
is shifted up. More formally, we define a sequence of functions Cα,β,n(t) that converges pointwise
to Cα,β(t) and such that

Iα,β ≤Cα,β,1 ≤Cα,β,2 ≤ ·· ·
Thus, it is clear that Iα,β ≤Cα,β

Imagine a simple Polya’s urn starting with B0 = 2α blue marbles and R0 = 2β red marbles,
where two marbles are added after each drawing. In this case, the limiting ratio σ∞ of blue marbles
is distributed as βα,β(x), and the distribution has a cdf of Iα,β(t). Now imagine altering this urn
so that the first drawing has a red-biased skewed, but all other drawings are done normally. That
is, for the first drawing, there is some probability p1 ≥ R0

R0+B0
of drawing red, but for all other

drawings the probability of drawing red is still Rn
Rn+Bn

. Let the cumulative distribution function for
the limiting ratio σ∞ in this case be Cα,β,1(t). This distribution can be calculated, since there are
only two possible outcomes for the first drawing, and after that the urn behaves normally. Let y1
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be the result of the first drawing, which can be either r (red) or b (blue). Then

(3) P(σ∞ ≤ t) = P(σ∞ ≤ t|y1 = r)P(y1 = r)+P(σ∞ ≤ t|y1 = b)P(y1 = b).

Note that in the case of a simple Polya’s urn,

P(σ∞ ≤ t) =
R0

R0 +B0
P(σ∞ ≤ t|y1 = r)+

B0

R0 +B0
P(σ∞ ≤ t|y1 = b)

and so,

(4) Iα,β(t) =
β

α+β
Iα,β+1(t)+

α

α+β
Iα+1,β(t)

Now when we add the effect of the red-biased skew in the first drawing and use (3), we have

(5) Cα,β,1(t) = p1Iα,β+1(t)+(1− p1)Iα+1,β(t)

Subtracting (4) from (5) gives

(6) Cα,β,1(t)− Iα,β(t) =
(

p1−
β

α+β

)
(Iα,β+1(t)− Iα+1,β(t))

The first term on the right of (6) is positive, and by Proposition 1 the second term is positive too.
Therefore Iα,β(t)≤Cα,β,1(t).

In the same way, we can consider the Polya’s urn with red-biased skew on the first n drawings,
but which behaves as a normal Polya’s urn for all drawings after that. Define Cα,β,n to be the cdf
for the distribution of σ∞ in this case. For each n, there are a finite number of states the urn can be
in after n drawings, so the cdf can also be expressed as a finite weighted average of cdf’s for the
normal Polya’s urns starting at those states. That is,

(7) Cα,β,n(t) =
n

∑
m=0

p(α+m,β+n−m)Iα+m,β+n−m(t),

where p(α+m,β+ n−m) represents the probability of getting to the state where the urn has
2α+ 2m blue marbles and 2β+ 2(n−m) red marbles after n drawings. Adding the effect of a
red-biased skew on the (n+1)st drawing is the same as replacing each of the normal Polya’s urns
for all the possible states after n drawings with urns with a skewed first drawing. For all n,

Cα,β,n+1(t) =
n

∑
m=0

p(α+m,β+n−m)Cα+m,β+n−m,1(t)

≥
n

∑
m=0

p(α+m,β+n−m)Iα+m,β+n−m(t) =Cα,β,n(t)

By induction, Iα,β≤Cα,β,1≤Cα,β,2≤ ·· · . Now Cα,β(t) is the distribution of σ∞ taking into account
the right-biased skew of all drawings. Also, the effect of the skew in the probability goes to zero
for large n, since the number of marbles that are changed on each drawing is bounded by k. Thus
it is clear that for any t ∈ [0,1],

lim
n→∞

Cα,β,n =Cα,β(t)

∴ Iα,β(t)≤Cα,β(t) for all t ∈ [0,1]. �
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We have shown that for vertices to the right of r0, the k particle ERRW on Z is described by a
left skewed Polya’s urn initially containing a+ 1 red marbles and a blue marbles at each vertex.
Furthermore, since the ratio of blue marbles in the urn at vertex v approaches a limiting fraction
σ∞(v), after sufficient time a particle at v effectively jumps right with a constant probability σ∞(v).
Thus after sufficient time, the ERRW can be treated as a RWRE in the region to the right of r0.
Finally, while we can not calculate the distribution of σ∞(v) at each vertex directly, we have proved
that the distribution is shifted to left from β a

2 ,
a+1

2
in the sense that the cdf is greater for all t ∈ [0,1].

We can also define a right skewed Polya’s urn, in which at each drawing the probability of
drawing a red marble is less than or equal to the proportion of red marbles in the urn. By symmetry,
the same argument used above shows that the k particle ERRW on Z in the region to the left of l0
can be described by a right skewed Polya’s urn initially containing one red marble and two blue
marbles at each vertex, and also that the distribution of the limiting ratio ρ∞ of red marbles in the
urn is shifted to the left of β a

2 ,
a+1

2
in the sense that the cdf is greater than or equal to Ia

2 ,
a+1

2
(t) for

all t ∈ [0,1].
So at least outside of the finite region between l0 and r0, the k particle ERRW on Z behaves as

a RWRE. In this RWRE, the k particles move independently, and can be treated separately. This
also allows us to use the following result from the study of RWREs.

Lemma 3.3. For each 1 ≤ i ≤ l, let pi(1), pi(2), . . . be independent random variables defined on
(0, 1) with

(8)
n

∏
m=1

(1− pi(m))

pi(m)
→ f (n)≥ eµin as n→ ∞ for some µi > 0

Also let pi(0) = 1 for all 1≤ i≤ l. If pi(0), pi(1), pi(2), . . . are the forward rates for the birth-and-
death chain Zi

t , then the l-dimensional RWRE Xt = (Z1
t , . . . ,Z

l
t ) returns to zero infinitely often.

Proof. Suppose we have Xt = (x1, ...,xl) ∈ Z+
1 × ...×Z+

l . Xt will move in a particular dimension
with probability 1

l . We therefore have:

P[Xt+1 = (x1, ...,xi +1, ...,xl)|Xt = (x1, ...,xl)] =
pi(xi)

l

P[Xt+1 = (x1, ...,xi−1, ...,xl)|Xt = (x1, ...,xl)] =
1− pi(xi)

l
To prove recurrence, we will generalize the argument used in [4] to multiple-dimensions using
Lyapunov functions 1 that are supermartingale 2.

Let νi ∈ (0,µi) and define a Lyapunov function ψ where for each i we have:

(9) ψi(n) = Ai +1+
n−1

∑
m=1

(1− pi(1)) · ... · (1− pi(m))

pi(1) · ... · pi(m)
e−νim

We define ψ as follows:

(10) ψ(Xt) =
l

∑
i=1

ψi(xi)

1A Lyapunov function is a function φ such that limx→∞ φ(x) = ∞.
2
φ(Xt)≥ E[φ(Xt+1)|Xt ]
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It is fairly easy to check that ψ(Xn) is now supermartingale for points not on the axes, which gives
us

ψ(Xt)≥ E[ψ(Xt+1)|Xt = (x1, ...,xl)] where xi 6= 0 for all 1≤ i≤ l
We claim that ψ(Xt) is supermartingale everywhere outside some ball around the origin. For

Xt = (x1, ...,xl), the worst case will be when xi = 0 for all but one i between 1 and l. Without
loss of generality, assume x1 = n 6= 0 and xi = 0 for all 1 < i ≤ l. The conditional expectation of
ψ(Xt+1) is as follows:

E[ψ(Xt+1)|Xt =(n,0, ...,0)]=ψ(Xt)+
l−1

l
− p1(n)

l
· (1− p1(1)) · ... · (1− p1(n))

p1(1) · ... · p1(n)
(e−ν1(n−1)−e−ν1n)

To show that this expectation is less then ψ(Xt), we need to show that for large enough n,

(11)
l−1

l
− p1(n)

l
· (1− p1(1)) · ... · (1− p1(n))

p1(1) · ... · p1(n)
(e−ν1(n−1)− e−ν1n)< 0

By equation 8, we have that (1−p1(1))·...·(1−p1(n))
p1(1)·...·p1(n)

≥ eµ1n for large enough n. To show that statement
11 is true, we show that for any constant c > 0, there a.s. exists N > 0 such that

(12) cp1(n)e(µ1−ν1)n ≥ 1 for all n > N

Note that P[p1(n)< e−(µ1−ν1)
n
2/c] decreases exponentially. This implies that

∞

∏
n=1

P[p1(n)> e−(µ1−ν1)
n
2/c] 6= 0

By making c = eν1−1

2(l−1) , we know we can find N such that statement 12 holds. We can therefore
show that statement 11 is true.

This gives our desired result: E[ψ(Xt+1)|Xt = (n,0, ...,0)]≤ ψ(Xt).
We now have a supermartingale Lyapunov function for our random variables Xt outside some

ball around the origin, implying recurrence around the origin[4][2]. �

We apply this lemma with l = 2k. We let pi for 1≤ i≤ k be the limiting right jump probability
σ∞ at each vertex, starting with r0 as the origin. That is, pi(m) = σ∞(r0+m) for m≥ 1. Thus pi(m)
is distributed as the limiting fraction of blue marbles in the urn at vertex r0+m, whose distribution
is shifted to the left of β a

2 ,
a+1

2
. Note that this distribution is independent of i; all particles have

the same limiting right jump probability at any given vertex. Now let Zi
t be the maximum of the

ith particle’s position minus r0 at time t, and 0. Thus Zi
t exactly traces the particle’s movement,

indexing how many spaces to the right of r0 the particle is, except when the particle moves to the
left of r0. In this case, Zi

t is 0 until the particle returns and moves to the right of r0 again. Zi
t can

only increase from 0, so if pi(0) = 1, then pi(0), pi(1), pi(2), . . . are the forward rates for the birth-
and-death chain Zi

t . (Z
1
t , . . . ,Z

k
t ) being at zero is equivalent to all k particles being at or to the left

of vertex r0. In the same way we let pk+i for 1≤ i≤ k be the limiting left jump probability at each
vertex to the left of l0. That is, pk+i(m) = ρ∞(l0−m) for m ≥ 1. Now let Zk+i

t be the maximum
of l0 minus the ith particle’s position at time t, and 0. Thus Zk+i

t exactly traces the ith particles
movement, indexing how many spaces to the left of l0 the particle is, except when the particle is
to the right of l0, in which case Zk+i

t is 0. If pk+i(0) = 1, then pk+i(0), pk+i(1), pk+i(2), . . . are the
forward rates for the birth-and-death chain Zk+i

t . (Zk+1
t , . . . ,Z2k

t ) being at zero is equivalent to all k
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particles being at or to the right of vertex l0. If Xt = (Z1
t , . . . ,Z

2k
t ) returns to zero, which is the result

of Lemma 3.3, then all k particles are simultaneously to the left of or at r0 and to the right of or
at l0. Thus in order to prove that all k particles return to the finite region [l0,r0] together infinitely
often, it only remains to check that the distributions of ρ∞ and σ∞ derived from the skewed Polya’s
urns satisfy the conditions of Lemma 3.3, which we will do by means of coupling.

Lemma 3.4. The distributions pi(0), pi(1), pi(2), . . . as defined above in terms of the distributions
of ρ∞(v) and σ∞(v) satisfy the conditions of Lemma 3.3.

Proof. The urns at each vertex can be treated as independent, because they can be pre-drawn
separately with any amount of skew on each drawing. In reality, the exact amount of skew at a
given drawing depends on the movement of the particles and thus on the other urns, but we do not
need to know exactly what the skew is. We just need to know that a skew (potentially zero) exists
at every drawing. So all we have to check is that our distributions satisfy condition (8).

While we do not know the distributions of ρ∞(v) or σ∞(v)= 1−ρ∞(v) exactly, by Lemma 3.2 we
do know that for vertices to the right of r0, the distribution of σ∞(v) is shifted to the left of β a

2 ,
a+1

2
,

that is, it has a cumulative distribution function Ca
2 ,

a+1
2 ,v(t) s.t. Ca

2 ,
a+1

2 ,v(t)≥ Ia
2 ,

a+1
2
(t) ∀t ∈ [0,1]. As

a result of this, we can couple the random variable pi(m) for 1≤ i≤ k with a β a
2 ,

a+1
2

distribution for
each m. We can pick pi(1), pi(2), . . . and qi(1),qi(2), . . . simultaneously so that pi(m) is distributed
as σ∞(r0 +m) (it’s cdf is Ca

2 ,
a+1

2 ,r0+m), qi(m) is distributed as a β a
2 ,

a+1
2

distribution, and pi(m) ≤
qi(m) ∀m. Do this in the following way: Let u(m) be uniformly distributed on [0, 1]. Then let
pi(m) =C−1

a
2 ,

a+1
2 ,r0+m

(u(m)) and let qi(m) = I−1
a
2 ,

a+1
2
(u(m)) (see Figure 2). It is clear that the random

variables are distributed with the appropriate distributions, and since the cdf’s are non-decreasing
functions and Ca

2 ,
a+1

2 ,r0+m ≥ Ia
2 ,

a+1
2

, it is clear that pi(m)≤ qi(m) ∀m.

0.5

1.0

1.00.5

I

C

,11
2

U(m)

p(m) q(m)

,11
2

FIGURE 2. Coupling of skewed urn distribution and beta distribution

Now qi(1),qi(2), . . . are i.i.d. beta distributions with parameters α < β. It is known that for this
distribution,

µi = E
[

log
(

1−qi(1)
qi(1)

)]
> 0.

Applying the strong law of large numbers, we see that
n

∏
m=1

1−qi(m)

qi(m)
→ eµin almost surely as n→ ∞
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Since pi(m)≤ qi(m) ∀m, we have that
n

∏
m=1

1− pi(m)

pi(m)
≥

n

∏
m=1

1−qi(m)

qi(m)
,

and thus for 1≤ i≤ k,
n

∏
m=1

1− pi(m)

pi(m)
→ f (n)≥ eµin almost surely as n→ ∞.

Similarly, for vertices to the left of l0, we know by Lemma 3.2 that the distribution of ρ∞(v)
is shifted to the left of β a

2 ,
a+1

2
(t), that is, it has a cumulative distribution function Ca

2 ,
a+1

2 ,v(t) s.t.
Ca

2 ,
a+1

2 ,v(t) ≥ Ia
2 ,

a+1
2
(t) ∀t ∈ [0,1]. Let v(m) be uniformly distributed on [0, 1]. Then for k +

1 ≤ i ≤ 2k let pi(m) = C−1
a
2 ,

a+1
2 ,r0+m

(v(m)) and let qi(m) = I−1
a
2 ,

a+1
2
(v(m)). Now pi(m) has the same

distribution as ρ∞(l0−m), qi(m) is distributed as β a
2 ,

a+1
2

, and pi(m) ≤ qi(m) ∀m. Again since
qi(1),qi(2), . . . are i.i.d. β a

2 ,
a+1

2
distributions with parameters α < β, it is known that

µi = E
[

log
(

1−qi(1)
qi(1)

)]
> 0.

Since pi(m)≤ qi(m) ∀m, we have that
n

∏
m=1

1− pi(m)

pi(m)
≥

n

∏
m=1

1−qi(m)

qi(m)
,

and thus for k+1≤ i≤ 2k,
n

∏
m=1

1− pi(m)

pi(m)
→ f (n)≥ eµin almost surely as n→ ∞.

Therefore condition (8) holds for all 1≤ i≤ 2k, and Lemma 3.3 applies.
�

We have now proved that in the k particle ERRW on Z, with probability 1 all k particles will be
in the finite region [l0,r0] at the same time infinitely often. The only remaining step in the proof of
Theorem 1 is to show that this implies recurrent meeting of all k particles.

Lemma 3.5. In an k-particle ERRW, if all k particles will be in the finite region [l0,r0]at the same
time infinitely often, then all k particles will meet recurrently.

Proof. Recall that at each vertex v within the finite region [l0,r0] there is a limiting ratio of red (or
blue) marbles in the urn:

ρ∞(v) = lim
n→∞

Rn(v)
Rn(v)+Bn(v)

σ∞(v) = 1−ρ∞(v) = lim
n→∞

Bn(v)
Rn(v)+Bn(v)
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Rn(v) and Bn(v) are increasing functions of n, and, as all the particles will return to positions
between l0 and r0 recurrently, Rn(v) and Bn(v) go to infinity as n goes to infinity for l0 < v < r0.
Thus for any ε > 0, there exists a N > 0 such that for all n > N,

|ρ∞(v)− pn(v)|< ε

where pn(v) is the probability of moving to the left from position v after n drawings. Assume
at least N drawings have occurred, and let di be the distance from l0 to the ith particle (for some
arbitrary indexing of the particles).

One possible way the particles can all meet is if the first particle travels directly left to l0 (without
any other particles moving), then the next particle travels directly to l0, and so on, until all the
particles are at l0. The probability of this event is given by:

p =
k

∏
i=1

(
di

∏
j=1

(pn(l0 + j))
1
k

)
≥

k

∏
i=1

(
r0−l0

∏
j=1

(ρ∞(l0 + j)− ε)
1
k

)
≡ pmin

If ρ∞(v)> 0 for all v∈ [l0,r0] (which is true a.s.), then as long as ε < min{ρ∞(v)|l0 ≤ v≤ r0}, pmin
must be greater than zero.

When all k particles are in [l0,r0] after N drawings, they have a probability of at least pmin > 0
of meeting. Because all particles will be in [l0,r0] at the same time infinitely often, the probability
of them never meeting is

lim
t→∞

(1− pmin)
t = 0

�

This completes the proof of Theorem 1.

4. FURTHER APPLICATIONS

While Theorem 1 in itself is an interesting result, the method developed above can easily be
applied to multi-particle ERRWs on acyclic graphs other than Z. For example, the method transfers
easily to the infinite binary tree. In [5], Pemantle proves that a single particle ERRW on an infinite
binary tree is recurrent if the initial weight a is less than a0 ≈ 0.233. Using skewed Polya’s urns
and coupled distributions, we show that in this range of initial weights, a k particle ERRW on the
infinite binary tree is recurrent.

Theorem 4.1. For a < a0 ≈ 0.233, the range of initial weights in which a single particle ERRW
on an infinite binary tree is recurrent as shown in [5], the k particle ERRW on the infinite binary
tree is also recurrent.

Proof. The proof follows the same outline as the proof of Theorem 1, and uses much of the same
machinery. Let yi be the initial distance from the ith particle to the root for 1 ≤ i ≤ k, and let
y = max{yi|1 ≤ i ≤ k}. The set of vertices whose distance from the root is at most y is finite
region in which all k particles start, analogous to the interval [l0,r0] for the ERRW on Z. At
vertices outside of this region, place a Polya’s urn which initially contains a+ 1 red marbles, a
blue marbles, and a green marbles, where red marbles correspond to rootward edges and blue and
green marbles correspond to the remaining two edges. This urn arrangement accurately describes
the single particle ERRW on the infinite binary tree. It nearly describes the multi-particle ERRW
as well, except that if a particle arrives at a vertex when other particles are at descendants of that
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vertex, there will be too many blue or green marbles and too few red marbles in the urn. To get
the correct weights for a given drawing at vertex v, we must temporarily remove one blue marble
for every particle that is at a descendant of v in the direction of the “blue” edge, remove one green
marble for every particle that is at a descendant of v in the direction of the “green” edge, and add
one red marble for all but one particle that is at v or a descendant of v. When these changes are
taken into account, the probability of drawing red is greater than or equal to the original proportion
of red marbles in the urn, and the probability of drawing blue or green is less than or equal to the
original proportions of blue or green marbles in the urn, respectively. We take this as the definition
for the root skewed Polya’s urn.

Let the limiting distributions of red, blue, and green marbles in the root skewed urn at vertex
v be ρ∞(v), σ∞(v), and τ∞(v), respectively. Although there are three marble colors, if we care
about the limiting ratio of one color, we can treat the other two colors as one color. For example,
for a normal Polya’s urn starting with R0 red marbles, B0 blue marbles, and G0 green marbles,
where d marbles are added at each drawing, ρ∞(v) is distributed as the beta distribution β R0

d ,
B0+G0

d
.

Furthermore, Lemma 3.2 can be directly applied to the root skewed Polya’s urns defined above. It
shows that the distribution of ρ∞(v) is shifted to the right and the distributions of σ∞(v) and τ∞(v)
are shifted to the left with respect to the standard (unskewed) distributions. More precisely, if the
cdf’s are Cρ,v, Cσ,v, and Cτ,v, then for all t in [0,1]

Cρ,v(t) ≤ Ia+1
2 ,a(t)(13)

Cσ,v(t) ≥ Ia
2 ,

2a+1
2
(t)(14)

Cτ,v(t) ≥ Ia
2 ,

2a+1
2
(t)(15)

Because the ratios of marbles in the urn at each vertex converges to a limiting ratio, after suf-
ficient time the ERRW behaves as a RWRE. We can thus apply Lemma 4.2 a slight variation on
Lemma 3.3. The proof, included in Appendix A, is almost identical to the proof of Lemma 3.3.

Lemma 4.2. Let T denote any tree. For each 1≤ i≤ l, let φi(v) for vertices v ∈ T be independent
random variables defined on (0, 1) such that for any path v0,v1, ... starting at the root and always
moving outward, we have

(16)
n

∏
m=2

1
φi(vm)

→ f (n)≥ eµin as n→ ∞ for some µi > 0

Also let φi(0) = 1 for all 1≤ i≤ l. If φi(v) is defined as

φi(v) =
prob(transition from parent of v to v)

prob(transition from parent of v to grandparent of v)

for the birth-and-death chain Zi
t on T, then the l-dimensional RWRE Xt = (Z1

t , . . . ,Z
l
t ) on Tl returns

to the origin (the root in all l dimensions) infinitely often.

We apply this lemma with T being the infinite binary tree, l = k, and each Zi
t representing the

movements of one particle in the k particle ERRW on T. The challenge is to show that condition
(16) holds. Consider vertices v more than d steps from the root. Here the distributions of φi(v) are
determined by root skewed Polya’s urns. If we ignore the skew, the distributions would be i.i.d.
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beta distributions, equivalent to the distributions for a single particle ERRW. Pemantle proved that
for initial weights a < a0, this distribution satisfies

E[ln(φ)]< 0 almost surely.

Let E
[
ln
(

1
φ(v)

)]
= µi > 0 for vertices v more than y steps from the root. For any path v0,v1, ...

moving outward from the root, by the strong law of large numbers,
n

∑
m=y

ln
(

1
φ(vm)

)
→ (n− y)µi a.s. as n→ ∞

Since there are finitely many vertices within the first y steps and ln
(

1
φ(v)

)
is finite a.s. for these

vertices, they can be included without affecting the above convergence:
n

∑
m=1

ln
(

1
φ(vm)

)
→ nµi a.s. as n→ ∞

Exponentiating each side gives
n

∏
m=1

1
φ(vm)

→ enµi a.s. as n→ ∞

Thus for the unskewed distributions, condition (16) holds. In complete analogy to Lemma 3.4,
we can use (13)-(15) to couple the real distributions for ρ∞(v), σ∞(v), and τ∞(v) to the unskewed
distributions. At any vertex, the probability of jumping to a parent will increase, and the probability
of jumping to any child will decrease, so φi(v) will decrease for every v at least d steps from the
root. For these vertices, the terms in the product above will increase. We can again ignore the
effect of the finitely many vertices within d steps of the root, and thus condition (16) holds, and
the Lemma applies. The Lemma states that the random walk Xt = (Z1

t , . . . ,Z
k
t ) on Tk returns to

the origin, that is, all k random walkers return to the root at the same time, infinitely often with
probability 1.

�

5. CONCLUSION

We have successfully extended both the result and method of [2] to multiple particle ERRWs
on Z for any finite number of particles k, proving that such random walks are a.s. recurrent.
Furthermore, the tool developed in this generalized method of proof turned out to be more general
than originally hoped. Using results from [5], we easily proved recurrence for the k particle ERRW
on the infinite binary tree, given certain initial weights. In fact, it seems that by this method, if one
can prove recurrence for a single particle ERRW on any tree, then the recurrence of a multi-particle
ERRW on the same tree follows easily. In some sense, having more particles seems to make an
ERRW more likely, or at least as likely, to be recurrent. This is an interesting result, because it is
not true for simple random walks, where for instance on Z, the one, two, and three particle random
walks are recurrent, but the k particle random walk for k ≥ 4 is not recurrent. An interesting
question is, are there any trees and initial weights for which a single particle ERRW is not a.s.
recurrent, but a k particle ERRW is for sufficiently large k? Further explorations might also include
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finding different applications of our general method, specifically the coupling of random variables
in nonexchangeable processes to better understood random variables in exchangeable processes.

APPENDIX A. PROOF OF LEMMA 4.2

Proof. For any vertex v, denote the parent of v by ṽ and the two children of v by v′ and v′′. Let
pi(v→ v′) denote the probability of the ith particle jumping from v to v′, etc. Thus for any v,

φi(v′) =
pi(v→ v′)
pi(v→ ṽ)

Suppose we have Xt = (x1, ...,xl) ∈ T1× ...×Tl . Xt will move in a particular dimension with
probability 1

l . We therefore have:

P[Xt+1 = (x1, ...,x′i, ...,xl)|Xt = (x1, ...,xl)] =
pi(xi→ x′i)

l

P[Xt+1 = (x1, ...,x′′i , ...,xl)|Xt = (x1, ...,xl)] =
pi(xi→ x′′i )

l

P[Xt+1 = (x1, ..., x̃i, ...,xl)|Xt = (x1, ...,xl)] =
pi(xi→ x̃i)

l
To prove recurrence, we will generalize the argument used in [4] to multiple-dimensions using
Lyapunov functions 3 that are supermartingale 4.

Let νi ∈ (0,µi) and define a Lyapunov function ψ where for each i we have:

(17) ψi(v) = Ai +1+
n

∑
m=2

1
φi(v2) · ... ·φi(vm)

e−νi(m−1)

where v0,v1, ...,vn = v is the path from the root v0 to v. We define ψ as follows:

(18) ψ(Xt) =
l

∑
i=1

ψi(xi)

It is fairly easy to check that ψ(Xt) is now supermartingale for points not on the axes, which gives
us

ψ(Xt)≥ E[ψ(Xt+1)|Xt = (x1, ...,xl)] where xi is not the root for all 1≤ i≤ l

We claim that ψ(Xt) is supermartingale everywhere outside some ball around the origin. For
Xt = (x1, ...,xl), the worst case will be when xi is the root vertex for all but one i between 1 and
l. Without loss of generality, assume x1 is not the root and xi is for all 1 < i ≤ l. The conditional

3A Lyapunov function is a function φ such that limx→∞ φ(x) = ∞.
4
φ(Xn)≥ E[φ(Xn+1)|Xn]
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expectation of ψ(Xt+1) is as follows:

E[ψ(Xt+1)|Xt = (x1,0, ...,0)] = ψ(Xt) +
l−1

l
− p1(x1→ x̃1)

l
· 1

φ1(v2) · · ·φ1(vn)
e−ν1(n−1)

+
p1(x1→ x′1)

l
· 1

φ1(v2) · · ·φ1(vn)φ(x′1)
e−ν1n

+
p1(x1→ x′′1)

l
· 1

φ1(v2) · · ·φ1(vn)φ(x′′1)
e−ν1n

= ψ(Xt) +
l−1

l
− p1(x1→ x̃1)

l ·φ1(v2) · · ·φ1(vn)
(e−ν1(n−1)− e−ν1n)

where v0,v1, ...,vn = x1 is the path from the root v0 to x1. To show that this expectation is less then
ψ(Xt), we need to show that for large enough n,

(19)
l−1

l
− p1(x1→ x̃1)

l ·φ1(v2) · · ·φ1(vn)
e−ν1n(eν1−1)< 0

By equation 16, we have that 1
φ1(v2)···φ1(vn)

≥ eµ1n for large enough n. To show that statement 19 is
true, we show that for any constant c > 0, there a.s. exists N > 0 such that

(20) cp1(vn→ ṽn)e(µ1−ν1)n ≥ 1 for all n > N

Note that P[p1(vn→ ṽn)< e−(µ1−ν1)
n
2/c] decreases exponentially. This implies that

∞

∏
n=1

P[p1(vn→ ṽn)> e−(µ1−ν1)
n
2/c] 6= 0

By making c = eν1−1

2(l−1) , we know we can find N such that statement 20 holds. We can therefore
show that statement 19 is true.

This gives our desired result: E[ψ(Xt+1)|Xt = (x1,0, ...,0)]≤ ψ(Xt).
We now have a supermartingale Lyapunov function for our random variables Xt outside some

ball around the origin, implying recurrence around the origin[4][?]. �

APPENDIX B. GENERALIZATION OF KOVCHEGOV’S METHOD

We present an alternate proof of Theorem 1.1 using magic marbles, which more directly extends
the method in [2].

B.1. Setup and particle movement. In a k-particle system, the particles are differentiated by
their positions relative to one another. The starting position of the left most particle is l0 and the
starting position of the right most particle is r0. Each urn contains k−1 magic marbles, which turn
blue or red depending on which particle(s) are at that urn. Let bi be the ith particle from the left.
When bi is at an urn, i−1 magic marbles turn blue, and n− i magic marbles turn red. For example,
when b1, the left most particle is at an urn, all the n−1 magic marbles turn red. A particle moves
by choosing either a red or blue marble from the urn. The color dictates its movement: red means
it moves left, blue means it moves right. It then replaces the marble and adds two more of the same
color.
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R0(v) and B0(v) are the initial numbers of red and blue marbles respectively in the urn at position
v. The initial urn setup will be as follows for a k-particle system, where b0

i is the starting position
of particle bi, and a is the initial weight on each edge:

(R0(v),B0(v)) =


(a− (k), a+1) if v < l0

(a− (k− i), a− i+1) if v = b0
i

(a− (k− i)+1, a− i+1) if b0
i < v < b0

i+1
(a+1, a− k) if r0 < v

This is assuming that no two particles begin at the same location. Ultimately, we only care about
the initial distribution of marbles in the urns to the left of l0 and to the right of r0, and these remain
the same no matter how many particles share a location.

Until any two particles meet, it is easy to see that the above representation of marbles in the urns
correctly represents an ERRW.

B.2. Limiting particles. As in [2], we introduce left and right limiting particles. However, instead
of just one pair for the entire system, there is a pair for each particle. The limiting particles stay
with a particular particle regardless of that particle’s position relative to the others.

We will define two concepts: the magic family and magic marbles’ offspring. The magic family
is composed of all the magic marbles and their offspring. The magic marbles’ offspring are marbles
that a particle added as a consequence of choosing a magic marble or a magic marble’s offspring.

The right limiting particles move according to a limiting probability that is determined by mak-
ing all marbles in the magic family blue. Similarly, the left limiting particles move according to a
limiting probability that is determined by making all marbles in the magic family red. The limiting
particles view each urn as a two color urn whose limiting probability can be described by a beta
distribution [2].

As a consequence, the right limiting particles’ limiting probabilities of moving to the right are
beta distributions with parameters (B0+M0)

2 and R0
2 where R0,B0, and M0 are the initial numbers

of red, blue, and magic marbles respectively in an urn. At all positions to the right of r0, the
parameters will be a

2 and a+1
2 . This is also true for the left movement of the left limiting particle to

the left of l0.
Following is a description of the movement of the right limiting particles, which can be extended

to the left limiting particles. The right limiting particles all begin at r0, and may not move to the
left of r0. If a particle and its right limiting particle are at the same location, the right limiting
particle moves according to the particle’s draw. If the particle draws a red marble not in the magic
family, both the particle and the right limiting particle move left. If the particle draws a red marble
in the in the magic family, the particle moves left, but the right limiting particle moves right. If the
particle draws any kind of blue marble, both the particle and the right limiting particle move right.
This corresponds to the right limiting particle’s perception that magic family marbles are blue. If
the right limiting particle is not at the same position as the particle it limits, it moves according to
the limiting probabilities described above.

B.3. Multiple particles at the same position. Our description of the system appears to fall apart
when more than one particle is at a single location. Not only is it unclear how many magic marbles
turn red or blue, but the newly arrived particle has increased an edge-weight by one. This weight
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increase is not represented in the number of marbles in the urn, as marbles are only added when a
particle leaves.

Because of the limiting particles, we can’t increase the number of marbles when another particle
arrives, as this would not correspond to a Polya’s urn. We do, however, need to represent the
weights correctly for the actual particles. To solve this problem, we can make the marbles in the
urn represent the correct weights in the following way:

(1) If bi through bi+m are at an urn, (k−(i+m)) magic marbles turn red, and i−1 marbles turn
blue. 5 Note that m+1 particles are at the urn, and m magic marbles remain unassigned.

(2) The m left over marbles will each be a fraction red and the rest blue in such a way that the
total amount of red to blue will correspond to the ratio of edge-weights. 6

(3) The fraction of the magic marbles that will be turned blue or red can be determined in the
following way:

- The difference between the correct edge weights and red and blue marbles in the urn
(ignoring the m unassigned magic marbles) always happens to be m. This fact is easy
to check with some simple algebra.
For example, if the number of red marbles (including the assigned magic marbles) is
Rn and the number of blue marbles (including the assigned magic marbles) is Bn, then
the actual weight on the left edge is Rn +m and the actual weight on the right edge is
Bn +m.

- If x is the fraction of an unassigned magic marble that will turn red, we have
Rn +m
Bn +m

=
Rn +mx

Bn +m(1− x)
We have m because this is the number of unassigned magic marbles. Solving this
equation gives

x =
Bn +m

Rn +Bn +2m
and (1− x) =

Rn +m
Rn +Bn +2m

(4) Making Bn+m
Rn+Bn+2m of each unassigned magic marble red and Rn+m

Rn+Bn+2m of each unassigned
magic marble blue, we have attained the correct ratio of red to blue to match the ratio of
the left and right edge-weights without increasing the number of marbles.

B.4. Conclusion. There are a few things to note about this method. We have correctly defined
the particles’ movements to correspond exactly to an ERRW. Also, each particle’s right limiting
particle must stay to the right of r0, and each urn to the right of r0 begins with a leftward inclination
according to the right limiting particles: a+ 1 red marbles and a blue marbles. Similarly, each
particle’s left limiting particle must stay to the left of l0, and each urn to the left of l0 begins with a
rightward inclination according to the left limiting particles: a+1 blue marbles and a red marbles.

5In other words, the magic marbles in common that bi and bi+m would turn red and the magic marbles in common
that bi and bi+m would turn blue remain red or blue.

6This can be more easily understood by thinking of pounds of sand instead of marbles. A blue marble would
correspond to a pound of blue sand. A magic marble would correspond to a pound of magic sand. If a particle chooses
a red or blue grain of sand, it adds two pounds of the corresponding color of sand. So when a fraction of a pound of
magic sand is made red, and the rest of the pound is made blue, choosing a magic red grain of sand still corresponds
to adding two pounds of magic family red sand.
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For the proof of recurrence for this method, we can use Lemma 3.3. Instead of using the particles
themselves in the application of Lemma 3.3 as in the more general method, we use the limiting
particles. Because the limiting distributions for the limiting particles to the right of r0 and to the
left of l0 are beta distributions, we do not need to use coupling when applying this lemma.
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