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ABSTRACT. This paper describes the implementation of an algorithm by Siefken and Spargo [8] to reconstruct
convex bodies given discrete X-ray data from two point sources. We work with different initial approximations,
compute both local and global error estimates, and attempt to show that for some fixed neighborhood N, we can

approximate ∂K∩N arbitrarily close.

1 Introduction

Geometric Tomography is a subject that deals in part with retrieving information about convex bodies using
X-rays. In particular, the problem of reconstruction is relevant in this field. Falconer [3] and Gardner [6]
independently proved in 1983 that X-ray data from two points p and q uniquely determine a convex body
K when the line l between them intersects the body’s interior. In [3], Falconer states: “Production of a
practical reconstruction algorithm and the error analysis, whilst feasible, would be complicated since this
would involve the solution of non-linear simultaneous equations and equations defined by the limit of an
iterative procedure.” In 1991, Dartmann [2] developed an algorithm using X-ray data from two sources; he is
the only person we know of to have implemented such an algorithm. In this paper, we implement a different
algorithm of Siekfen and Spargo [8], developed in 2005, which also uses X-ray data from two sources.
Specifically, we use discrete X-ray data to reconstruct the top halves of translated, rotated ellipses. We
consider different initial approximations; explicitly compute base points following Falconer [3]; compute
local error estimates; and work towards proving convergence on a fixed neighborhood of the base-points.

2 Definitions

Definition 2.1 A convex body, K, is a compact, convex subset of the plane with non-empty interior. The
boundary of K will be denoted ∂K.

Definition 2.2 A source is a point from which X-ray data is collected for a particular convex body. Without
loss of generality, we assume that the sources are located on the line θ = 0 in polar coordinates. Throughout
this paper, the two sources, denoted p and q, will be located to the left and right of the convex body, respec-
tively. The base-line, denoted l, is defined to be the line passing through p and q. Given a convex body K,
the base-points are the points l∩∂K. The left and right base points will be labeled bl and br, respectively.

Definition 2.3 Given a convex body K, a source p, and an angle φ ∈ [0,π), the near-side point is defined
as the point in lφ∩ ∂K that is the nearest to p, where lφ is the line through p that makes an angle of φ with
l, measured counterclockwise. The far-side point is defined as the point in lφ ∩ ∂K that is furthest from p.
These definitions also hold for the source q.
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Definition 2.4 The near-side function is defined as the distance from a source p to the near-side point on
the body for each φ. The far-side function is defined as the distance from a source p to the far-side point
on the body for each φ. The near-side and far-side functions for the source p will be denoted rp(φ) and
Rp(φ), respectively. Similarly, the near-side and far-side functions for the source q will be denoted rq(ψ)
and Rq(ψ), respectively.

Definition 2.5 Given a convex body K and a source p, the point X-ray of K at p is a function Xp,K(φ) (or
Xp(φ) if no other bodies are being considered) defined on [0,π), such that for all φ ∈ [0,π),

Xp(φ) = λl(K∩ lφ),

where lφ is as defined above and λl signifies length. The point X-ray of K at p can equivalently be defined
as Xp(φ) = Rp(φ)− rp(φ). The point X-ray of K at q is defined similarly.

Definition 2.6 The supporting rays for a convex body K from a source p are the rays emanating from p
which intersect ∂K in either a point or a line segment. The supporting angles are the angles of inclination
of the supporting rays.

Figure 1: X-rays of a “Convex Body.” Xp(φ) gives the length of intersection of the ray lφ emanating from
the base-line at angle φ with the body.

Figure 2: α and β are supporting angles for the body. lα and lβ, the rays emanating from p at respective
angles, are supporting rays for the body.
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3 Pertinent Theorems and Description of the Algorithm

Definition 3.1 A convex body K is said to be determined by X-ray functions at a set of points S if
Xs,K′(α) = Xs,K(α) for all s ∈ S, α ∈ [0,π] implies that K′ = K. I.e. K is determined by X-ray functions at a
set of points if the only convex body having these particular X-ray functions at these particular points is K
itself.

Falconer[4] and Gardner[6] proved independently that point X-rays from two sources uniquely determine a
convex body K in certain instances. The statement of the following theorem comes from [7].

THEOREM A convex body K is determined by X-rays at two points p and q in each of the following situations:
(i) The line l through p and q meets int K, p and q do not belong to int K, and the component of l \(p,q)
intersecting K is specified;
(ii) l supports K;
(iii) p, q belong to int K.

Throughout this paper, we consider case (i), specifically the case when our sources p and q lie on the left
and right side of the body, respectively (as mentioned above). Knowing that X-ray data from two sources
uniquely determine a body, one wonders if those same data can be used to efficiently reconstruct the body.
Dartmann [2] came up with a reconstruction algorithm in 1991. His algorithm depends on the assumption
of vertical tangent lines at the base-points; he uses a result of Falconer [3] (described below) to compute the
base-points explicitly. He uses point-wise construction of a polygon to approximate a body K. During the
Summer 2005 REU program in Mathematics at Oregon State University, Siefken and Spargo [8] developed
a modified algorithm. It is this algorithm that we study.

Figure 3: X-ray data for the upper half of ellipse #4 in Table 1, reconstructed in each of Sections 9.1, 9.2,
and 9.3. Axes are centered at p and q, respectively.

3.1 Description of the Algorithm

Recall the functions rp(φ), Rp(φ), rq(ψ), and Rq(ψ), the near- and far-side functions of p and q, respectively.
The values rp(0), Rq(0), rq(0), and Rq(0) come up frequently. rp(0) is the distance from p to bl , Rp(0) is
the distance from p to br, rq(0) is the distance from q to br, and Rq(0) is the distance from q to bl .

In carrying out the algorithm, we use a discrete set of X-ray data from both sources, determined by some
step size π

n or equivalently by the number of X-rays n. Most often, in our cases n = 314. The algorithm
requires first that one compute the base-points bl and br. In Lemma 3 of [3], Falconer derives a formula
which can be used to compute the base-points of a convex body using only the X-ray data from two sources.
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LEMMA. Let K be a convex body with X-ray functions Xp(φ) and Xq(ψ) from sources p and q, where
the line l between p and q cuts int K. We have:

lim
ε→0

(∫
π−ε

ε

Xq(ψ)

sin(ψ)
dψ−

∫
π−ε

ε

Xp(φ)

sin(φ)
dφ

)
=

2(Rp(0) ln(Rp(0))− rp(0) ln(rp(0))+ rq(0) ln(rq(0))−Rq(0) ln(Rq(0))).

Restricting to measurements in polar coordinates centered at p, we write m = Xp(0) = Rp(0)− rp(0) and
write B as the value of the integral. We then define

F(t) = t ln |t|− (t−m) ln |t−m|

and solve the non-linear system of equations

Rp(0)− rq(0) = q− p

F(Rp(0))−F(rq(0)) = 2B.

With Rp(0) and rq(0) known, the base-points can be determined. We describe the process of approximating
this integral in more detail in the next section.

Siefken and Spargo derive a formula for r′p(0) and suggest as an initial approximation a portion of the
line tangent to ∂K at the base-line which passes through bl . (In this paper, we also consider the cases in
which the initial approximation is either a portion of a non-tangent line or a section of the osculating circle
of the body at the baseline. See Sections 7.2 and 7.3 below.)

We call our initial approximation γp,1. Choosing some small angle φ1, we add Xp(α) to the tangent line
for each angle α in [0,φ1] for which we have data. We define Γp,1(α) := γp,1(α)+Xp(α). Next, using the
law of sines, we find the angle ψ1 at which a ray emanating from q meets the point Γp,1(φ1). We then change
our coordinate system (again using the law of sines) to polar coordinates with q as the origin, and we call
γq,1(ψ) the same curve as Γp,1(φ), with angles now measured clockwise from q. (In carrying out the actual
reconstruction, there is an issue that arises here: Since we have only a discrete set of X-ray data, we may
not have X-ray values at the specific angles we need here. To get around this issue, we have Mathematica
linearly interpolate Γp,1 before we define γq,1.)

We will similarly define Γq,1(β) := γq,1(β) +Xq(β) for all β in [0,ψ1] for which we have data. We use
the law of sines to find the angle φ2 at which a ray emanating from p meets Γq,1(ψ1), switch back to polar
coordinates with p as the origin, and say γp,2(φ) is the same curve as Γq,1(ψ) (the same problem comes up
again, so again we interpolate Γq,1 in Mathematica). Then proceeding as before, we add the X-ray data to
γp,2 for all angles in [0,φ2] (for which we have data) to come up wtih Γp,2. This process then continues. The
sequence of angles (φk) is increasing. Once φk surpasses the supporting angle, the algorithm has finished.
(In our reconstructions, this usually happens within a few iterations, where we call an iteration the process
of constructing γp,k+1 from γp,k.)
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Figure 4: How the Algorithm Works

3.2 Implementation

Using Mathematica, we were able to implement the algorithm and reconstruct bodies from the class of ro-
tated, translated ellipses. This choice was natural, since these are non-trivial bodies whose X-ray functions,
derivatives, curvature, and base-points (i.e. all pertinent information) we can compute explicitly. These
explicit computations provide us means of comparing our estimates to actual values. In the next section,
we provide formulas related to translated, rotated ellipses. We discuss implementation and reconstruction
in more detail below.

4 Ellipse Formulas

The equation for an ellipse is x2

a2 +
y2

b2 = 1. The equation for this same ellipse, now rotated θ radians and
vertically translated c ∈ R is

x2(b2 cos2(θ)+a2 sin2(θ))+ x(y− c)(2b2 cos(θ)sin(θ)−2a2 cos(θ)sin(θ))+

(y− c)2(b2 sin2(θ)+a2 cos2(θ)) = a2b2.

We obtained an expression for the X-ray function of an ellipse with these parameters by computing the
length of intersection of a ray emanating from a point p with the ellipse. The equation is:

Xp(α) = 2
√

2

√
−(a2b2(−a2−b2 + c2 + p2 +(c2− p2)cos(2α)+(a2−b2)cos(2(α−θ))+2cpsin(2α)))

(a2 +b2 +(−a2 +b2)cos(2(α−θ)))2

when the expression under the radical is ≥ 0. We use the same function to get X-ray data for q.
We also computed the derivative and curvature for these ellipses, though we will not include them.
Since we know the base-points of our ellipse and the location of our sources, we are able to compute

2(Rp(0) ln(Rp(0))− rp(0) ln(rp(0))+ rq(0) ln(rq(0))−Rq(0) ln(Rq(0))),

the exact value of Falconer’s integral, which we approximate in order to locate the base-points.
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Table 1: Ellipse specifications
Ellipse a b θ c p q

1 4 3 π/3 0 -5 6
2 4 3 7π/6 0 -5 6
3 4 3 0 -1 -5 6
4 4 3 π/3 -1 -5 6
5 4 3 π/3 0 5 6

5 Computing Base-Points

Recall Falconer’s integral for computing base-points:

lim
ε→0

(∫
π−ε

ε

Xq(ψ)

sin(ψ)
dψ−

∫
π−ε

ε

Xp(φ)

sin(φ)
dφ

)
.

We begin with discrete X-ray data measured from angles increasing with a step size of ∆x = π

n for some n
(most often 314, for us). We use this ∆x and n to approximate the integral via the trapezoidal rule. We find(∫

π−∆x

∆x

Xq(ψ)

sin(ψ)
dψ−

∫
π−∆x

∆x

Xp(φ)

sin(φ)
dφ

)
≈

∆x

(
n−1

∑
k=1

Xq(k∆x)
sin(k∆x)

− 1
2
(

Xq(∆x)
sin(∆x)

+
Xq((n−1)∆x)
sin((n−1)∆x)

)

)
−∆x

(
n−1

∑
k=1

Xp(k∆x)
sin(k∆x)

− 1
2
(

Xp(∆x)
sin(∆x)

+
Xp((n−1)∆x)
sin((n−1)∆x)

)

)
.

In general, the error is O(∆x). If ∂K is C2, then the error is O(∆x2). This expression, involving only our
discrete X-ray data, provides accurate calculations of the base-points, summarized in the following table:

Table 2: Error in Integral and Base-Point Computations, X-Ray data in steps of π

314

Ellipse Computed Value of Integral Actual Value of Integral Computed Base-Points Actual Base-Points
1 -2.65208 -2.65226 -3.17884, 3.17891 -3.17888, 3.17888
2 -3.2315 -3.2343 -3.65954, 3.66039 -3.65997, 3.65997
3 -3.38925 -3.38666 -3.77161, 3.77086 -3.77124, 3.77124
4 -1.44771 -1.448 -2.85254, 3.27807 -2.8526, 3.27802
5 -2.65208 -2.65226 -3.17916, 3.1786 -3.17888, 3.17888

6 Angle Approximations

For convenience, let Ω =
Rp(0)Rq(0)
rp(0)rq(0)

and Ω−1 =
rp(0)rq(0)
Rp(0)Rq(0)

. Note that Ω > 1.

The reconstruction algorithm generates a sequence of iterates that approximate the convex body K. At the
same time, however, the algorithm generates two sequences of angles. We begin with some small φ1, the
angle of inclination of the ray emanating from p that intersects some curve passing through bl , the left base-
point of our body K. This point of intersection is a point on our first iterate, namely γp,1(φ1).
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Another point on our first iterate is γp,1(φ1)+Xp(φ1) = Γp,1(φ1). The algorithm proceeds by finding ψ1, the
angle of inclination of the ray emanating from q that intersects Γp,1(φ1). We call this point of intersection
γq,1(ψ1). Then repeating the process, we need to find φ2, the angle of inclination of the ray emanating from
p which intersects Γq,1(ψ1) = γq,1(ψ1)+Xq(ψ1). Two sequences are generated this way, namely (φk)

∞
k=1

and (ψk)
∞
k=1. In general, we only have to worry about these angles until they grow larger than the supporting

angle, which normally takes only a few iterations. Having estimates for these angles is useful in computing
other error estimates related to the algorithm. This section describes the process by which we estimate these
angles.

Before deriving the estimates, we make a few notes:
1. Each ψk is a function of φk, and each φk+1 is a function of ψk.
2. It is clear that ψk(0) = 0 and φk(0) = 0 for any k.
3. When we refer to arbitrary φk or ψk or refer to the angles as functions, we drop the subscript k.
4. From Siefken and Spargo[8], we have that ψ′(0) = Rp(0)

rq(0)
and φ′(0) = Rq(0)

rp(0)
.

Consider the Taylor expansion of ψ(φ) centered at φ=0, an accurate estimate for small angles.

ψ(φ) = ψ(0)+ψ
′(0)φ+O(φ2) = 0+

Rp(0)
rq(0)

φ+O(φ2).

So ψk(φk)≈
Rp(0)
rq(0)

φk.

Similarly, considering the Taylor expansion of φ(ψ) centered at 0 gives:

φ(ψ) = φ(0)+φ
′(0)ψ+O(ψ2) = 0+

Rq(0)
rp(0)

ψ+O(ψ2).

So φk+1(ψk)≈ Rq(0)
rp(0) ψk ≈

Rp(0)Rq(0)
rp(0)rq(0)

φk = Ωφk. Iterating this process, we find:

φk ≈ Ω
k−1

φ1 (1)

and

ψk ≈
(

Rp(0)
rq(0)

)
Ω

k−1
φ1. (2)
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Figure 5: The sequence of angles being generated by the algorithm

7 Choices for Initial Approximation

In this section we describe three choices for the initial approximation γp,1.

7.1 Tangent Line

In [8], Siefken and Spargo suggest as their initial approximation a line tangent to ∂K which passes through
bl . To this end, they find an expression for r′p(0), the polar derivative of the body at bl . The result is

r′p(0) =
−rp(0)(Rp(0)X ′b(0))

Rp(0)Rq(0)− rp(0)rq(0)
. (3)

We use this polar derivative ( dr
dθ

) to find the slope of the tangent line ( dy
dx ) to the curve rp(θ). We write

rp(θ) = r. Since y = r sin(θ) and x = r cos(θ), we get

dy
dθ

=
dr
dθ

sin(θ)+ r cos(θ)

and
dx
dθ

=
dr
dθ

cos(θ)− r sin(θ),

so that
dy
dx

=
dy
dθ

dx
dθ

=
dr
dθ

sinθ+ r cos(θ)
dr
dθ

cos(θ)− r sin(θ)
.

Evaluating at θ = 0, we get
dy
dx

=
rp(0)
r′p(0)

. (4)

We can now write an expression for the tangent line in polar coordinates centered at p. Let f (φ) denote the
tangent line. Take α = arctan( rp(0)

r′p(0)
) and consider the triangle4pblz, where z is the point of intersection of

the tangent line and the ray emanating from p at angle φ with the base-line l. The distance from p to z is f (φ).

89



The law of sines gives
rp(0)

sin(α−φ)
=

f (φ)
sin(α)

,

so that

f (φ) =
rp(0)sin(α)
sin(α−φ)

.

We now choose a small angle φ1 and call our initial approximation γp,1 the section of f (φ) where φ is be-
tween 0 and φ1.

Table 3: Error in Tangent Line Computations, X-Ray data in steps of π

314

Ellipse Computed slope, left tangent Actual slope, left tangent Computed slope, right Actual slope, right
1 4.70301 4.70128 4.7027 4.70128
2 3.54858 3.54658 3.54823 3.54658
3 2.12136 2.12132 -2.12118 -2.12132
4 2.25224 2.25199 -53.3953 -53.6598
5 4.70161 4.70128 4.69815 4.70128

7.2 Arbitrary Line Through Base-Point

It is possible to use an arbitrary line passing through bl and carry out the reconstruction algorithm. While
the tangent line is a better initial approximation, using a non-tangent line can help us understand how the
algorithm works in general, similar to the idea of using noisy data.

The only difference in deriving the equation for this line in polar coordinates centered at p is that instead of
letting α = arctan( rp(0)

r′p(0)
), we simply let α = arctan(m), where m is the slope of the line we want to use. If

g(φ) is the equation for our arbitrary line, we find

g(φ) =
rp(0)sin(α)
sin(α−φ)

.

We then choose our φ1 and let γp,1 be the section of g(φ) where φ is between 0 and φ1.

7.3 Osculating Circle at Base-Point

Definition 7.1 The curvature operator,denoted K f, characterizes the direction of concavity and is defined
as

K f (φ) = f (φ)2 +2( f ′(φ))2− f (φ) f ′′(φ)

when f is C2 at the angle φ. The curvature operator is positive (negative) when the graph of f at ( f (φ),φ) is
concave toward (away from) the source.
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Definition 7.2 The signed curvature of a function f, denoted κ f , is defined as

κ f (φ) =
f (φ)2 +2( f ′(φ))2− f (φ) f ′′(φ)

( f (φ)2 +( f ′(φ))2)3/2 ,

when f is C2 at the angle φ. Therefore, K f (φ) = κ f (φ) · ( f (φ)2 +( f ′(φ))2)3/2. The curvature of a function is
the absolute value of its signed curvature.

Definition 7.3 The osculating circle of ∂K at bl is the circle that has the same tangent, as well as the same

curvature, as ∂K at bl . The radius of the osculating circle is given by
1
|κl|

, where |κl| is the curvature of ∂K

at bl .

One can choose a section of the osculating circle of ∂K at bl as an initial approximation for γp,1. In order to
construct the osculating circle, we need to compute κl . Using the formula for the curvature operator of the
sum of two functions given in Lemma 4.1 of [1], and recalling that Xp(φ) = Rp(φ)− rp(φ), we have that

K Xp(0) =
Xp(0)
Rp(0)

K Rp(0)−
Xp(0)
rp(0)

K rp(0)+2rp(0)Rp(0)
(

R′p(0)
Rp(0)

−
r′p(0)
rp(0)

)2

.

Let η and ω be the angles of inclination of the lines tangent to ∂K at bl and br respectively (measured from
the base-line l). Simple trigonometry then gives

R′p(0)
Rp(0)

−
r′p(0)
rp(0)

= cotω− cotη =
sin(η−ω)

sinηsinω
.

By definition,

K Rp(0) := κr
(
Rp(0)2 +R′p(0)

2
)3/2

= Rp(0)3κr

(
1+
(

R′p(0)
Rp(0)

)2
)3/2

=
Rp(0)3

|sin3
ω|

κr.

Similarly,

K rp(0) := κl
(
rp(0)2 + r′p(0)

2
)3/2

=
rp(0)3

|sin3
η|

κl .

Substituting this into the above equation and rearranging gives

Rp(0)2

|sin3
ω|

κr−
rp(0)2

|sin3
η|

κl =
K Xp(0)
Xp(0)

−2
rp(0)Rp(0)

Xp(0)
sin2(η−ω)

sin2
ηsin2

ω
. (5)

A similar derivation from the source q gives

rq(0)2

|sin3
ω|

κr−
Rq(0)2

|sin3
η|

κl =
K Xq(0)
Xq(0)

−2
rq(0)Rq(0)

Xq(0)
sin2(η−ω)

sin2
ηsin2

ω
. (6)

Note that

K Xp(0)
Xp(0)

= Xp(0)+2
X ′p(0)

2

Xp(0)
−X ′′p (0),
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and that we have K Xq(0)
Xq(0)

similarly.

Note the determinant of the coefficient matrix of the linear system (5) and (6) above is non-zero. We can
then use Cramer’s Rule to solve the system. Solving this system requires that we compute values of X ′p(0),
X ′q(0), X ′′p (0), and X ′′q (0) from our discrete X-ray data. To this end, we use finite difference approximations.
These computations provide accurate approximations for κl and κr without depending on K being convex.
In fact, these computations determine the direction of the concavity of ∂K at the base-points. Results are
summarized in the Table 4.

Table 4: Error in Signed Curvature Computations, X-Ray data in steps of π

314

Ellipse Computed κl Actual κl Computed κr Actual κr

1 -0.208778 -0.208753 0.208853 0.208753
2 -0.303628 -0.303552 0.303545 0.303552
3 -0.392444 -0.392483 0.392496 0.392483
4 -0.18996 -0.18994 0.248696 0.248674
5 -0.20874 -0.208753 0.208853 0.208753

After computing the curvature at bl , we can construct the osculating circle of ∂K at bl . The equation of a
circle r(φ) with center (r0,α) and radius R is given by

r(φ)2−2r(φ)r0 cos(φ−α)+ r2
0 = R2.

The center of the osculating circle is found by adding a vector of magnitude
1
|κl|

in the direction normal to

∂K at bl . Call this point (c0,β). Thus, the osculating circle of ∂K at bl (in polar coordinates centered at p) is
given by

r(φ)2−2r(φ)c0 cos(φ−β)+ c2
0 =

(
1
|κl|

)2

.

In some reconstructions, we choose a small angle φ1 and let γp,1 be the section of the osculating circle
between 0 and φ1.

8 Local Error Estimates

In this section we derive error estimates for different initial approximations to the curve.

8.1 Tangent Line as Initial Approximation

Recall that Ω−1 =
rp(0)rq(0)
Rp(0)Rq(0)

. Consider the case when the initial approximation is a line through bl tangent
to ∂K at bl . Theorem 4.1 of Siefken and Spargo[8] gives an estimate for the local error on the ray emanating
from source p at angle φk is given as:

Ep,k(φk) = rp(φk)− γp,k(φk) =−Ω
−2(k−1) κl(rp(0)2 + r′p(0)

2)3/2

rp(0)
φ

2
k +O(φ3

k)
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=−Ω
−2(k−1) rp(0)2κl

|sin3
η|

φ
2
k +O(φ3

k),

where κl is the signed curvature of ∂K at bl and the second form, which is more geometrically meaningful,
comes from Section 7.3. Substituting in our angle approximation (1) for φk in the equation, one sees the
term Ω−2(k−1) will cancel out, and we are left with

Ep,k(φk)≈
κl(rp(0)2 + r′p(0)

2)3/2

rp(0)
φ

2
1 +O(φ3

k) =
rp(0)2κl

|sin3
η|

φ
2
1 +O(φ3

1).

8.2 Arbitrary Line Through Base-Point as Initial Approximation

Consider the case when the initial approximation is an arbitrary line passing through bl . As usual, we call
our approximations γp,k(φ). Let Ep,k(φ) = γp,k(φ)− rp(φ) be the local error at angle φ in the kth iteration.
Considering Taylor expansions of both γp,k(φ) and rp(φ) centered at 0, we get:

Ep,k(φ) = (γp,k(0)+ γ
′
p,k(0)φ+O(φ2))− (rp(0)+ r′p(0)φ+O(φ2))

= (γ′p,k(0)− r′p(0))φ+O(φ2),

since γp,k(0) = rp(0). Here we are tacitly assuming ∂K is C2 near base-points. (In general, we get the error
is O(φ).)

The term we need to investigate, then, is γ′p,k(0)− r′p(0). In [8], Siefken and Spargo derive an expres-
sion for r′p(0), so that we are left to find γ′p,k(0).

The law of sines with the triangle4pqx, where x = (Γp,k(φ),φ) = (γq,k(ψ),ψ), gives

γq,k(ψ)

sin(φ)
=

Γp,k(φ)

sin(ψ)
.

Following a very similar derivation from [8], we cross multiply and differentiate with respect to φ, consid-
ering ψ as a function of φ. We find

ψ
′(φ) =

Γ′p,k(φ)sin(φ)+Γp,k(φ)cos(φ)

γ′q,k(ψ)sin(ψ)+ γq,k(ψ)cos(ψ)
,

which, after substituting φ = 0 (and so ψ = 0), gives ψ′(0) = Γp,k(0)
γq,k(0)

=
Rp(0)
rq(0)

.

Following still [8] we now consider the law of cosines on the same triangle to find

γq,k(ψ)
2 = (q− p)2 +Γp,k(φ)

2−2(q− p)Γp,k(φ)cos(φ).

Differentiating with respect to φ, with ψ a function of φ, and solving for γ′q,k(ψ), we find that

γ
′
q,k(ψ) =

Γp,k(φ)Γ
′
p,k(φ)− (q− p)Γ′p,k(φ)cos(φ)+(q− p)Γp,k(φ)sin(φ)

γq,k(ψ)ψ′(φ)
.
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We let φ (and therefore ψ) = 0 and substitute in our ψ′(0), giving

γ′q,k(0)

rq(0)
=
−Γ′p,k(0)

Rp(0)
. (7)

The same computations using the triangle4pqy where y = (γp,k(φ),φ) = (Γq,k−1(ψ),ψ) give

φ
′(0) =

Rq(0)
rp(0)

and
γ′p,k(0)

rp(0)
=
−Γq,k−1(0)

Rq(0)
. (8)

We now seek to find an expression for γ′p,k(0) in terms of γ′p,1(0). Recall Ω−1 =
rp(0)rq(0)
Rp(0)Rq(0)

. We have,

γ
′
p,k(0) =

−rp(0)
Rq(0)

(Γ′q,k−1(0)) =
−rp(0)
Rq(0)

(γ′q,k−1(0)+X ′q(0))

=
−rp(0)
Rq(0)

(
−rq(0)
Rp(0)

Γ
′
p,k−1(0)+X ′q(0)

)
from (7)

= Ω
−1 (

γ
′
p,k−1(0)+X ′p(0)

)
−

rp(0)
Rq(0)

X ′q(0)

= Ω
−1

γ
′
p,k−1(0)+Ω

−1 (R′p(0)− r′p(0)
)
−

rp(0)
Rq(0)

(
R′q(0)− r′q(0)

)
.

From [8], we have R′q(0) =
−Rq(0)
rp(0)

r′p(0) and r′q(0) =
−rq(0)
Rp(0)

R′p(0). Substituting these equations into the last
term, we get

γ
′
p,k(0) = Ω

−1
γ
′
p,k−1(0)+Ω

−1(R′p(0)− r′p(0))+ r′p(0)−Ω
−1R′p(0)

= Ω
−1(γ′p,k−1(0)− r′p(0))+ r′p(0).

We can now begin to iterate this process of substitution to work towards an expression for γ′p,k(0) in terms
of γ′p,1(0). We will write γ′p,k−1(0) in terms of γ′p,k−2(0):

γ
′
p,k(0) = Ω

−1 (
Ω
−1(γ′p,k−2(0)− r′p(0))+ r′p(0)− r′p(0)

)
+ r′p(0)

= Ω
−2 (

γ
′
p,k−2(0)− r′p(0)

)
+ r′p(0).

Following this process, we see

γ
′
p,k(0) = Ω

−(k−1)(γ′p,1(0)− r′p(0))+ r′p(0),

so that
γ
′
p,k(0)− r′p(0) = Ω

−(k−1) (
γ
′
p,1(0)− r′p(0)

)
.
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Inserting this equation into our expression for Ep,k(φ) and using our angle approximation from (1), we get

Ep,k(φk) = (Ω−(k−1))(γ′p,1(0)− r′p(0)))φk

≈ Ω
−(k−1)(γ′p,1(0)− r′p(0))Ω

k−1
φ1

= (γ′p,1(0)− r′p(0))φ1 = Ep,1(φ1).

One note worth making is that our angle approximation works better for smaller angles. We see, then, that
the local error measured at small angles stays approximately equal to the initial local error for the case of an
arbitrary line for an initial approximation.

An alternate, geometrically informative expression for Ep,1(φ) is

rp(0)
sin(η−α)

sinηsinα
φ,

where η is the angle of inclination of the line tangent to ∂K at bl and α is the angle of inclination of γp,1,
both measured counterclockwise from l. We arrive at this expression using a derivation similar to that in
Section 7.3.

Figure 6: Triangles used in derivation of error estimate for non-tangent initial approximation

8.3 Osculating Circle at Base-Point as Initial Approximation

Using an osculating circle as an initial approximation gives us an initial local error Ep,1(φ1) on the order of
(φ1)

3 when ∂K is C4. By considering Taylor expansions about 0, it is clear that

Ep,1(φ1) = rp(φ1)− γp,1(φ1)

= (rp(0)+ r′p(0)φ1 + r′′p(0)φ
2
1 + r′′′p (0)φ

3
1)− (γp,1(0)+ γ

′
p,1(0)φ1 + γ

′′
p,1(0)φ

2
1 + γ

′′′
p,1(0)φ

3
1)+O(φ4

1)

= (r′′′p (0)− γ
′′′
p,1(0))φ

3
1 +O(φ4

1),

since the function value, first derivative, and second derivative of rp and γp,1 are equal at 0.

We didn’t carry out detailed computations for the osculating circle, because computations of the third deriva-
tives of rp would be extremely messy. Our main interest was to see how much better the reconstructions went
with a better initial approximation; we found there not to be a significant difference between the tangent line
case and the osculating circle case. (See Section 9 below.)
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9 Reconstructions

We were able to implement the algorithm for translated, rotated ellipses using Mathematica. For all of the
reconstructions here, we used a step size of π

314 for our X-ray data and an initial angle φ1 =
10π

314 (i.e. we used
11 X-ray data points in the initial approximation, γp,1). Since the angles φk increase, and the algorithm stops
once φk surpasses the supporting angle, we often see only a few iterates (generated from p) of the algorithm
before it finishes. We show only iterates generated from p, and in each reconstruction image, we show in
the background the ellipse being reconstructed.

9.1 Tangent Line as Initial Approximation

Using the segment of the tangent line of ∂K at bl where φ ∈ [0,φ1] as our initial approximation, γp,1, we
reconstructed the upper half of several different translated, rotated ellipses. (Reconstructing the lower half
of these ellipses should follow the same algorithm.) We saw that after a few iterations of the algorithm, our
reconstructions closely approximate ∂K. Below we show the first few iterates (generated from p) of our
reconstructions of ellipses #2 and #4, specified in Table 1.
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Figure 7: Reconstructing Ellipse #2 with Tangent Line Approximation
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Figure 8: Reconstructing Ellipse #4 with Tangent Line Approximation

9.2 Arbitrary Line Through Base-Point as Initial Approximation

We also reconstructed several rotated, translated ellipses using an arbitrary line through bl as γp,1. We varied
the slope of this arbitrary line and found that even for (nonzero) slopes that are far from the slope of the
tangent line of ∂K at bl , the iterates of the algorithm appear to converge towards ∂K within a few iterations.
Following are the first three iterates (generated from p) of our reconstruction of ellipse #4, where γp,1 is the
line through bl with slope 1.
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Figure 9: Reconstructing Ellipse #4 with Non-Tangent Line Approximation

9.3 Osculating Circle at Base-Point as Initial Approximation

Additionally, we reconstructed several rotated, translated ellipses using the portion of the osculating circle
of ∂K at bl where φ∈ [0,φ1] as γp,1. We saw that after a few iterations of the algorithm, these reconstructions
closely approximate ∂K. However, we did not see any significant difference between using a portion of the
osculating circle (compared to a portion of the tangent line) as our initial approximation. Below are the first
four iterates (generated from p) of our reconstruction of ellipse #4.
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Figure 10: Reconstructing Ellipse #4 with Osculating Circle Approximation

10 Convergence on a Fixed Neighborhood

10.1 µ-error

Here we discuss what is called the µ-error, which seems to provide the best route towards proving conver-
gence of the algorithm.

Definition 10.1 The characteristic function of a set S, χS, is the function defined to be 1 on points in S and
0 otherwise.

Definition 10.2 The µ-measure of some area B is defined as

µ(B) =
∫ ∫

R2

χB(x,y)
|y|

dA.
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The µ-measure can be shown to equal in polar form∫ 2π

0

∫
∞

0

χB(r,θ)
|sin(θ)|

drdθ.

Definition 10.3 Let K be a convex body between two sources p and q, where the line segment l between p
and q intersects int K. Let f be a Lipschitz function approximating ∂K with the following properties:

1. f is defined on [0, α] for some α, with angles measured from l
2. ( f (0),0) = bl .

We define the µ-error, Eµ( f ) to be µ(K f ), the µ-measure of the body formed by ∂K, the graph of f, and the
ray lα emanating from p with angle of inclination α.

Note:
1. Here we assume that the graph of f and ∂K do not cross on [0, α].

2.
∫

∞

0

χK f (r,θ)
|sin(θ)|

dr =
|rp(θ)− f (θ)|

sin(θ)
, if f approximates the near-side of ∂K w.r.t. p.

3. We can define µ-error similarly from q by using rays emanating from q.

Figure 11: Picturing the body K f . We say Eµ( f ) = µ(K f ).

The µ-error has some nice properties. For example, if γ and Γ are our first near- and far-side approximations
(from p), defined up to the angle φ1, we have the nice property that Eµ(γ) = Eµ(Γ). Siefken and Spargo [8]
show this explicitly. Since our notation is slightly different, we provide the computation here:

Lemma 10.4 Eµ(γ) = Eµ(Γ)

Proof:

Eµ(γ) = µ(Kγ) =
∫ 2π

0

∫
∞

0

χKγ
(r,θ)

|sin(θ)|
drdθ =

∫
φ1

0

∫
∞

0

χKγ
(r,θ)

sin(θ)
drdθ

=
∫

φ1

0

rp(θ)− γ(θ)

sin(θ)
dθ =

∫
φ1

0

Xp(θ)+ rp(θ)−Xp(θ)− γ(θ)

sin(θ)
dθ

=
∫

φ1

0

(Xp(θ)+ rp(θ))− (Xp(θ)+ γ(θ))

sin(θ)
dθ =

∫
φ1

0

Rp(θ)−Γp(θ)

sin(θ)
dθ

=
∫

φ1

0

∫
∞

0

χKΓ
(r,θ)

sin(θ)
drdθ =

∫ 2π

0

∫
∞

0

χKΓ
(r,θ)

|sin(θ)|
drdθ = µ(KΓ) = Eµ(Γ).

√
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Another nice property of the µ-error is that it decreases as we iterate the algorithm. See Figure 13 in the
Section 10.2 for a geometric presentation of this fact. Our angle approximations imply that the angles in-
crease in general, but we do not have a positive lower bound for the rate of increase. We address this issue
as well when discussing local convergence.

Our eventual goal is to prove that given a convex body K and an ε > 0, we can generate via the algo-
rithm a body K′ within ε of K in terms of µ-measure. First, we hope to show local convergence on a fixed
neighborhood N of bl , i.e. given ε > 0 we can generate via the algorithm an approximation within ε of
δK∩N in terms of µ-measure.

10.2 Bounds on Eµ(γp,n)

Take γp,n(φ), our nth approximation to ∂K. We have that γp,n lies to the left of K. Let f (φ) be a Lipschitz
function whose graph passes through bl such that for some small angle α, we have φ ∈ (0,α]⇒

γp,n(φ)< rp(φ)< f (φ). (9)

By construction, all three functions have the value rp(0) at φ = 0.

Pick φ ∈ (0,α). Consider the body T with vertices bl , (γp,n(φ),φ), and ( f (φ),φ). You can equivalently
define T as the body consisting of sides

(1) γp,n(φ) for φ ∈ [0,φ],
(2) f (φ) for φ ∈ [0,φ], and
(3) the line segment connecting (γp,n(φ),φ) and ( f (φ),φ).

The triangle of the right-hand side of Figure 14 gives an example of such a body, with f a line and γp,1
as the approximation in question.

Lemma 10.5 Eµ(γp,n)< µ(T )

Proof:
Beginning as in Lemma 10.4, we get

Eµ(γp,n) =
∫

φ

0

rp(θ)− γp,n(θ)

sin(θ)
dθ <

∫
φ

0

f (θ)− γp,n(θ)

sin(θ)
dθ, from (9)

=
∫

φ

0

f (θ)− rp(θ)+ rp(θ)− γp,n(θ)

sin(θ)
dθ

=
∫

φ

0

f (θ)− rp(θ)

sin(θ)
dθ+

∫
φ

0

rp(θ)− γp,n(θ)

sin(θ)
dθ

=
∫

φ

0

∫
∞

0

χK f (r,θ)
sin(θ)

drdθ+
∫

φ

0

∫
∞

0

χKγp,n
(r,θ)

sin(θ)
drdθ, from the definition of µ-error

= Eµ( f )+Eµ(γp,n = µ(K f )+µ(Kγp,n) = µ(K f ∪Kγp,n), since K f ∩Kγp,n = /0 by construction

= µ(T ), since T = K f ∪Kγp,n(See Figure 12).
√
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Figure 12: T = K f
⋃

Kγp,1 . In the lemma, we consider a more general case.

Denote the map described in our algorithm by σ. For example, we have that σ(γp, j) = γp, j+1. Denote by
τ the conversion from polar coordinates centered at p to polar coordinates centered at q. It is clear that τ−1

converts from q-coordinates to p-coordinates. The map σ can be thought of essentially as the composition
of the maps τ−1, sq, τ, and sp, where sp(γp, j) = Γp, j and sq(γq, j) = Γq, j. (In easier terms, sp adds X-ray data
from p, and sq adds X-ray data from q.) More accurately σ( f ) = τ−1(sq(τ(sp( f )))) for a function f . We
can also think of σ acting on individual points.

Given some ε > 0, suppose we take a body T1 constructed as above s.t. µ(T1) < ε. We can then apply
sp to T1 (see Figure 13). Analogous to the proof of Lemma 10.4 is the proof that µ(T1) = µ(sp(T1)). When
we take the ray from q that intersects the vertex of sp(T1) inside K, we generate a new body T2 and de-
crease the µ-measure. Again analogously we have that µ(T2) = µ(sq(T2)). We define T3 similar to how
we defined T2, i.e. we take the ray connecting p and the vertex of sq(T2) inside of K. We see then that
µ(T3)< µ(sq(T2)< µ(T1). If we continue this process, we see the following:

Lemma 10.6 In the construction above, µ(T2n−1)< µ(T1) for all T2n−1 we construct.

Note 1: Notice that the angle of the ray connecting p and vertex of sq(T2k) will be less than the angle
connecting p and γp,k for all k > 1. This is worth keeping in mind and will be discussed later.

Note 2: If the angle between p and the vertex of sq(T2k) inside K is greater than the support angle of our
body K for some k, the process stops. In many cases, this happens quickly. In general, however, we cannot
assume this happens.

Note 3: As we generate a sequence of bodies, ∂K stays between our approximates and the curves gen-
erated by our initial line f (φ). This is fairly clear, since to get from T1 to sp(T1) we add X-ray data at each
angle, which preserves the inequalities in (9), since Rp(φ) = rp(φ)+Xp(φ). We find T2 by measuring sp(T1)
from q up to a smaller angle; we do nothing to change the orientation of ∂K or the two sides of our body.
As we repeat this process, ∂K should stay between the two sides of the bodies generated.
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Figure 13: Geometric presentation of decreasing µ-error

10.3 Constructing T1 with µ(T1)< ε

The bounds established above don’t help us if we can’t come up with some body T1 with µ(T1)< ε. Fortu-
nately, we can find such a body.

In [5], Fithian gives a formula for the µ-measure of a triangle. Specifically,

µ(T ) = l0 ln(1+
l2
l1
) (10)

where T is the triangle in Figure 14. Consider the triangle T1 in the same figure, as described just before
Lemma 10.5. Using Fithian’s equation, we get

µ(T1) = rp(0) ln
(

1+
f (φ)− γp,1(φ)

γp,1(φ)

)
= rp(0) ln

(
f (φ)

γp,1(φ)

)
.

If we want µ(T1)< ε, then we need
f (φ)

γp,1(φ)
< exp

(
ε

rp(0)

)
.

Since ε > 0, we have exp( ε

rp(0)
)− 1 := ε∗ > 0. On the other hand, since f (0) = γp,1(0) = rp(0), we have

that lim
φ→0

f (φ)
γp,1(φ)

= 1.

This says that for any ε > 0, we have δ > 0 s.t. φ < δ⇒ | f (φ)
γp,1(φ)

−1|< ε.
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In particular, for ε∗ we have δ∗ s.t. for φ < δ∗

∣∣ f (φ)
γp,1(φ)

−1
∣∣< ε

∗ , so that

f (φ)
γp,1(φ)

−1 < ε
∗ = exp(

ε

rp(0)
)−1 , since by construction

f (φ)
γp,1(φ)

≥ 1 ∀ φ,

which gives
f (φ)

γp,1(φ)
< exp

(
ε

rp(0)

)
as needed.

Figure 14: Fithian’s Equation: µ(T) = l0 ln(1+ l2
l1
)

10.4 Falconer’s Lemma and Convergence on a Fixed Neighborhood

In [3], Falconer proves a lemma which contains a construction and a map closely related to ours. As such, it
contains information useful to us as we seek to prove convergence. He defines a map Ψ which is the inverse
of our map σ defined above. Since we use ψ to refer to angles measured from q, we will avoid confusion
and call his map σ−1. Note that both σ and σ−1 are continuous and 1-1.
Note: If (x1,θ1) = σ(x0,θ0), we say θ1 = h(θ0).

Falconer finds a neighborhood N of bl with three useful properties:
1. σ−1(N)⊂ N.

2. lim
k→∞

σ
−k(N ∩ l0) ⊂ N ∩ l, where l0 is any line intersecting N that is parallel to l. Note that this is

a non-trivial limit; namely, it is a line segment in N∩ l, rather than a point or /0.

We also work to find a neighborhood N′ with a third property:

Since Ω > 1, ∃ c s.t. Ω− c > 1. Recall that in Section 6 we find that φ2 ≈ Ωφ1, where these angles re-
fer to the angles generated by our algorithm. This can equivalently be written h(θ)≈ Ωθ.

We use Taylor expansions of h(θ) about 0 to derive this expression, thus we see that lim
θ→0

h(θ)
θ

= Ω.

This tells us that ∃ δ s.t. θ < δ⇒ h(θ)
θ

> Ω− c. Thus if λ := Ω− c and θ < δ, we get h(θ)> λθ and λ > 1.
This is our third property.
We then take our neighborhood N′ := N∩{(x,θ) : 0 < θ < δ}.

Take a triangle T constructed as above, s.t. γp,1 comprises a side of T , T ⊂ N′ and µ(T ) < ε. Clearly
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T contains some line segment l0. Since N′ ⊂ N, Property 1. gives us that lim
k→∞

σ
−k(N′ ∩ l0) ⊂ N′ ∩ l, a

portion of a line, and so we have that ∃ m > 0 s.t. σ−(2m−1)(N′) does not contain all of T . (We write
(2m− 1) so as to match notation used in a construction above.) Then consider T ∩σ−(2m−1)(N′). Since
T ∩σ−(2m−1)(N′)⊂ T , we get that µ(T ∩σ−(2m−1)(N′))< ε.

Calling on Lemma 10.5, we see that Eµ(γp,1)< ε for some range of angles. Then if we take
σ2m−1(T ∩σ−(2m−1)(N′)), we only reduce the µ-error (by the same arguments used to show Lemma 10.6),
and we land back in N′. Then we end up with an approximation γp,m to ∂K ∩N′ s.t. Eµ(γp,m)< ε for some
range of angles.

Then we have a fixed neighborhood N′ s.t. given ε > 0, we can approximate ∂K ∩N′ within ε in terms
of µ-measure.

(Note: The statement that h(θ) > λθ for some λ > 1 addresses the requirement mentioned in Note 2. fol-
lowing Lemma 10.6. It also lets us deal with the issue presented in Note 1. following the same lemma. In
particular, we know the angles we pick are those which hit the vertex of the body contained on the curve
inside K, and that this curve lies in N′. Then we know that the upper limit of the range of angles for which
our approximation for γp,k is valid does not collapse to 0.)
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