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ABSTRACT. The Towers of Hanoi puzzle can be used to label a family of graphs in a way that
provides easy (finite-state) coding properties. This puzzle can be modified to have any odd number
of towers (greater than three) and the rules adjusted so thatsimilar easy labelings can be created
on the corresponding odd-dimensional graphs. However, thepuzzle cannot be directly extended
to an even number of towers and retain its essential structure. Are there other puzzles that exist
on even-dimensional graphs in this family? A puzzle for the 2-dimensional case is known, and is
even sold commercially as the Spin-Out Puzzle. We give an extension of this puzzle for graphs
of any dimension 2m for m≥ 1. We also explore combinations of this extended Spin-Out Puzzle
with the Towers of Hanoi puzzles to create puzzles that correspond to the Sierpinksi graphs for any
dimension. In addition, we present two new labelings which have simple constructions and some
easy coding properties.

1. INTRODUCTION

The Towers of Hanoi puzzle is an interesting and often-studied puzzle that also has curious
applications to coding theory. In particular, it can be usedto label a family of graphs in a way that
provides easy (finite-state) coding properties[10]. In Section 2, we give background information
on this family, called Sierpinski graphs or iterated complete graphs, as well as on codes and labels.
It has also been proven in previous work (see [16],[14]) thatthe Towers of Hanoi puzzle can
be modified to have any odd number of towers (greater than three) and the rules adjusted so that
similar easy labelings can be created on the corresponding odd-dimensional graphs. We summarize
these results in Section 3.

However, the puzzle cannot be directly extended to an even number of towers and retain its
essential structure. Are there other puzzles that exist on these associated even-dimensional graphs?
A puzzle for the 2-dimensional case is known, and is even soldcommercially as the Spin-Out
Puzzle, which we explore in Section 4. In Section 5, we give anextension of this puzzle to the
4-dimensional case based on work by Weaver[28], and also extend this to a puzzle for graphs
of any dimension 2m for m≥ 1 in Section 6. We then give the recursive labels of the graphs
corresponding to these puzzles, and show that there are finite-state machines that can recognize
codewords as well as error-correct words. In Section 7, we explore combinations of the extended
Spin-Out Puzzle with the Towers of Hanoi puzzles to create new puzzles that correspond to the
iterated complete graphs for all dimensions, including theremaining even dimensions. These are
created by writing any dimension asq ·2m for q odd; the puzzle will haveq towers but also pieces
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2 Skubak, Stevenson

that have 2m orientations on each tower. The rules of the puzzle are essentially a combination of
the rules of both puzzles. As desired, they reduce to the rules for the known puzzles when the
dimension is odd or a power of two.

Our search for other labelings produced two, the Corner-Distance and Subgraph labelings, which
have intuitive constructions and several desirable characteristics. We stopped short of considering
puzzles for them. Section 8 covers the labelings and some basic results.
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 3

2. GRAPHS, LABELS, AND CODES

In this section we give some background on the specific graphswe will be working with, as
well as the basic definitions for codes on graphs. Together this information forms the basis for our
investigations.

2.1. Iterated Complete Graphs.

Definition 2.1. A (simple) graph G = (V,E) consists of a finite set V(G) (called vertices) and a
set E(G) (callededges). Elements of E are unordered pairs of elements of V . Two vertices v1 and
v2 areadjacent (have an edge between them) if(v1,v2) ∈ E. The adjective “simple” indicates that
any two vertices have at most one edge between them, and that no vertex is adjacent to itself.

Definition 2.2. Thedegree of a vertex v is the number of vertices which are adjacent to v.

Definition 2.3. Thecomplete graph on d vertices, denoted Kd, is the graph such that all the ver-
tices are pairwise adjacent. That is,|V(Kd)|=d and E(Kd)= {unordered pairs(a,b) : a,b∈V(Kd)}.

Figure 1 shows some complete graphs.

FIGURE 1. The complete graphsK3, K5, andK8.

Definition 2.4. An iterated complete graph, also known as aSierpinski graph[15], on d vertices
with n iterations, denoted Knd , can be defined recursively. K1

d is the complete graph on d vertices.
Kn

d is composed of d copies of Kn−1
d and edges such that exactly one edge connects each Kn−1

d
subgraph to every other Kn−1

d subgraph and exactly one vertex in each of the Kn−1
d subgraphs has

degree d−1.

We say that a graphKn
d hasdimensiond.

Definition 2.5. A subgraph M of a graph G consists of a subset V(M) ⊂V(G) together with the
associated edges.

In particular, thed copies ofKn−1
d from whichKn

d is constructed are all subgraphs ofKd
n .

Iterated complete graphs are easier to explain using examples. The graphKn
d can simply be

thought of asd copies ofKn−1
d connected in a nice way, or alternatively as the graphKn−1

d with
each vertex replaced by a copy ofKd. Figure 2 shows the graphsK1

6, K2
6 andK3

6, illustrating how
each graph is constructed from the graph of the previous dimension.
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4 Skubak, Stevenson

FIGURE 2. The iterated complete graphsK1
6, K2

6 andK3
6.

Definition 2.6. A corner vertex, or simplycorner, of the graph Knd is a vertex with degree d−1.
A non-corner vertex is simply a vertex that is not a corner. All non-corner vertices of iterated
complete graphs have degree d.

2.2. Codes on Graphs: Perfect One-Error-Correcting Codes.

Definition 2.7. Let G be a graph and let V be the set of vertices of G. Then acode on G is a subset
C⊂V. Acodevertex is a vertex c∈C. Anoncodevertex is a vertex v/∈C.

Definition 2.8. A perfect one-error-correcting code (or P1ECC) on a graph G is a code such that:

(1) No two codevertices are adjacent.
(2) Every noncodevertex is adjacent to exactly one codevertex.

Examples of P1ECC’s can be found in the left-hand graphs in Figures 3, 4, and 5.

2.3. Labelings and Codewords.

Definition 2.9. A labeling on Kn
d is a method of assigning strings to the vertices of Kn

d such that
this method gives a bijection between vertices and strings.The string assigned to a vertex will be
called thelabel of that vertex.

Definition 2.10. In a labeling of G, acodeword is the label of a codevertex. Anoncodeword is the
label of a noncodevertex.

We say thatLn
d is the labeling ofKn

d . Which labeling we mean will be clear from the context.

Definition 2.11. Let G be a graph. A labeling of G has theGray code property if every pair of
adjacent vertices has labels which differ in exactly one position.

2.4. The G-U Construction. Cull and Nelson[10] proved that determining whether a givengraph
has a P1ECC is an NP-complete (difficult) problem. However, they introduced a relatively simple
method for constructing a P1ECC onKn

3 for any iterationn. Also, they proved that this code
is unique up to rotation, with strict uniqueness if a specified corner ofKn

3 is required to be a
codeword. These results were later found to generalize to higher dimensions, and independently
by Klavzar, Milutinovic, and Petr in [15]. Cull and Nelson’smethod has come to be known as
the G-U construction. It is the foundation of our methods forcodeword recognition and error
correction on iterated complete graphs.
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 5

The G-U construction uses two types of codes onKn
d: G-codes and U-codes. LetGn

d denoteKn
d

with the G-code and letUn
d denoteKn

d with the U-code.Gn
d andUn

d are constructed recursively as
follows:

• To constructG1
d, designate one vertex ofK1

d as thetop vertexand rotate it to the top position.
Make this vertex a codevertex. Make the otherd−1 vertices noncodevertices.

• To constructU1
d , designate one vertex ofK1

d as the top vertex and rotate it to the top position.
Make alld vertices noncodevertices.

Figure 3 showsG1
5 andU1

5 .

FIGURE 3. G1
5 andU1

5 .

We now show how to constructGn
d andUn

d for arbitraryn:
To constructGn

d whenn is even:

(1) Maked copies ofGn−1
d .

(2) Connect each pair of copies so that the top vertex of everycopy remains unconnected.
(3) Designate the top vertex of someGn−1

d as the top vertex ofGn
d.

To constructGn
d whenn is odd:

(1) Create one copy ofGn−1
d andd−1 copies ofUn−1

d .
(2) Connect the top vertices of the copies ofUn−1

d to distinct non-top corner vertices ofGn−1
d .

(3) Connect each pair of copies ofUn−1
d by one edge such that

• This edge connects a non-top corner vertex in one copy to a non-top corner vertex in
the other copy.

• Exactly one non-top corner vertex of eachUn−1
d remains unconnected.

(4) Designate the top vertex ofGn−1
d as the top vertex ofGn

d.
To constructUn

d whenn is even:

(1) Make one copy ofUn−1
d andd−1 copies ofGn−1

d .
(2) Connect the top vertices of the copies ofGn−1

d to distinct non-top corner vertices ofUn−1
d .

(3) Connect each pair of copies ofGn−1
d by one edge such that

• This edge connects a non-top corner vertex in one copy to a non-top corner vertex in
the other copy.

• Exactly one non-top corner vertex of eachGn−1
d remains unconnected.

(4) Designate the top vertex ofUn−1
d as the top vertex ofUn

d .
To constructUn

d whenn is odd:

(1) Maked copies ofUn−1
d .
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6 Skubak, Stevenson

(2) Connect each pair of copies by a vertex such that the top vertex of every copy remains
unconnected.

(3) Designate the top vertex of someUn−1
d as the top vertex ofUn

d .

This is much easier to understand via example. Figure 4 showsG2
5 andU2

5 . Figure 5 showsG3
5 and

U3
5 .

FIGURE 4. G2
5 andU2

5 .

FIGURE 5. G3
5 andU3

5 .

3. THE SF LABELING AND PUZZLE

Because labels and puzzles for odd dimensions have been established in previous papers (see
[14], [16]), the focus of our paper is iterated complete graphs with even dimension. In this section
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 7

we summarize those results. The SF labeling on the odd dimension iterated complete graphs has
been established to have finite-state machines for codewordrecognition and error correction. The
SF labeling also has the Gray code property and corresponds to a puzzle called the SF puzzle.
In the cased = 3, the SF labeling corresponds to the Towers of Hanoi labeling given by Cull
and Nelson[10]. It has been demonstrated that even dimensional iterated complete graphs do not
support SF-like labelings.

3.1. Construction of the SF Labeling. Let d ≥ 3 be an odd number. The labeling ofKn
d is

constructed recursively from the labeling ofKn−1
d .

LabelK1
d as follows: the top vertex is labeled 0, then the remaining vertices are labeled

1,2, . . . ,(d−1) going counterclockwise. Figure 6 shows the SF labeling ofK1
5.

0

1

2 3

4

FIGURE 6. The SF labeling ofK1
5 .

The SF labeling ofKn
d is constructed according to the following algorithm: Applythe permu-

tation α to each digit in every label ofKn−1
d , whereα(z) = d+1

2 z (mod d). Now maked copies
of α(Kn−1

d ). Rotate thekth copy 2πk
d radians counterclockwise, then appendk to each word in this

copy. Finally, connect thed copies to formKn
d . Figure 7 shows the SF labeling ofK2

7 . Figure 8
shows the SF labeling ofK3

5.

3.2. The SF Puzzle.The Towers of Hanoi is played withn disks all of different size. The disks
are stacked on three towers so that no larger disk is stacked on top of a smaller one. The goal is to
begin with all disks on one tower and move them to another. We will number the towers 0, 1, and
2. A natural way to label the configurations of disks on towersis with ternary strings as follows.
Record the tower number of the smallest disk. To the right of this number, record the tower number
of the next smallest disk. Continue in this way to obtain a string of lengthn. Now each vertex of
Kn

3 has an SF label that corresponds to a configuration of the Towers of Hanoi puzzle. The labels
of adjacent vertices represent configurations which are onelegal move from each other. Figure 9
shows the SF labeled graphK3

3 corresponding to Towers of Hanoi with 3 disks.
Now imagine we have an odd numberd ≥ 3 of towers numbered 0 throughd− 1. Like the

Towers of Hanoi, configurations ofn disks on these towers can be represented by based strings of
lengthn. The SF puzzle has the same rules as Towers of Hanoi. In addition, it has the following
rules to restrict the possible moves to those represented bythe SF labeling onKn

d.

(1) No disk may be moved unless all of the disks smaller than itare stacked together on the
same tower.
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FIGURE 7. The SF labeling ofK2
7 .

(2) When a disk is able to move, if the stack of smaller disks ison towera and the disk to be
moved is on towerb, then the disk may only move to tower(2a−b) modd.

Note that the movement of the smallest disk is unaffected by these additional rules; it can always
move to any tower. Figure 10 shows configurations corresponding to labels 220 and 224 onK3

5.
Here the largest disk can only move between towers 0 and 4, andindeed there is an edge between
these two vertices inK3

5, as shown in Figure 8.
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FIGURE 8. The SF labeling ofK3
5 .

000

100
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110
020 010

221

021
011

111

121
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001

211 201
002

112

012
022

222

212
202

102 122

FIGURE 9. The labeled graphK3
3 corresponding to the Towers of Hanoi with 3 disks.

4. DIMENSION 2: THE SPIN-OUT PUZZLE

A good starting point for our investigation into puzzles foreven-dimensional iterated complete
graphs is the Spin-Out puzzle by ThinkFun[25]. The goal of the game is to remove a rectangle with
seven spinners on it from a plastic case. In the traditional starting position, all seven spinners are
vertical, and the rectangle can only be removed when all of the spinners are aligned horizontally.
Let the spinners be labeled 0 to 6 from the left to the right. The nth spinner can only be turned
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10 Skubak, Stevenson

4320 1

FIGURE 10. Configurations corresponding to labels 220 and 224 onK3
5. The

largest disk may move between towers 0 and 4.

when the spinners 0 throughn−2 are horizontal and spinnern−1 is vertical. Note that the leftmost
spinner is free to move at anytime.

FIGURE 11. A configuration of the Spin Out puzzle. The spinner under the arc
may move, and we may also slide the large rectangle to the right and move the the
leftmost spinner.

To represent this puzzle by a labeling on a graph, let each spinner be represented by a bit. If the
spinner is horizontal, the bit is 0; if it’s vertical, 1. Thenlet each configuration of the puzzle be
represented by a string of seven bits, the leftmost bit corresponding to the leftmost spinner and so
on. We associate these labels with vertices, and when we create edges between them representing
possible moves of the Spin-Out puzzle, we get a Gray labelingonK7

2 .
Note that the puzzle can be generalized to use any number of spinners, not just 7. This resulting

family of puzzles can be represented by the reflected binary Gray code onKn
2, which we now

describe.

4.1. Graph and Label. The reflected binary Gray code is a well-known labeling scheme onKn
2

with an easily defined recursive construction[26].
For n= 1, let the reflected binary Gray code,G1, be 0-1. That is, we label one vertex 0 and the

other vertex 1.
To constructGn:

(1) Take two copies ofGn−1. Append 0 to the labels in the first copy and 1 to the labels in the
second copy.
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 11

FIGURE 12. The reflected binary Gray code forn= 1, n= 2, andn= 3 with code
vertices circled

(2) Reverse the order of the strings in the second copy, and connect the new beginning of the
second copy to the end of the first copy.

Note that in some papers, these 0’s and 1’s are sometimes prepended rather than appended; we
append for consistency with previous work and for their relationships to the puzzles.

4.2. Codeword Recognition. If we consider the perfect one error-correcting code on thislabeling
as defined by the G-U construction (see Section 2.4), we find the code vertices as shown circled on
the graphs. Now, given a label, we would like to know whether or not it is a codeword.

More specifically, is there a finite-state machine that recognizes codewords? Yes, there is a
machine that can be created directly from the recursive construction of the label and code. This
codeword recognizer for the reflected binary Gray code is shown in Figure 13. This machine is
nondeterministic, since it has more than one start state. Ifthe iteration is even, the machine starts in
stateGe. If the iteration is odd, the machine starts in stateGo. If the machine ends in the accepting
state, then the word is a codeword.

We can easily convert this machine to a deterministic machine, though we do not show this here
(see [21]) for theory on finite-state machines). Later, (Section 6.4, we will prove a more general
case of this recognizer and show a deterministic version. Alternatively, if we require that 0. . .0 is
a codeword, the only P1ECC on the graphsKn

2 has the codewords at every third vertex. Thus this
machine only needs to convert the Gray label to its binary position and determine if that position
is a multiple of 3, both of which can be simply done with finite-state machines.

4.3. Error Correction. If we place a word into the recognizer, we can decide whether or not it is
a codeword. One motivation for perfect one-error-correcting codes, however, is to be able to easily
find, for any word, the closest codeword. This is called errorcorrecting.

The error corrector for the reflected binary Gray code labeling is shown in Figure 14. The
machine reads a string bit by bit, following the transition with the given bit on the left part of the
label. The machine then changes that bit to the bit on the right side of the label. The codeword
recognizer above must first be used. If the final state is a G state, the error corrector begins at the 0
state (which returns the string unchanged, since it is a codeword). If the final state is either of the
C1 states, the machine begins in 1; if the final state is aC2 state, it begins in 2.

The proof that a generalized version of this error correctorindeed works can be found in Section
6.4.
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FIGURE 13. Finite-state Recognizer for the Spin-Out Puzzle
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0|0

1|1
0|1

1|0
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0|0

FIGURE 14. Error-corrector for the Spin-Out Puzzle

5. DIMENSION 4: THE REFLECTION PUZZLE

The Reflection Puzzle was first described by Weaver[28]. We found a physical representation
of this labeling of the iterated complete graphs of dimension 4. It bears a close resemblance
to the Spin-Out puzzle. In fact, it is essentially two such puzzles stacked on top of each other.
Our goal will still be to change each piece to the zero orientation. In this puzzle, however, each
pieceis made up of twospinnersthat can (sometimes) move independently, giving four possible
orientations, shown in Figure 15.

FIGURE 15. Spinner orientations for the Reflection Puzzle

We will again use the labels of the pieces to represent puzzleconfigurations. An example can
be found in Figure 16.

5.1. Rules. As usual, the leftmost piece may move at any time. Here, however, it may also move
to any orientation, allowing 3 possible moves. For a piecej 6= 0 to be able to move, we must have
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 13

FIGURE 16. An example puzzle orientation for the Reflection Puzzle labeled 0320

pieces 0 throughj −2 at orientation 0. Also, if piecej −1 is at 0, then no spinners in piecej can
move; thus we needf ( j −1) 6= 0.

So suppose piecej is able to move. Which orientation should it change to? Our rule is: if a
spinner can move, it does move. Thus for any vertical spinnerin piece j −1, the corresponding
spinner in j will change orientations. In Figure 16, the second to last piece may change from 2 to
1.

5.2. Graph and Label. To represent this puzzle on a graph, we will associate the labels as defined
above with vertices and legal moves with edges. As hoped, thegraph generated isKn

4. Since only
one piece is moved at a time in the puzzle, this new labeling isa Gray labeling.

To create this labeling whenn = 1, the top vertex ofK1
4 is labeled 0 and each other vertex,

moving counterclockwise, is labeled with the successive integers through 3.
To construct this labeling scheme onKn

4 for n> 1:

(1) Construct 4 copies of the labeling onKn−1
4 , and index these copies from 0 to 3.

(2) Reflect copy 1 vertically, and add a 1 to the end of every label in the copy.
(3) Reflect copy 2 both vertically and horizontally, and add a2 to the end of every label in the

copy.
(4) Reflect copy 3 horizontally, and add a 3 to the end of every label in the copy.
(5) Place copy 0 as the top copy and the others in order counterclockwise. Finally connect

each copy to all of the other copies, as shown in Figure 17.
As in the Spin-Out puzzle and associated labeling, this labeling has finite-state recognition and

error correction, which we prove generally in the next section.
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FIGURE 17. The Reflection-Method labelings ofK1
4 andK2

4

6. DIMENSION 2m

The puzzle on four dimensions suggests an easy extension of Spin-Out to all dimensions which
are powers of 2. The extended puzzles will retain the slidingaspect of Spin-Out, but the spinners
will be replaced by pieces which consist of a stack of spinners. When a piece is composed ofm
spinners, it will have 2m possible orientations, since each spinner can be in one of two orientations.
For n pieces, there will be(2m)n = dn configurations. The sliding rules will determine which
pieces can change, and new spinning rules will determine howthe pieces can change. Together
they will define which configurations can change to which configurations. Note that all proofs
in this section apply to the Spin-Out and Reflection puzzles.At present, these additional puzzles
are mathematical constructions and they may be difficult to physically construct so that all the
mathematical rules are completely enforced.

We need a way to associate orientations of the pieces with numbers 0 throughd−1. We define
the orientations of our pieces as follows:

• For a dimensiond = 2m, each puzzle piece will consist ofmspinners stacked one on top of
the other.

• To find orientationj, write j as a binary number. To set a piece in this orientation, let the
1’s (rightmost) bit represent the top spinner; a 0 bit means that it is horizontal, while a 1
bit means that it is vertical. Similarly, let the 2’s bit represent the spinner just below the
top spinner, the 4’s bit the next spinner, etc. Continue in this manner; the(m−1)’s bit will
represent the bottom spinner.

• Thus for eachj ∈ {0, . . . ,d−1} we have a distinct orientation and corresponding binary
number. Since there are exactlyd orientations, we know we have defined all possibilities.

Example 6.1.Suppose d= 8= 23. That is, m= 3, so the pieces are composed of3 spinners. Then,
for example, the0= 0002 orientation consists of all horizontal spinners, the7= 1112 orientation
has all vertical spinners, and the3= 0112 orientation has a horizontal spinner on the bottom with
two vertical spinners above it.
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A New Puzzle on Iterated Complete Graphs with Dimension 2n 15

FIGURE 18. Piece orientations for the Dimension 8 Puzzle

Note that the 0th orientation will always consist of all horizontal spinners. Note also that Spin-
Out and the Reflection Puzzle both consistently follow this naming scheme.

Now, for an iterationn for n≥ 1, we will haven puzzle pieces. We will call the leftmost piece
the 0th piece and continue numbering the pieces from left to right. Thus the rightmost piece is the
(n−1)st piece. Given a configuration of our puzzle, we will label it with a string of characters from
{0, . . . ,d−1}, where each piece 0 throughn−1 is represented by the number of the orientation it
is in. To avoid confusion, we will writef ( j) to refer to the orientation of piecej.

Example 6.2.Continuing from the example above, Figure 19 has the label 0374.

FIGURE 19. An example configuration for the Dimension 8 Puzzle. The pieces are
numbered left to right 0, 1, 2, and 3.

6.1. Rules. The rules of this puzzle are nearly the same as for the Reflection Puzzle. First, the 0th

piece may always change orientation, and may change to any other orientation.
To spin at least one spinner of thej th piece, we must have that pieces 0 throughj −2 are 0 and

piece j −1 is not 0. In our notation, we needf (0) through f ( j −2) to be 0 andf ( j −1) 6= 0. If
these conditions are satisfied, then we must move as many spinners of thej th piece as possible;
that is, any spinner that can switch between its horizontal and vertical positions must do so.

For example, in Figure 19, piece 2 is able to change orientations. Since the bottom spinner of
piece 1 is horizontal, the bottom spinner of piece 2 cannot move. However, the other two spinners
can move, and so they must become horizontal. Thus we may change the orientation of piece 2
from 7 to 4.

The goal of the puzzle is, given some initial configuration, to move all the pieces to orientation
0. Since this puzzle can be represented byKn

d as we prove shortly, we know that the minimum
solution path for any two configurations is not longer than 2m−1, the diameter of the graph. This
quantity is the same as for both the Spin-Out puzzle and the SFPuzzles. Another way of “solving”
this puzzle might be to choose two configurations and move from one to the other. Of course,
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16 Skubak, Stevenson

puzzles are fun, but the focus of the paper is the puzzle’s relationship to the family of iterated
complete graphs, which we will now prove, after some preliminary lemmas.

It would be helpful to be able to know which orientation piecej can move to without thinking
in terms of spinners. To do this, we define a special operation. The operator⊕ denotes bitwise
addition on two numbers; that is,r⊕smeans write bothr andsas binary numbers and do a bitwise
addition (also known as a XOR, or addition without carry).

Lemma 6.3(Orientation Change Function). If f (0) through f( j −2) are0 and f( j −1) 6= 0, then
piece j may move to f( j −1)⊕ f ( j). Because f( j −1)⊕ f ( j) 6= f ( j), piece j can make a change
to another distinct orientation.

Proof. Recall that we defined our orientations to coincide with binary numbers representing the
spinners in a piece; a 0 is a horizontal spinner, and a 1 is a vertical spinner. Then consider that
movement of the spinners of piecej are completely dictated by the positions of the spinners of
piece j −1. In particular, any horizontal spinners in piecej −1 block movement in piecej of the
spinner in the same horizontal plane. Therefore, any 0’s in the binary representation off ( j −1)
dictate that no change should occur in the corresponding bits in the binary representation off ( j).
Since 0+x= x in bitwise addition, our formula holds in this case.

For the remaining case, consider the vertical spinners inj −1, i.e. the 1’s in the binary repre-
sentation off ( j −1). These allow movement of the corresponding spinners inj and according to
our rule, the spinners must change. Since 1+1= 0 and 1+0= 1 in bitwise addition, our formula
holds for each bit. Thus the resultf ( j −1)⊕ f ( j) is the orientation to which piecej may move.

Finally, note that sincef ( j −1) 6= 0, it has at least one bit equal to 1, which causes a change in
that bit in f ( j), so f ( j −1)⊕ f ( j) 6= f ( j). �

Note that f ( j −1)⊕ f ( j) can equalf ( j −1). In fact, this occurs if and only iff ( j) = 0. Thus
the configuration 0. . .0x0 may move to 0. . .0xx.

Lemma 6.4(Reversibility of Moves). All moves in this puzzle are reversible.

Proof. Clearly all moves by the leftmost piece are reversible sincewe may move this piece at any
time. To consider moves by some other piece, first letx ∈ {1, . . . ,d−1} andy∈ {0, . . . ,d−1}.
Also, letW be the empty string or some fixed string consisting of characters from{0, . . . ,d−1}.
Now suppose the configuration 0. . .0xyW may move to 0. . .0xzW (where there may be any fixed
nonnegative number of leading zeros).

By Lemma 6.3,z= x⊕y. Then in 0. . .0xzW, the piece atz may change tox⊕z= x⊕ (x⊕y).
It is easy to check that bitwise addition (the XOR) is associative. Also, note that any string added
bitwise to itself is simply the zero string since 1+1= 0+0= 0. Thusx⊕ (x⊕y) = (x⊕x)⊕y=
0⊕ y, which simply equalsy. Therefore the configuration 0. . .0xzW may move to 0. . .0xyW as
desired. �

Thus we know that⊕ is associative as well as commutative, and that each number is its own
inverse under⊕. These properties will be of further use to us.

6.2. Graph and Labeling. Now that we have a puzzle, we wish to show that it is in fact the
puzzle we were looking for– the puzzle that fits the graphKn

d (for d = 2m). We label each vertex in
Kn

d with the label of some puzzle configuration and connect two vertices if the two configurations
are one legal move apart. Since we can only move one piece at a time, the labeling scheme is a
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Gray code. Also, by Lemma 6.4, the edges are not directed; we may always undo the last move we
made. The following lemmas will help in our proof.

Lemma 6.5(Corner Labels). The puzzle configurations0. . .0k for k= {0, . . . ,d−1} have exactly
d−1 adjacent configurations (where there may be any nonnegativenumber of leading zeros).

Proof. By a rule of our puzzle, the 0th piece, at orientation 0, may always change to any other
orientation 1, . . . ,d−1. This gives usd−1 possible moves. To see that there are no others, note
that there is no piece wheref ( j −1) 6= 0. Since this is required for a piecej 6= 0 to move, no other
moves are possible. �
Lemma 6.6(Non-Corner Labels). All other configurations (those not of the form0. . .0k for k=
{0, . . . ,d−1}) have exactly d moves.

Proof. First, note that any configuration not of the form 0. . .0k for k= {0, . . . ,d−1} instead has
the form 0. . .0xyWwhere there may be any nonnegative number of leading zeros,x 6= 0, and where
W is the empty string or some string consisting of characters from {0, . . . ,d−1}. Again, the first
piece may always change to any other orientation 1, . . . ,d− 1, giving usd− 1 possible moves.
Now, we show that there is exactly one more. Sincex 6= 0, the piecej such thatf ( j) = y is the
only piece that hasf (0) throughf ( j −2) equal to 0 andf ( j −1) 6= 0. Therefore piecej is the only
other piece that may move. By Lemma 6.3, piecej may change from orientationy to some other
distinct orientation, giving us a total ofd moves. �
Lemma 6.7. For a fixed y∈ {0, . . . ,d−1}, the function defining the possible change of the char-
acter y in the configuration0. . .0xy. . . of domain x∈ {1, . . . ,d−1} is a bijection onto
{0, . . . ,d−1}\{y}. That is, for any other character z not y, there is some nonzero x such that
0. . .0xy. . . may change to0. . .0xz. . . .

Proof. First, let the piece with orientationy be piecej. Sincex 6= 0, y does move, and so this
function is well-defined. By Lemma 6.3, piecej actually changes, soy is not a valid element of
the range; thus the domain and range are the same size. Now we need only show that this function
is injective. So suppose that bothx1 andx2 changey to z. That is,x1⊕ y = z= x2⊕ y. Bitwise
addingy shows thatx1 = x2. �
Theorem 6.8. The described generalized Spin-Out puzzle fits the graph Kn

d. That is, each vertex
in Kn

d represents a configuration of pieces, and each edge represents a valid move between two
configurations.

Proof. We will use induction on the number of puzzle piecesn, which will correspond to the
iteration of the graphKn

d . First consider the puzzle with one puzzle piece consistingof mspinners.
Because this piece is the 0th piece, it may change to any orientation at any time, and because it is
the only piece, these are the only moves we can make. Clearly this corresponds to the complete
graphKd = K1

d.
Now assume that the puzzle with(n−1) pieces corresponds to the graphKn−1

d . We will consider
the puzzle withn pieces. Note that if we may move thej th piece in some puzzle, the( j +1)st piece
(and any pieces farther right) is essentially irrelevant. As seen in the example in Figure 19, the
last piece does not affect what moves are legal by piece 0 through piece 2. Thus we consider the
puzzle withn pieces to be a combination ofd puzzles, each withn−1 pieces, one puzzle for each
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possible orientation of our added piece. Therefore, one character representing the orientation of
the new piece will be appended to each label. Thed smaller puzzles are each copies ofKn−1

d by
our induction hypothesis. Then all that remains is to show that thesed subgraphs connect in the
correct manner.

Recall that an iterated complete graph of dimensiond hasd corner vertices (vertices that are
degreed−1). We claim that exactly one vertex from each of theKn−1

d subgraphs will become a
corner vertex ofKn

d : the vertex 0. . .0, which we know is a corner vertex by Lemma 6.5. To see
this, note that inKn

d, the label 0. . .0 will be appended with somer ∈ {0, . . . ,d−1}. Simply using
Lemma 6.5 once more shows that the vertex 0. . .0r is a corner vertex ofKn

d, giving usd such
corner vertices. Clearly these are the only ones, since any other vertex ofKn−1

d , when appended by
somer ∈ {0, . . . ,d−1}, cannot have the form 0. . .0r. By Lemma 6.6, these other vertices are not
a corner vertices, and we have verified this claim.

Next we show that every other corner of eachKn−1
d subgraph connects to exactly one different

Kn−1
d subgraph at one of its corner vertices. Each of these other corner vertices in theKn−1

d graphs
have the form 0. . .0s for s∈ {1, . . . ,d−1} (Lemma 6.5). Thus, inKn

d , their new labels have the
form 0. . .0st for s∈ {1, . . . ,d−1} andt ∈ {0, . . . ,d−1}. Then 0. . .0st may move to 0. . .0s(s⊕ t),
which is in the(s⊕ t)th subgraph; by Lemma 6.3 this is a different subgraph than thet th subgraph.

So consider some fixedKn−1
d subgraph, i.e. fixt in 0. . .0st. By Lemma 6.7, over all values

of s (we know s 6= 0), t will change to every character exceptt itself. This implies that this
fixed subgraph must be connected to each of the otherd− 1 subgraphs exactly once. Sincet
was arbitrary, this is true for eachKn−1

d subgraph. This finishes our proof. �

6.3. Recursive Labeling. Theorem 6.8 tells us how to construct our graph and labeling from the
puzzle. We wish, however, to have a way to recursively construct the labelings on the family of
iterated complete graphsKn

d without referring to the puzzle.
Unfortunately, this labeling of the family of iterated complete graphs of these dimensions is not

unique. For at least dimension 8, there exist other labelings that still preserve the desired property
of having the reflected binary Gray code along each diagonal from 0. . .0. However, it does not
appear that any puzzle easily associates with any other labeling we have found.

The base case for our labeling is the complete graphKd = K1
d . Clearly any labeling of the

vertices would correspond to the puzzle, so without loss of generality we will label some “top”
vertex 0 and label in order counterclockwise, and call this labelingL1

d.
Now assume we haveLn−1

d . We know thatLn
d is based ond copies ofLn−1

d by Theorem 6.8;
however, if we simply placed each copy down, the edges connecting these subgraphs would not
draw the graph as we have neatly depicted it in this paper. Therefore we will permute each subgraph
so that the edges are in the desired locations. Clearly without loss of generality, we may place the
0th subgraph any way we wish, so we will not permute it. Then to createLn

d:

• Wheni = 0, the copy is placed in the top (0th) position and 0 is appended.
• For all otheri, the permutationΓi is applied to the last character of each label in theith copy

of Ln−1
d , whereΓi bitwise addsi to the last character in a label. That is,Γi(. . .x)= . . .(x⊕ i).

Then thisith copy is placed in theith position counterclockwise from the top position, and
the characteri is appended to each label.
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• Finally, for eachi, the vertex at positionj from the top position is connected to theith

corner of j th subgraph. Ifj = i, the vertex is a corner of the entire graph and no edge is
drawn.

Example 6.9.Figure 20 shows L18 and L2
8, the recursive labeling for the graphs K1

8 and K2
8. As an

example of how to permute a subgraph, look at the subgraph immediately counterclockwise of the
top position, the1st subgraph. This was labeled by applyingΓ1 to L1

8 and appending1. Note that
0⊕1= 1, 1⊕1= 0, 2⊕1= 3, etc.

FIGURE 20. The labeling for the first and second iterations for the dimension 8
graph, corresponding to the extended Spin-Out puzzles with1 and 2 pieces respec-
tively.

Lemma 6.10. Each permutationΓi , for any i∈ {0, . . . ,d−1}, is a graph automorphism on Ln
d.

That is, applying anyΓi does not change the structure or any edges of the graph.

Proof. First of all, note thatΓi is in fact a permutation on the vertices. Indeed, supposeΓi(. . .y) =
Γi(. . .z). (SinceΓi only changes the last character, we know that the rest of the label must be
identical.) ButΓi(. . .y) = . . .(y⊕ i) andΓi(. . .z) = . . .(z⊕ i). Theny⊕ i = z⊕ i andy= z, so the
labels. . .y and . . .z are the same. ThusΓi is injective, and sinceΓi maps a set to itself,Γi is a
bijection.

Now, we show that for adjacent verticesu,v in Ln
d, we have that the verticesΓi(u) andΓi(v) are

adjacent inΓ(Ln
d). There are three cases. (In all cases, the number of leading zeros may be positive

or zero.)

(1) If the vertex is labeled 0. . .0x, then it is adjacent only to thed − 1 verticesy0. . .0x
for y∈ {0, . . . ,d−1} (see Lemma 6.5). Call this set of verticesS. Now Γi(0. . .0x) =
0. . .0(x⊕ i), which, again by Lemma 6.5, is adjacent only toy0. . .0(x⊕ i) for
y∈ {0, . . . ,d−1}. The set of these vertices is clearly equal toΓi(S).
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20 Skubak, Stevenson

(2) If the vertex is labeled 0. . .0xz, then it is adjacent to only the vertices in the set

S= {y0. . .0xz: y∈ {0, . . . ,d−1}}∪{0. . .0x(x⊕z)}.
But Γi(0. . .0xz) = 0. . .0x(z⊕ i), which is adjacent only to

{y0. . .0x(z⊕ i) : y∈ {0, . . . ,d−1}}∪{0. . .0x(x⊕z⊕ i)}= Γi(S).

(3) The remaining possibility is that the vertex is labeled 0. . .0xzW for some nonempty string
of charactersW. It is only adjacent to the labels corresponding to all changes of the leading
character in the label, and also to the label 0. . .0x(x⊕z)W. Clearly, applyingΓi (changing
the last character inW) preserves these adjacencies.

Thus all edges are preserved. �
Theorem 6.11.This recursive labeling is the same labeling as described inTheorem 6.8.

Proof. Since Lemma 6.10 shows that applying someΓi to a subgraph does not change the edges
within that subgraph, we only need show that the new edges drawn between the subgraphs are in
fact the correct connections. Note thatΓ0 is the identity permutation since we do not permute the
0th subgraph.

So fix some subgraphi in Ln
d, and take thej th corner vertex wherej 6= i. Recall thatΓi was first

applied to the subgraph and theni was appended. Thus, since it is a corner, the label has the form
0. . .0( j ⊕ i)i = v.

Now we claimed in our construction method that this vertex should connect to theith corner of j th

subgraph. Similar to above, thej th subgraph hadΓ j applied andj appended, so the label is of the
form 0. . .0(i⊕ j) j. But this configuration may move to 0. . .0(i⊕ j)(i⊕ j ⊕ j) = 0. . .0(i⊕ j)i = v,
since⊕ is commutative. Thus the two vertices are indeed adjacent. Since i, j were arbitrary, all
connections between the subgraphs are correct, and we have proven the theorem.

�

6.4. Codeword Recognition. Using the G-U construction as described earlier in the paper, we
know exactly what vertices are code vertices for each graph.Since these sets are defined recur-
sively, we can use them in combination with the recursive labeling to produce recursive definitions
for the actual codewords themselves. It will be helpful to refer to a labeled graphLn

d with a code
Gn

d or Un
d associated with it. Thus we defineCn

d as the labeled graphLn
d with theGn

d code scheme,
andHn

d asLn
d with theUn

d code scheme. (We use this notation because the code verticesof Cn
d are

the codewords of the P1ECC onLn
d, while the code vertices ofHn

d are a helper set of vertices.)
Then when we writeΓi(Cn

d) or of Γi(Hn
d), we mean that it permutes the labels “underneath” the

code scheme, without moving the code vertices of theGn
d orUn

d graph. We also use the• to denote
an appending;x• i means appendi to x.

Lemma 6.12.
For an odd iteration n, Cnd =Cn−1

d •0 ∪ Sd−1
i=1 Γi(H

n−1
d )• i.

For an even iteration n, Hnd = Hn−1
d •0 ∪ Sd−1

i=1 Γi(C
n−1
d )• i.

Proof. This follows immediately from the G-U construction and the recursive labeling. For odd
n, the 0th subgraph of the labeled graphCn

d is formed by placing a copy ofLn−1
d and appending 0.

The G-U construction shows that the 0th subgraph is a G graph, hence theCn−1
d •0. For all otheri,
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theith subgraph was labeled usingΓi(L
n−1
d ), and the code vertices chosen using the U graph. Thus

the termsΓi(H
n−1
d ). The other equation is obtained similarly. �

Recall that in the G-U construction, we often have to rotate some G or U scheme so that the top
vertex becomes some other corner vertex. This plays a large role in our codeword definitions, so
we formalize that rotation here. LetRi be the permutation on the graphsGn

d andUn
d that rotates the

entire set 2πi/d counterclockwise; that is it rotates so that the top corner,formerly at the 0th corner,
now lies at theith corner. See Figure 21 for an example. Note that the functionRi only moves the
code vertices,not the labels associated with them, so that if we writeRi(Cd

n) or Ri(Hn
d), we mean

thatRi rotates the code scheme “above” the labels without moving orchanging them.

FIGURE 21. An example of the R function

Theorem 6.13.

(1) For n odd, Ri(Cn
d) = Γi(Cn

d).
(2) For n even, Ri(Hn

d) = Γi(Hn
d).

(3) For n even,Γi(Cn
d) =Cn

d.
(4) For n odd,Γi(Hn

d) = Hn
d .

Proof. These four results are so closely linked that the truth of anyone of them depends on the
truth of at least one other. We prove them using as little dependency as possible, and at the end
show that we know enough base cases to establish each result for all iterations.

Beginning with (1), take someC2m+1
d and consider what happens when we applyRi. Recall that

the G graph is made up of one smaller G graph andd−1 smaller U graphs. First, theith subgraph,
which hadΓi applied to it in the the recursive labeling and all of whose labels end ini, has become
the one G subgraph. This gives usΓi(C2m

d )• i.
Next, for j 6= i, the j th subgraph, which hadΓ j applied to it in the recursive labeling and all of

whose labels end inj, is a U graph. However, this U graph has been rotated so that its top vertex is
its ith corner vertex, giving usRi ◦Γ j(H2m

d )• j (where the◦ denotes normal function composition).
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Thus in total we have thatRi(C
2m+1
d ) = Γi(C2m

d ) • i ∪ S

j 6=i Ri ◦Γ j(H2m
d ) • j. But suppose (3)

held; then the first element would be justC2m
d • i. Supposing (2) holds allows us to rewrite the

union as
S

j 6=i Γi ◦Γ j(H2m
d )• j =

S

j 6=i Γi⊕ j(H2m
d )• j.

Now applyingΓi to both sides, we would have

Γi ◦Ri(C
2m+1
d ) = Γi(C

2m
d • i) ∪ Γi(

[

j 6=i

Γi⊕ j(H
2m
d )• j) =C2m

d •0 ∪
[

j 6=i

Γi⊕ j(H
2m
d )• ( j ⊕ i).

Since j 6= i, we know j ⊕ i = i ⊕ j is not 0, but can be any other character in{1, . . . ,d−1}. Thus

Γi ◦Ri(C
2m+1
d ) =C2m

d •0 ∪
[

j 6=i

Γi⊕ j(H
2m
d )• (i ⊕ j) =C2m+1

d

by Lemma 6.12.
Thus, when their domains are restricted to odd iterations ofCn

d, we have thatΓi ◦Ri = I , so
thatRi = Γ−1

i = Γi since numbers are their own inverses under bitwise addition. Therefore we’ve
shown (1) if (2) and (3) are true.

Now the argument for (2) is only notationally different fromabove and gives that, when re-
stricted to even iterations ofHn

d , we get that

Γi ◦Ri(H
2m
d ) = H2m−1

d •0 ∪
[

j 6=i

Γi⊕ j(C
2m−1
d )• ( j ⊕ i) = H2m

d

by Lemma 6.12 if (1) and (4) are true. Thus we again have that restricted to this domainRi = Γi .
For (3), take someC2m

d and consider its construction. In the labeling the top (0th) subgraph was
not permuted, and then theG2m−1

d graph was placed on top, simply giving usC2m−1
d •0.

Now for any other subgraphi, we knowΓi was applied. Also, however, theG2m−1
d graph was

rotated, moving its top corner to theith corner; that is,Ri was also applied. But if (1) holds, then
over the domain ofC2m−1

d , we knowRi = Γi = Γ−1
i , so the two permutations cancel, giving us only

C2m−1
d • i. Thus if we would now apply anyΓ j , all we would do is change the last characters, which

has no effect on the set of codewords
Sd−1

i=0 C2m−1
d • i (it only changes their order on the graph).

The argument for (4) is the same as for (3);H2m+1
d is constructed with an unpermuted 0th sub-

graph, giving usH2m
d •0. For other subgraphsi, bothΓi andRi were applied, so that if (2) holds,

we have the set of codewords
Sd−1

i=0 H2m
d • i, which is unchanged under anyΓ j .

Finally, we show that we have a sufficient base to prove these claims for all iterations. First, we
know that (4) holds forH1

d– noΓ j can have an effect here, since it is the empty set.
Next, we establish (1) forC1

d, whose sole codeword is 0. We know thatΓi sendsi to 0, makingi
the codeword. Similarly,Ri rotates the G graph from the top to theith corner, again leavingi as the
codeword. Thus the two functions are the same here.

Now, combining these two cases, we are able to prove (2) forH2
d . Also, knowing that (1) holds

for C1
d establishes (3) forC2

d. These cases are sufficient to show each of these claims for all n.
�

Corollary 6.14. For any dimension d= 2m, the codewords for the Powers of Two labeling are
described by the following recursive definitions:
for an even iteration n,

125



A New Puzzle on Iterated Complete Graphs with Dimension 2n 23

Cn
d =

Sd−1
i=0 Cn−1

d • i and
Hn

d = Hn−1
d •0 ∪ Sd−1

i=1 Γi(C
n−1
d )• i

for an odd iteration n,
Cn

d =Cn−1
d •0 ∪ Sd−1

i=1 Γi(H
n−1
d )• i and

Hn
d =

Sd−1
i=0 Hn−1

d • i

Proof. The middle two equations are Lemma 6.12. The other two were proved within parts (3) and
(4) of Theorem 6.13. �
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FIGURE 22. Nondeterministic finite-state Codeword Recognizer forthe Dimen-
sion 2m Puzzle

Corollary 6.15. A nondeterministic finite-state machine (Figure 22) that reads strings right to left
and recognizes codewords follows directly from the recursive definitions in corollary 6.14.

Since the recognizer has only one accepting state, we can easily reverse the machine to make
it deterministic by making it read the strings in the opposite direction, left to right. We show this
deterministic machine in Figure 23. (For theory on finite-state machines, see [21].) We leave out
several edges between the variousΓi states so the structure of the machine can be more easily seen;
these edges can be easily added by following thoseΓi permutations directly. All edges involving
the G states andU states are shown. Also note that the machines for the labels of dimensions 2
and 4 are of this form.
6.5. Error Correction.

Theorem 6.16.The finite-state machine shown in Figure 24 correctly error-corrects labels. The
recognizer must first be used; the ending state if the recognizer is the start state for the corrector.
Note that for the transitions labeled with aΓ permutation, each character follows that arrow and
permutes according to thatΓ. All other edges do not change the characters.

126



24 Skubak, Stevenson

Ge Go

ΓU
1 ΓG

1

ΓU
2

ΓG
2

ΓU
i ΓG

i

ΓU
d−1 ΓG

d−1

Ue Uo

all

0

1

2

d−1

1

2

d−1

12

d−1

1

2

d−1

all

0

i

i

i

i

FIGURE 23. Deterministic finite-state Codeword Recognizer for theDimension 2m Puzzle
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FIGURE 24. finite-state Error Corrector for the Dimension 2m Puzzle

Proof. If we use the nondeterministic codeword recognizer in Figure 22, by a parity argument we
find that for any word, we end in one ofd+1 states: the codewordGe state, thed−1 statesΓU

i ,
and theUe state. Thus this must be sufficient information to correct. If a word ends in theG state,
clearly we want to make no change, which is clearly reflected in the corrector. Now recall that this
recognizer reads right to left, so that the leftmost bit is the last read. Then if a word ends in some
ΓU

i state, we can retrace one step, analogous to returning one bit to the right. Note that this will
always place us in either theG0 state or aΓG

i state. Each of these states has exactly one 1-step path
to the accepting state; thus we need only change the last bit to the bit labeling this path to make
our word a codeword. This corresponds to thed−1 middle states in the error-corrector; since the
corrector runs left to right, if we begin in one of these states, we change only the leftmost bit to the
required character, which is dictated byΓi . This is clearly the case when the word is in the same
K1

d complete graph as a codeword and only needs change its leftmost bit, or 0th piece.
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Now, the more complicated case is correcting those words which end the recognizing process in
theUe state. This occurs when a word must change to a word outside ofits immediate subgraph,
i.e. piecej 6= 0 must change orientations tof ( j −1)⊕ f ( j) according to the rule. Then we must
have the 0th through( j −2)nd pieces at the 0 orientation, so we want to disregard all initial zeros.
Clearly the error-correcting machine, beginning at theU state, does this. Then the( j −1)st piece
should not be changed, but is important in deciding what thej th piece may change to. This also is
reflected in the corrector; the first nonzero orientation is not changed, but takes the machine to a
state that remembersf ( j −1). Since we wantf ( j) to change tof ( j)⊕ f ( j −1), we want to use
Γ f ( j−1), which the machine does. These are all the possible cases, therefore the machine is able to
properly correct words. �
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7. OTHER EVEN DIMENSIONS

Together with the SF labeling, we have now classified recursive labelings corresponding to puz-
zles on the families of iterated complete graphs of odd dimension and of dimensions that are
powers of two. The SF Puzzle is a Towers-of-Hanoi-like puzzle, while the latter puzzles, based on
the Spin-Out puzzle, are completely different. What about the other even dimensions? It is clear
that these two types of puzzle do not easily extend to these other dimensions, the first of which is
6. Instead we can combine the two types of puzzles to produce the puzzle and the labeling that
we’re looking for.

7.1. Dimension 6. The smaller example of the combined puzzle is for dimensiond = 3·21. As in
the Towers of Hanoi, we haven pieces stacked on three towers labeled 0, 1 and 2 from left to right.
Usually, our pieces are disks that have no orientation, so that only a piece’s tower matters. Now,
we will give each piece two orientations, 0 and 1, which correspond to a horizontal and a vertical
orientation respectively (which is why we change the terminology from ‘disk’). For a given piece
j, we will combine the towert j and orientationr j to define itstotal orientation f ( j) ast j ·2+ r j .
Therefore there are six total orientations that each piece can be in. The distinct combinations of
towers and relative orientation clearly give distinct values from 0 to 5. This is illustrated in Figure
25.

FIGURE 25. Plate positions for the Dimension 6 Puzzle

We label configurations of the puzzle, as usual, by strings representing the orientations of the
pieces. The leftmost digit will correspond to the smallest piece and continue in order of size with
the rightmost digit corresponding to the largest piece. Thus the game configuration for iteration
n= 2 in Figure 26 corresponds to the label 50.

FIGURE 26. An Example Configuration of the Dimension 6 Puzzle

7.1.1. Rules.The normal Towers of Hanoi rules still apply. Plates must always be stacked from
largest on the bottom to smallest at the top. Only the smallest plate on a tower may be moved,
and it may only move to a tower containing either no plates or only plates larger than itself. (Note
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that this requires all the plates smaller than this plate to be together on one tower.) As usual, the
smallest piece may always move in any way, to any orientation.

In addition, piecej 6= 0 piece may only be moved if
(1) the( j −2)nd piece through the 0th piece are all the same and have orientation 0 (they are

equivalent to 0 mod 2)
(2) t j−1 equalst0 throught j−2
(3) if t j = t j−1, thenr j−1 6= 0

Note that this means that even if we can move a piece in regularTowers of Hanoi, we may not be
able to move it in this new puzzle.

If the conditions above are met, then piecej may move to tower 2t j−1− t j at the same time as it
moves to orientationr j−1⊕ r j . A few examples of moves can be found in Figure 27.

FIGURE 27. Example moves for the Puzzle on Dimension 6

7.1.2. Graph and Label.These rules give us the labeling of the graph shown in Figure 28. Note
that there are two Towers of Hanoi labelings embedded in eachgraph, and that there are three
reflected binary Gray code labelings on three of the outside edges (each with some simple permu-
tations of characters).
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FIGURE 28. The Puzzle Labeling forK1
6 andK2

6

7.2. General Dimensions.Every even number can be written asq·2m where q is odd andm≥ 1.
So, as we did for dimension 6, we will combine the two styles ofpuzzle, an SF puzzle of dimen-
sionq and an extended Spin-Out puzzle with dimension 2m, to define our general puzzle for any
dimension.

The goal of these puzzles is a combination of the SF and Spin-Out goals. That is, given some
initial configuration, to move all the pieces to orientation0 on a specific tower. Since this puzzle
can be represented byKn

d as we will prove, we know that the minimum solution path for any two
configurations is not longer than 2m−1, the diameter of the graph. Another way of “solving” this
puzzle might be to choose two configurations and move from oneto the other. Again, the focus of
this paper is the puzzle’s relationship to the family of iterated complete graphs.

Definition 7.1. For a dimension d= q·2m with q odd, define the puzzle as follows. The puzzle has
q towers, numbered0 through q. There are n puzzle pieces, each consisting of m spinners. Each
piece has2m orientations, numbered0 through2m−1, on each of q towers. These orientations
are defined exactly as in the extended Spin-Out puzzle (see Section 6), by writing the orientation in
binary and letting each bit represent one spinner of the piece.

For a given piece j, the combination of the tower tj and orientation rj defines thetotal orienta-
tion f ( j) as tj ·2m+ r j . Therefore each piece has q·2m= d possible total orientations in all. This
makes dn configurations for the puzzle with n pieces.

Pieces are numbered from the0th piece, the least restricted (which can be thought of as the
smallest or leftmost piece), through the(n−1)st piece, the most restricted (biggest or rightmost).
There are three rules that define legal moves between configurations:

(1) The 0th Piece Rule The0th piece may always move to any other total orientation.
(2) Conditions for Movement For any j 6= 0, the jth piece may move if all of the following

conditions are true.
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(a) the total orientations of piece0 through j−2 are all the same and are equivalent to
0 mod2m; that is, they are on the same tower and their orientations are0

(b) t j−1 is the same as t0 through tj−2; i.e., pieces0 through j−1 are all on the same
tower

(c) if t j = t j−1, then f( j − 1) is not the same as f(0) through f( j − 2); that is, if all
pieces0 through j are on the same tower, then piece j−1 has rj−1 6= 0

(3) The Total Orientation Change Function If the Conditions for Movement are satisfied, the
tower of piece j may change to

(2t j−1− t j)mod q

at the same time as its orientation changes to

[ f ( j −1)⊕ f ( j)]mod 2m = rj−1⊕ rj

Note that, conditions (a) and (c) are exactly the dimension 2m conditions, and that condition
(b) is exactly the SF Puzzle condition. Also, as expected, ifq = 1 this definition reduces to the
Dimension 2m puzzle, and ifm= 0 it reduces to the SF Puzzle.

Lemma 7.2(Reversibility). All moves are reversible and all edges are undirected.

Proof. First note that all moves by the 0th piece are reversible because that piece can always move
anywhere.

So suppose a piecej 6= 0 can move. Letx ≡ 0mod2. Also let 0≤ w,y,z< d− 1 andW be
the empty string or composed of characters from 0 throughd−1. Then this puzzle configuration
has the formx. . .xywW. Suppose it can move tox. . .xyzW(where there may be any nonnegative
number of leadingx characters.) Let the tower of the piece at total orientationz be calledtz and
the orientation of this piece berz. Similarly definety, ry, tx, andrx. Thentz is 2ty− tw modq, and
rz= ry⊕ rw.

So consider the configurationx. . .xyzW. The piece at orientationzmay move to a tower
(2ty− tz)mod q= (2ty− (2ty− tw))mod q= tw. It may change to the relative orientationry⊕ rz =
ry⊕ (ry⊕ rw) = rw by the associativity of⊕. Since the tower and relative orientation complete
define the total orientation,zmay change tow and thenx. . .xyzWmay move tox. . .xywW �
Lemma 7.3(Corner Labels). The configuration x. . .x(x+y) where x≡ 0mod2m and0≤ y< 2m

has exactly d−1 possible moves. In other words, it corresponds to a corner vertex.

Proof. First note that any piece in this configuration with total orientationx cannot satisfy condition
(c) and so cannot move. So consider the piecej with total orientationx+ y. Sincey < 2m and
f ( j −1) = x, we know thatt j = t j−1. Also, we have thatr j−1 = 0. Again by condition (c) this
piece cannot move either. �
Lemma 7.4(Non-corner Labels). All other configurations have exactly d possible moves, and so
are non-corner vertices.

Proof. We split the other vertices into three cases.

(1) If a configuration begins inx. . .x for x≡ 0 mod2m, then there must be a next characterz
that is on a different tower, or it would be a corner by Lemma 7.3. Then condition (c) does
not apply. Clearly conditions (a) and (b) are also satisfied.
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(2) If a configuration begins inx. . .x(x+y) for x≡ 0 mod2m and 0≤ y< 2m, then again there
must be a next characterz or it would be a corner by Lemma 7.3. Also assume thaty 6= 0
since that is the case above. Then consider the piece with total orientationz the j th piece.
Clearly conditions (a) and (b) are satisfied, but sincet j = t j−1, we must check that (c) is
satisfied. Butr j−1 = y 6= 0, and so we’ve proven this case.

(3) Finally, if a configuration is neither a corner nor one of the above cases, it must begin with
somezwwith z not equal to 0 mod 2m; that is,r0 6= 0. Conditions (a) and (b) are trivially
satisfied, and sincer0 6= 0, (c) is satisfied whethert j = t j−1 or not.

�
Lemma 7.5. When f( j −1) = x+y for x≡ 0 mod2m and0≤ y< 2m, the function determining the
relative orientation of a piece j, defined by rj−1⊕ r j = y⊕ r j , attains all values0 through2m−1,
and equals rj if and only if y= 0.

In terms of the puzzle, we take a piece j with a given total orientation. Then we keep tj−1
constant but change rj−1 to all possible values. Then the range of relative orientations to which
piece j may move has all possible values0 through 2m− 1. Furthermore, piece j retains its
orientation rj if and only if y= 0 (thus if it does not change tower, this is not an actual move).

Proof. This proof is nearly trivial. Sincer j is fixed andy changes and both are less than 2m−1,
by the definition of⊕, the bitwise additiony⊕ r j must attain all possible values 0 through 2m−1.
Also, clearlyr j is returned only ify= 0. �
Theorem 7.6.The puzzle defined in Definition 7.1 for dimension d and iteration n corresponds to
the iterated complete graph Knd. That is, each puzzle configuration represents a vertex and each
legal move between configurations represents an edge.

Proof. The 0th piece, by the first rule, may always move to any other total orientation 1 through
d−1. Then the puzzle with only one piece has thesed configurations and can move freely between
them. This clearly corresponds to the complete graphKd = K1

d .
So assume that the puzzle withn−1 pieces corresponds toKn−1

d . We will add a new piece that
is more restricted (or bigger, or to the right) than all the other pieces. Note that, by our rules, legal
moves by the 0th and by a j th piece are not affected by the orientation or even existence of any
pieces j +1 or higher. Thus the new puzzle is simplyd copies of the puzzle withn−1 pieces.
In each copy, the new, added piece has a different orientation 0 throughd−1. By our induction
hypothesis, these smaller puzzles correspond toKn−1

d subgraphs, so we need only show that they
connect in the correct manner to createKn

d .
Fix someith subgraphKn−1

d . First we show that this subgraph has exactly one corner thatis also
a corner ofKn

d. Then we prove that the otherd−1 corners of the subgraph connect to each of the
d−1 other subgraphs, and that there are no other connections between them. (By Lemma 7.2, all
edges are undirected as desired.) Then, sincei is arbitrary, we will have proven our claim.

In the ith subgraph, each label was lengthened by the characteri. By Lemma 7.3, the corner
of Kn

d in this subgraph must then have the labelx. . .xi with xequiv0mod2m and i = x+ y with
0 ≤ y < 2m. But sincey < 2m, we have only one choice forx so thati = x+ y. Then the vertex
x. . .xi is the one and only corner ofKn

d in this subgraph.
Now consider some other corner vertex in theith subgraph ofKn−1

d . Then by Lemma 7.3 its
label inKn

d must have the formw. . .w(w+z)i with w≡ 0mod2m and 0≤ z< 2m. Also we do not
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have thatz= 0 andw = x at the same time, or this configuration is the corner we have already
addressed. Denote the piece with total orientation piecej. We have two cases:

(1) If w = x, thenz 6= 0. Thereforew. . .w(w+ z)i does not have the correct form to be a
corner ofKn

d. Since it was, however, a corner ofKn−1
d , we must be able to changei. Note

that t j = t j−1 sincew = x and i = x+ y. Thus the last piece stays on this tower since
2t j−1− t j = t j . By Lemma 7.5, for 1≤ z< 2m,we have thatr j−1⊕ r j becomes everything
exceptr j (since the tower remains the same, that value would represent no actual change
of the piece). Then these corners connect to 2m−1 other subgraphs.

(2) On the other hand, supposew 6= x. Thent j 6= t j−1 sincex andw represent total orientation
both equivalent to 0mod2m but distinct. By Lemma 7.5, for each value ofw, the value of
r j changes to all of its possible 2m values; there areq−1 possible values forw (sincew is
not x). Also, since our total orientation isw+ r j andr j < 2m, all these values are distinct.
Thus these corners of the subgraph connect to exactly(q−1)2m other subgraphs. Note also
that these subgaphs must be different from those in (1) sincethose are on a different tower.
Then we have a total of 2m− 1+ (q− 1)2m = q · 2m− 1 = d−1 connections to distinct
other subgraphs as needed.

Finally, if we have some vertex that was not a corner inKn−1
d , then it has degreed by Lemma

7.4. We know, also by this lemma, that no vertex can have degree higher thand. Since adding a
more restricted piece cannot change legal moves by pieces less restricted than itself, we know that
our new piece must not be able to move. Thus the connections between subgraphs above are the
only such connections.

�

7.3. Conclusions on the Puzzle for General Dimension.As desired, we have now found a puz-
zle that can represent the iterated complete graphKn

d for any iterationn and any dimensiond. The
simplest cases,d = 2 andd = 3, have been known and well-studied for years. (The Towers of
Hanoi puzzle supposedly dates back to Buddhist legend.) Extensions to these two puzzles provide
interesting puzzles in their own right, but we show that we can go further by combining the two
types using a simple and beautiful theorem: every integer isan odd number times a power of 2.

Further research could be done to prove that the puzzle for general dimensions has finite-state
machines for codeword recognition and error-correction. We believe this to be the case, though the
recursive definitions quickly become very complicated. Also, for both Spin-Out and the Towers of
Hanoi puzzle, we have an easy way to map the codewords to a subset of the natural numbers and
back, processes that are called decoding and encoding. Evenfor the dimension 4 Reflection Puzzle
these processes are not simple though, again, we believe they exist.

Even with these few open areas, this general puzzle makes complete a rather intriguing relation-
ship between a series of puzzles and the family of iterated complete graphs.

8. NEW LABELINGS

The following are a couple of labelings which deserve to be included in this discussion. It is
surprising that they were not presented in any past research. While they do not satisfy all of the
properties that we would like, they are intuitive and have some nice characteristics.
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8.1. The Corner-Distance Labeling. Recall that the corners ofKn
d are thed vertices whose de-

grees ared−1. Assign each corner ofKn
d a unique number from{0, . . . ,d−1}. It makes sense to

assign 0 to the “top” corner and move in one direction, for example counterclockwise, numbering
sequentially. We will use this convention. We give each vertex the labelδ(0), . . . ,δ(d−1) , where
δ(i) is the distance from the vertex to corneri. Figure 29 has some examples.

FIGURE 29. Corner-distance labels onK1
3 , K2

3 , andK3
3 .

Now define a function

l : Ln
d×{0, . . . ,d−1} 7−→ Ln

d by

l(δ, i) = δ(0)+2n, . . . ,δ(i −1)+2n,δ(i),δ(i +1)+2n, . . . ,δ(d−1)+2n.

That is, given a labelδ and the positioni of one of its components,l adds 2n to all but theith

component of that label. The functionl also operates on sets, mapping all labels in the set without
changing their relative positions. The value ofn will be clear when we use this notation.

Example 8.1.Given that L12 = 01−10, then

L2
2 = l(L1

2,0)− l(L1
2,1) = 03−12−21−30.

Iterating fromLn
d to Ln+1

d involves connectingd copies ofLn
d. The vertices in theith subgraph of

Kn
d will remain the same distance from theith corner, but will be 2n further from the other corners.

Thus,Ln
d satisfies the recursion in Figure 30, usingd = 4 as an example.

FIGURE 30. Recursive corner-distance label construction for dimension 4.
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Theorem 8.2.The corner-distance labeling assigns a unique label to eachvertex of Kn
d.

Proof. Fix d > 2. Kn
d is the complete graph ond vertices. Each vertex ofKn

d has degreed−1 and
so is a corner vertex. The labels are strings of lengthd over{0,1} with exactly one zero. Only
corneri’s label has a zero in theith position because no other vertex is distance zero from corner
i. Thus, no labels onK1

d are repeated. Now assume that no labels onKn
d are repeated for some

n > 1. Given two labelsδ1 andδ2 of vertices onKn
d , we haveδ1( j) 6= δ2( j) for somej by our

assumption. Whenδ1 andδ2 are in the same subgraph ofKn
d , iterating toKn+1

d involves adding
2n to the same component ofδ1 andδ2. Of course, this preserves the inequality. Whenδ1 and
δ2 are in different subgraphs, iterating involves adding 2n to different components. Then we must
check thatδ1( j) 6= δ2( j)±2n. This is true sinceδ1( j),δ2( j) ∈ {0, . . . ,2n−1}. Thus, every pair
of labelsδ′1 andδ′2 of Kn+1

d will have δ′1( j) 6= δ′2( j) for somej. Therefore, the corner-distance
labeling assigns a unique label to each vertex. �

The corner-distance labels can be used to find the distance from one vertex to another. First,
we introduce some notation. Ifv is a vertex,v(i) means theith component of the label ofv. Let
min(v) represent the position of the smallest component of the label of v. Remember that the first
component is in the 0th position.

Example 8.3. If the label of v is 671, then min(v) = 2.

The following algorithm finds the distanced from vertexx to vertexy on Kn
d.

Algorithm 8.4. If min(x) = min(y) = i, then decrement n by one and subtract2n from all but the
ith components of each label. Let these strings be the new labelsfor x and y. Repeat this until
min(x) 6= min(y) or n= 0. (If the original labels of x and y have min(x) 6= min(y), then we have
not done anything yet.) If n> 1, decrement n once more and subtract2n from all but the min(x)th

label of x and all but the min(y)th label of y.
The distance d from x to y is given by

d(x,y) =





n n= 0,1

min
{

x(min(y))+y(min(x))+1,

x(q)+y(q)+2n−1+1 : q 6= min(x),min(y)
}

n> 1 .

Proposition 8.5. Algorithm 8.4 correctly finds the distance between two vertices.

Proof. Whenmin(x) = min(y), x andy are in the sameKn−1
d subgraph. Then, by the recursive

structure of the corner-distance labeling, subtracting 2n−1 from all but the smallest components of
the labels ofx andy gives their corner-distance labels onKn−1

d . Continuing this gives the corner-
distance labels ofx andy on the smallest subgraph that containsx andy. If n= 1, the labels have
been reduced to those on the complete graphK1

d. Thend(x,y) = 1. If n= 0, the labels ofx and y on
K1

d have their minimum in the same position. These labels are strings over{0,1} with exactly one
zero. Thenx= y andd(x,y) = 0. If n> 1, thenx andy are inKn−1

d subgraphs ofKn
d . A path from

x to y will go through corners of both subgraphs. Then subtracting2n−1 from all but themin(x)th

label ofx and all but themin(y)th label ofy gives their labels onKn−1
d . Now x(i) andy(i) give the

distances to theith corners of their subgraphs. The shortest path fromx to y goes directly fromx’s
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subgraph toy’s subgraph or else passes through one other subgraph. In theformer case, we go from
x to the corner ofx’s subgraph adjacent toy’s subgraph, one across toy’s subgraph, and then from
the corner ofy’s subgraph adjacent tox’s subgraph toy. That ismin{x(min(y))+1+y(min(x)). In
the latter case, we go fromx to a subgraph cornerq which is neither adjacent toy’s subgraph nor a
corner ofKn

d . Then one across to the other subgraphq, of which the distance from corner to corner
is 2n−1−1. Then one across toy’s subgraph and the distance from cornerq of y’s subgraph toy.
That isx(q)+1+(2n−1−1)+1+y(q).

The distance along a path through two subgraphs is at least 2(2n−1−1)+3= 2n+1, while the
direct path hasx(min(y))+y(min(x))+1≤ 2(2n−1−1)+1= 2n−1. Thus, paths through two or
more subgraphs need not be considered. �

Proposition 8.6. The set of vertices on Knd is a metric space.

Proof. We will show that the distanced given by Algorithm 8.4 is a metric on the set of vertices
on Kn

d . Exchangingx andy in the algorithm yields the same distance. This is trivial tocheck.
Thend(x,y) = d(y,x). We established in the proof of Proposition 8.5 thatd(x,y) = 0⇒ x= y. If
x= y, thenmin(x) = min(y) for every step in the algorithm so we will decrement ton= 0. Then
x= y⇒ d(x,y) = 0.

Only left is the triangle inequality. Distance is minimal bydefinition. Proposition 8.5 establishes
thatd(x,z) is the distance traveled on a shortest path fromx to z. Assume for some vertexy that
d(x,z)> d(x,y)+d(y,z). Then going throughy is a shorter path fromx to z, a contradiction since
d(x,z) is already minimal. Then it must be thatd(x,z) ≤ d(x,y)+ d(y,z). Equality holds only
wheny is on a shortest path fromx to z. �

We can now refer to the distance between two vertices, ratherthan from one to another, without
confusion.

The corner-distance labeling onKn
2 has the finite-state codeword recognizer and error-corrector

presented in Figure 8.1.

0 1 2
1 0

0

1

1 0 2
1|0 0|1

0|1

1|0
0|0

1|1
FIGURE 31. Machines for recognition of codewords (left) and error-correction
(right) onKn

2 for the corner-distance labeling.

The recognizer reads from right to left the first component ofa label in binary and checks if it’s
divisible by three. The double circle (state 0) is the accepting state. If you end up in state 1 or 2,
start at that state in the error corrector. Read from right toleft the first component of the label in
binary, recording the output. The corrector hasinput | output. The outputδ(0) is the corrected
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first component of the label. The second componentδ(1) hasδ(1) = (2n−1)− δ(0), which the
reader may verify.

The machines in Figure 8.1 were given by Bode[5]. The recognizer ends in stater when a binary
number isr mod 3. The corrector then “sends” the number to the nearest 0 mod 3 number.

Conjecture 8.7. The corner-distance labeling has no finite-state machine for codeword recogni-
tion for d> 2.

A proof of Conjecture 8.7 would show that the set of codewordsonKn
d for a fixedd > 2 is not a

regular language. This normally requires appealing to the Pumping Lemma. We were not success-
ful. Even when the labels are written in based, it seems that an indefinite amount of information
from the first component would have to be remembered to distinguish between codeword and non-
codeword. Of course, a finite-state machine can only deal with a finite amount of information.

There is, however, Algorithm 8.8 for codeword recognition on the corner-distance labeling.

Algorithm 8.8. Given a label D0,D1, . . . ,Dd−1 on Kn
d , G(D0,D1, . . . ,Dd−1, n) = true if and only

if D0,D1, . . . ,Dd−1 is a codeword.
The base cases are given by

G(D0,D1, . . . ,Dd−1, 1) =

{
true, D0 = 0,Di 6=0 = 1

false, else
U(D0,D1, . . . ,Dd−1, 1) = false

.

The base cases are obvious because we require that the top vertex, labeled 01... be a codeword.
The other cases are given by

• when n is even

G(D0,D1, . . . ,Dd−1, n) = G(Di ,Di+1−2n−1, . . . ,Di+d−1, n−1) , Di is min

U(D0,D1, . . . ,Dd−1, n) =

{
U(D0,D1−2n−1, . . . ,Dd−1−2n−1, n−1) , D0 is min

G(D0−2n−1, . . . ,Di, . . . ,Dd−1−2n−1, n−1) , Di 6=0 is min

• and when n is odd

G(D0,D1, . . . ,Dd−1, n) =

{
G(D0,D1−2n−1, . . . ,Dd−1−2n−1, n−1) , D0 is min

U(D0−2n−1, . . . ,Di , . . . ,Dd−1−2n−1, n−1) , Di 6=0 is min

U(D0,D1, . . . ,Dd−1, n) = U(Di,Di+1−2n−1, . . . ,Di+d−1, n−1) , Di is min

where addition of subscripts is mod d.

Algorithm 8.8 follows directly from the G-U construction and the recursive structure on the
corner-distance labeling. Permuting the components of a label, asG does whenn is even andU

138



36 Skubak, Stevenson

whenn is odd, corresponds to rotating a subgraph. Recall that constructingGn
d requires making

d copies ofGn−1
d and connecting them so that the top vertex of every copy remains unconnected.

So thekth copy will rotate 2πk/d radians. Then corner 0 becomes cornerk, 1 becomes corner
k+1, etc. Cornerd−1 becomes corner 0 of the firstGn−1

d subgraph. Since the corners change
the components of the labels permute accordingly. This is where the addition modd comes from.
Subtracting 2n−1 from all but the minimum component of a label corresponds to pairing down to
its subgraph. In a sense, this is the opposite of iterating.

8.2. The Subgraph Labeling. The G-U construction produces the P1ECC onKn
d by breaking

it down into subgraphs, and subgraphs of subgraphs, etc. Then it should be easy to recognize
codewords with a labeling scheme that corresponds to subgraphs. We were right about this. We
will show that the Subgraph labeling supports finite-state recognition.

To construct the labeling, start with the complete graphK1
d on d vertices. Label each vertex

of Kn
d a unique number from{0, . . . ,d−1}. It makes sense to assign 0 to the “top” corner and

move in one direction, for example counterclockwise, numbering sequentially. We will use this
convention. Let the vertex with labelk be called thekth vertex or vertexk. Iterating toK2

d , make d
copies ofK2

d and choose one to be the top. Form edges between the copies so that the top copy is
adjacent to the top vertices of the others and vertex 0 of the top copy is still a corner. The top copy
will be called the 0th subgraph. Call a non-top copy thekth subgraph, wherek is vertex of the top
copy to which the subgraph is adjacent. Now append ak to the labels in thekth subgraph. Figure
32 has some examples.

FIGURE 32. Subgraph labels onK1
3, K2

3 , andK3
3 .

We see that label 221, for example, is first vertex in the second subgraph of the second subgraph.
The labelingLn

d satisfies the recursion in Figure 33, usingd = 4 as an example.

Theorem 8.9. The machine in Figure 33 correctly recognizes codewords of Kn
d with the subgraph

labeling.

Proof. This machine started out nondeterministic, with two start states and one accepting states.
For the moment, imagine the roles of the start state and accepting states in Figure 33 are reversed.
Note the four columns of states. The first column on the left (with one state) corresponds to G
even, the second to G odd, third to U even, and fourth to U odd.

Whenn is even, we start at the top state in the G even column. Readingk we move to G odd
and now we are in a subgraph whosekth corner was a top vertex because G rotates whenn is even.
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FIGURE 33. Recursive subgraph label construction for dimension 4.

FIGURE 34. The codeword recognizer for subgraph labeling onKn
d.

The d G odd states “remember” which of thed corners was top. Now, whenn is odd, G makes
its top subgraph G even and the others U even without rotating. Whenn is even, U makes its top
subgraph U odd in column 4 and the others G odd. Note that thed states in column 3 also know
which was top. Whenn is odd, U readsk and rotates a copy of U even so the “top” is at thekth

corner. This covers all the transitions.
In the G-U construction, onlyG1

d, corresponding to a G odd state, has a codevertex and it is a
top vertex. The last componentj of a subgraph label gives the location of the vertex onKn

d. The
label is a codeword if the label’s vertex is in aG1

d whose top was rotated to thej th vertex. Thus,
the only way to land on G even, the accepting state, is to be on aG odd state and read from the last
component that the vertex started as a top vertex.

This proves the non-deterministic machine you were asked toimagine. Note that each transition
is bidirectional. We could read the labels in reverse order.If we start at the accepting state, we
will end at one of the two start states. So we exchange their roles to obtain the deterministic
machine. �
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Theorem 8.10.The machine in Figure 33 has a minimal number of states to recognize codewords
on Kn

d.

Proof. The state minimization algorithm[21] groups states that are equivalent to arrive at a minimal
number of states. We begin by grouping states into acceptingand non-accepting. If we start at any
two statesA andB in a group, read a string, and end up in states belonging to different groups, we
know thatA andB are distinct. In this way, we determined that the machine is minimal whend= 3.
In particular, after reading all possible strings (0, 1, and2) of length one, the states in columns 1
and 4 are found to be distinct. Since the machine corresponding to d > 3 has all the states and
transitions of thed = 3 machine, we know the state minimization algorithm splits up the states
in columns 1 and 4 for alld ≥ 3. Going from ad machine to ad+1 adds two new states to the
bottom of the machine. Starting at one new state and readingd takes us to the state in column 1.
The other state goes to column 4. Thus, the new states must be distinct. �
8.3. Conclusions on the New Labelings.No attempt was made to fit a puzzle to the corner-
distance or subgraph labelings. No simple methods are knownfor various tasks like error correc-
tion, encoding, and decoding on the labelings. They do not have the Gray code property. On the
other hand, they have some attractive qualities like easy construction and recognition. Also, each
labeling on a graph has symmetries. The fact that the labels describe attributes of the actual graph
may make them useful for further study of iterated complete graphs.
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