A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION

ELIZABETH SKUBAK AND NICHOLAS STEVENSON

ADVISOR: PauL CuLL
OREGON STATE UNIVERSITY

ABSTRACT. The Towers of Hanoi puzzle can be used to label a family oplggan a way that
provides easy (finite-state) coding properties. This puzah be modified to have any odd number
of towers (greater than three) and the rules adjusted scsifmdar easy labelings can be created
on the corresponding odd-dimensional graphs. Howeverptizzle cannot be directly extended
to an even number of towers and retain its essential streictAre there other puzzles that exist
on even-dimensional graphs in this family? A puzzle for thdirBensional case is known, and is
even sold commercially as the Spin-Out Puzzle. We give aensiin of this puzzle for graphs
of any dimension 2 for m> 1. We also explore combinations of this extended Spin-Ouzeu
with the Towers of Hanoi puzzles to create puzzles that spord to the Sierpinksi graphs for any
dimension. In addition, we present two new labelings whialkiehsimple constructions and some
easy coding properties.

1. INTRODUCTION

The Towers of Hanoi puzzle is an interesting and often-stligiuzzle that also has curious
applications to coding theory. In particular, it can be useldbel a family of graphs in a way that
provides easy (finite-state) coding properties[10]. Intidac2, we give background information
on this family, called Sierpinski graphs or iterated congbgraphs, as well as on codes and labels.
It has also been proven in previous work (see [16],[14]) that Towers of Hanoi puzzle can
be modified to have any odd number of towers (greater thae)lared the rules adjusted so that
similar easy labelings can be created on the correspondimtgionensional graphs. We summarize
these results in Section 3.

However, the puzzle cannot be directly extended to an evembeu of towers and retain its
essential structure. Are there other puzzles that existesetassociated even-dimensional graphs?
A puzzle for the 2-dimensional case is known, and is even soidmercially as the Spin-Out
Puzzle, which we explore in Section 4. In Section 5, we givexension of this puzzle to the
4-dimensional case based on work by Weaver[28], and alsndxhis to a puzzle for graphs
of any dimension 2 for m> 1 in Section 6. We then give the recursive labels of the graphs
corresponding to these puzzles, and show that there are-$itsite machines that can recognize
codewords as well as error-correct words. In Section 7, vpéoes combinations of the extended
Spin-Out Puzzle with the Towers of Hanoi puzzles to create pezzles that correspond to the
iterated complete graphs for all dimensions, includingrémeaining even dimensions. These are
created by writing any dimension gs2™ for q odd; the puzzle will have towers but also pieces

Key words and phrasegraphs, codes, puzzles, Sierpinski graphs, iterated @imgtaphs, error-correction.

This work was done during the Summer 2008 REU program in Ma#tties at Oregon State University.
1

104

2 Skubak, Stevenson

that have 2 orientations on each tower. The rules of the puzzle are g#allgm combination of
the rules of both puzzles. As desired, they reduce to thes ffiolethe known puzzles when the
dimension is odd or a power of two.

Our search for other labelings produced two, the Cornetadie and Subgraph labelings, which
have intuitive constructions and several desirable charatics. We stopped short of considering
puzzles for them. Section 8 covers the labelings and some tessilts.

CONTENTS

1. Introduction

2. Graphs, Labels, and Codes
2.1. lIterated Complete Graphs
2.2. Codes on Graphs: Perfect One-Error-Correcting Codes 4

wwek

2.3. Labelings and Codewords 4
2.4. The G-U Construction 4
3. The SF Labeling and Puzzle 6
3.1. Construction of the SF Labeling 7
3.2. The SF Puzzle 7
4. Dimension 2: The Spin-Out Puzzle 9
4.1. Graph and Label 10
4.2. Codeword Recognition 11
4.3. Error Correction 11
5. Dimension 4: The Reflection Puzzle 12
5.1. Rules 12
5.2. Graph and Label 13
6. Dimension 2 14
6.1. Rules 15
6.2. Graph and Labeling 16
6.3. Recursive Labeling 18
6.4. Codeword Recognition 20
6.5. Error Correction 23
7. Other Even Dimensions 26
7.1. Dimension 6 26
7.2. General Dimensions 28
7.3. Conclusions on the Puzzle for General Dimension 31
8. New Labelings 31
8.1. The Corner-Distance Labeling 32
8.2. The Subgraph Labeling 36
8.3. Conclusions on the New Labelings 38
References 38

105

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 3

2. GRAPHS, LABELS, AND CODES

In this section we give some background on the specific graghwiill be working with, as
well as the basic definitions for codes on graphs. Togetheirtformation forms the basis for our
investigations.

2.1. lterated Complete Graphs.

Definition 2.1. A (simple) graph G = (V,E) consists of a finite set (&) (called vertices) and a
set HG) (callededges). Elements of E are unordered pairs of elements of V. Twacesrty and
v are adjacent (have an edge between them(vf, v>) € E. The adjective “simple” indicates that
any two vertices have at most one edge between them, andbthiattex is adjacent to itself.

Definition 2.2. Thedegree of a vertex v is the number of vertices which are adjacent to v.

Definition 2.3. Thecomplete graph on d vertices, denotedqKis the graph such that all the ver-
tices are pairwise adjacent. That i¥,(Kq)| =d and EKqy) = {unordered pairda,b) : a,b € V(Kg)}.

Figure 1 shows some complete graphs.

FIGURE 1. The complete graphss, Ks, andKsg.

Definition 2.4. Aniterated complete graph, also known as &ierpinski graph[15], on d vertices
with n iterations, denoted X can be defined recursively.c}lis the complete graph on d vertices.

Kg is composed of d copies oﬁKl and edges such that exactly one edge connects ef;\‘ch K

subgraph to every other K ! subgraph and exactly one vertex in each of tie ¥subgraphs has
degree d- 1.

We say that a grapK| hasdimensiond.

Definition 2.5. A subgraph M of a graph G consists of a subsetM) C V(G) together with the
associated edges.

In particular, thed copies oﬂ<g‘1 from whichKj is constructed are all subgraphsk.
lterated complete graphs are easier to explain using exanglhe grapij can simply be

thought of asd copies ofKQ‘1 connected in a nice way, or alternatively as the ng@hl with

each vertex replaced by a copykyf. Figure 2 shows the grapl@, Kg anng, illustrating how
each graph is constructed from the graph of the previousrbios.

106

4 Skubak, Stevenson

RN KA
‘V‘;A"A;
WYy

[~ N

b
A

AN

FIGURE 2. The iterated complete grapkig, KZ andKg.

Definition 2.6. A corner vertex, or simplycorner, of the graph K is a vertex with degree ¢ 1.
A non-corner vertex is simply a vertex that is not a corner. All non-corner veggoof iterated
complete graphs have degree d.

2.2. Codes on Graphs: Perfect One-Error-Correcting Codes.

Definition 2.7. Let G be a graph and letV be the set of vertices of G. Thesdaon G is a subset
C C V. Acodevertex is a vertex c= C. Anoncodevertex is a vertex ¥ C.

Definition 2.8. A perfect one-error-correcting code (or PLECC) on a graph G is a code such that:

(1) No two codevertices are adjacent.
(2) Every noncodevertex is adjacent to exactly one codevertex.

Examples of PLECC'’s can be found in the left-hand graphsgarés 3, 4, and 5.
2.3. Labelings and Codewords.

Definition 2.9. A labeling on K is a method of assigning strings to the vertices fsich that
this method gives a bijection between vertices and strilgs. string assigned to a vertex will be
called thelabel of that vertex.

Definition 2.10. In a labeling of G, acodeword is the label of a codevertex. @oncodeword is the
label of a noncodevertex.

We say that] is the labeling oKj. Which labeling we mean will be clear from the context.

Definition 2.11. Let G be a graph. A labeling of G has ti&ay code property if every pair of
adjacent vertices has labels which differ in exactly ondtpms

2.4. The G-U Construction. Cull and Nelson[10] proved that determining whether a giyeaph
has a PLECC is an NP-complete (difficult) problem. HoweVey introduced a relatively simple
method for constructing a PLIECC &4 for any iterationn. Also, they proved that this code
is unique up to rotation, with strict uniqueness if a spedifi@rner ofK? is required to be a
codeword. These results were later found to generalizegioenidimensions, and independently
by Klavzar, Milutinovic, and Petr in [15]. Cull and Nelsonsethod has come to be known as
the G-U construction. It is the foundation of our methods dodeword recognition and error
correction on iterated complete graphs.

107

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 5

The G-U construction uses two types of coded<gn G-codes and U-codes. L&f} denoteKj
with the G-code and ldf | denoteK] with the U-code.Gj andU} are constructed recursively as
follows:

e To construcG}, designate one vertex Bf as thetop vertexand rotate it to the top position.
Make this vertex a codevertex. Make the otller 1 vertices noncodevertices.

e TO construcUdl, designate one vertex Kﬂ as the top vertex and rotate it to the top position.
Make alld vertices noncodevertices.

Figure 3 showsE andUZ.

AN

FIGURE 3. Gt andUZ.

We now show how to constru@j andU] for arbitraryn:
To construcGj whennis even:
(1) Maked copies ofG] .
(2) Connect each pair of copies so that the top vertex of es@py remains unconnected.
(3) Designate the top vertex of sor@@‘l as the top vertex o&}j.
To construcGj whenniis odd:
(1) Create one copy @3} * andd — 1 copies o] .
(2) Connect the top vertices of the copiesUzéYl to distinct non-top corner vertices G@‘l.

(3) Connect each pair of copies ldgj‘*1 by one edge such that
e This edge connects a non-top corner vertex in one copy to dapoorner vertex in
the other copy.
e Exactly one non-top corner vertex of ead@‘l remains unconnected.

(4) Designate the top vertex G’(}’l as the top vertex oB}j.
To construct§ whenn s even:
(1) Make one copy o8] andd — 1 copies ofG}} .
(2) Connect the top vertices of the copiei}gfl to distinct non-top corner vertices Uﬁ‘l.
(3) Connect each pair of copies @ﬂfl by one edge such that
e This edge connects a non-top corner vertex in one copy to dapoorner vertex in
the other copy.
e Exactly one non-top corner vertex of ea@ﬁ‘l remains unconnected.
(4) Designate the top vertex Ulé‘*l as the top vertex dfl |

To constructJ§ whenn is odd:
(1) Maked copies ofu] 2.

108

6 Skubak, Stevenson

(2) Connect each pair of copies by a vertex such that the taewef every copy remains
unconnected.
(3) Designate the top vertex of sorld§’1 as the top vertex dfl .

This is much easier to understand via example. Figure 4 s@mdug. Figure 5 show@% and
us.

FIGURE 4. G2 andUZ2.

FIGURE 5. GZ andU_.

3. THE SF LABELING AND PuUzzLE

Because labels and puzzles for odd dimensions have bediigstd in previous papers (see
[14], [16]), the focus of our paper is iterated complete gsawith even dimension. In this section

109

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 7

we summarize those results. The SF labeling on the odd dioreiterated complete graphs has
been established to have finite-state machines for codeneoognition and error correction. The
SF labeling also has the Gray code property and correspondgtizzle called the SF puzzle.
In the cased = 3, the SF labeling corresponds to the Towers of Hanoi labgajinen by Cull
and Nelson[10]. It has been demonstrated that even dimmsadsterated complete graphs do not
support SF-like labelings.

3.1. Construction of the SF Labeling. Let d > 3 be an odd number. The labeling K is
constructed recursively from the IabelingKﬂ“l.

LabeIK& as follows: the top vertex is labeled 0, then the remainintjces are labeled
1,2,...,(d—1) going counterclockwise. Figure 6 shows the SF Iabelinlgéof

0

2 3
FIGURE 6. The SF labeling oK2.

The SF labeling oK{ is constructed according to the following algorithm: Appifye permu-
tationa to each digit in every label dKQ‘l, wherea (z) = %z (modd). Now maked copies
of a(KQ‘l). Rotate thek! copy%‘ radians counterclockwise, then appéait each word in this
copy. Finally, connect thd copies to formK{. Figure 7 shows the SF labeling Ish?. Figure 8
shows the SF labeling &f2.

3.2. The SF Puzzle.The Towers of Hanoi is played with disks all of different size. The disks
are stacked on three towers so that no larger disk is stackempmf a smaller one. The goal is to
begin with all disks on one tower and move them to another. Weamber the towers 0, 1, and
2. A natural way to label the configurations of disks on towsnsith ternary strings as follows.
Record the tower number of the smallest disk. To the rightisfritumber, record the tower number
of the next smallest disk. Continue in this way to obtain agtof lengthn. Now each vertex of
K3 has an SF label that corresponds to a configuration of the rsos¥éHanoi puzzle. The labels
of adjacent vertices represent configurations which ardexya move from each other. Figure 9
shows the SF labeled gralﬂé" corresponding to Towers of Hanoi with 3 disks.

Now imagine we have an odd numbe> 3 of towers numbered 0 through— 1. Like the
Towers of Hanoi, configurations ofdisks on these towers can be represented by thasengs of
lengthn. The SF puzzle has the same rules as Towers of Hanoi. In additihas the following
rules to restrict the possible moves to those representéueb$F labeling oK.

(1) No disk may be moved unless all of the disks smaller thamatstacked together on the
same tower.

110

8 Skubak, Stevenson

00

49 J‘\\ 30
L\
1 o &AﬂA 60 26

41

1 01 / L7\ 66
» o (4’ N 0 (‘ < (4
AV < B

AﬁQ(y IR,

LT Neiasal
A‘e’b’?“gé 02 A‘g’ °5
g . WY
IR

33 03 04 44

FIGURE 7. The SF labeling okZ.

(2) When a disk is able to move, if the stack of smaller disksnisowera and the disk to be
moved is on toweb, then the disk may only move to towga— b) modd.

Note that the movement of the smallest disk is unaffectethbye additional rules; it can always
move to any tower. Figure 10 shows configurations correspgno labels 220 and 224 dﬁ53
Here the largest disk can only move between towers 0 and 4ndedd there is an edge between
these two vertices iKZ2, as shown in Figure 8.

111

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 9

2227122 102 002 003 403 433 333

FIGURE 8. The SF labeling ok3.

000

211 201 102 122

FIGURE 9. The labeled graphg corresponding to the Towers of Hanoi with 3 disks.

4. DIMENSION 2: THE SPIN-OUT PuzzLE

A good starting point for our investigation into puzzles éven-dimensional iterated complete
graphs is the Spin-Out puzzle by ThinkFun[25]. The goal efghme is to remove a rectangle with
seven spinners on it from a plastic case. In the traditiot@atisg position, all seven spinners are
vertical, and the rectangle can only be removed when all®@&ghinners are aligned horizontally.
Let the spinners be labeled 0 to 6 from the left to the righte i spinner can only be turned

112

10 Skubak, Stevenson

FIGURE 10. Configurations corresponding to labels 220 and 224<§1n The
largest disk may move between towers 0 and 4.

when the spinners 0 through- 2 are horizontal and spinner 1 is vertical. Note that the leftmost
spinner is free to move at anytime.

X0y § G

FIGURE 11. A configuration of the Spin Out puzzle. The spinner unterdrc
may move, and we may also slide the large rectangle to theaighmove the the
leftmost spinner.

|

To represent this puzzle by a labeling on a graph, let eacimepbe represented by a bit. If the
spinner is horizontal, the bit is O; if it's vertical, 1. Thést each configuration of the puzzle be
represented by a string of seven bits, the leftmost bit spording to the leftmost spinner and so
on. We associate these labels with vertices, and when weeaedges between them representing
possible moves of the Spin-Out puzzle, we get a Gray Iabellirlg27.

Note that the puzzle can be generalized to use any numbeimofesp, not just 7. This resulting
family of puzzles can be represented by the reflected binasy Gode onkK?, which we now
describe.

4.1. Graph and Label. The reflected binary Gray code is a well-known labeling sahemK}
with an easily defined recursive construction[26].

Forn =1, let the reflected binary Gray code;, be 0-1. That is, we label one vertex 0 and the
other vertex 1.

To construcGy:

(1) Take two copies 0&,_1. Append 0 to the labels in the first copy and 1 to the labelsen th
second copy.

113

A New Puzzle on Iterated Complete Graphs with Dimension 2 11

A

& 1 01

‘) (o
0% 1% 170 o%0 o1 11 %1 od

FIGURE 12. The reflected binary Gray code foe= 1, n= 2, andn = 3 with code
vertices circled

(2) Reverse the order of the strings in the second copy, andexb the new beginning of the
second copy to the end of the first copy.

Note that in some papers, these 0’s and 1's are sometimesnuteg rather than appended; we
append for consistency with previous work and for theirtrefeships to the puzzles.

4.2. Codeword Recognition. If we consider the perfect one error-correcting code onl#tisling
as defined by the G-U construction (see Section 2.4), we fenddde vertices as shown circled on
the graphs. Now, given a label, we would like to know whetrarnat it is a codeword.

More specifically, is there a finite-state machine that recoes codewords? Yes, there is a
machine that can be created directly from the recursivetoaeigon of the label and code. This
codeword recognizer for the reflected binary Gray code isveha Figure 13. This machine is
nondeterministic, since it has more than one start statke iteration is even, the machine starts in
stateGE. If the iteration is odd, the machine starts in si@fe If the machine ends in the accepting
state, then the word is a codeword.

We can easily convert this machine to a deterministic maghhough we do not show this here
(see [21]) for theory on finite-state machines). Later, (®ad.4, we will prove a more general
case of this recognizer and show a deterministic versioterAdtively, if we require that 0.0 is
a codeword, the only PLECC on the graptishas the codewords at every third vertex. Thus this
machine only needs to convert the Gray label to its binarytiposand determine if that position
is a multiple of 3, both of which can be simply done with fingte machines.

4.3. Error Correction. If we place a word into the recognizer, we can decide whetheobit is
a codeword. One motivation for perfect one-error-corregtiodes, however, is to be able to easily
find, for any word, the closest codeword. This is called ecmrecting.

The error corrector for the reflected binary Gray code lalgels shown in Figure 14. The
machine reads a string bit by bit, following the transitionthathe given bit on the left part of the
label. The machine then changes that bit to the bit on the sigle of the label. The codeword
recognizer above must first be used. If the final state is at@,dtee error corrector begins at the 0
state (which returns the string unchanged, since it is awod. If the final state is either of the
C; states, the machine begins in 1; if the final state@s atate, it begins in 2.

The proof that a generalized version of this error correictdeed works can be found in Section
6.4.

114

12 Skubak, Stevenson

all

FIGURE 13. Finite-state Recognizer for the Spin-Out Puzzle

0/0
‘ =k 0/0
~C O nOBL
11

FIGURE 14. Error-corrector for the Spin-Out Puzzle

5. DIMENSION 4: THE REFLECTION PUzZzZLE

The Reflection Puzzle was first described by Weaver[28]. Wadaa physical representation
of this labeling of the iterated complete graphs of dimemsio It bears a close resemblance
to the Spin-Out puzzle. In fact, it is essentially two suclzgles stacked on top of each other.
Our goal will still be to change each piece to the zero origora In this puzzle, however, each
pieceis made up of twapinnersthat can (sometimes) move independently, giving four fbssi
orientations, shown in Figure 15.

=)4 14+ 10

FIGURE 15. Spinner orientations for the Reflection Puzzle

We will again use the labels of the pieces to represent puzmiigurations. An example can
be found in Figure 16.

5.1. Rules. As usual, the leftmost piece may move at any time. Here, hewéwnay also move
to any orientation, allowing 3 possible moves. For a pipge0 to be able to move, we must have

115

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 13

DI TS

FIGURE 16. An example puzzle orientation for the Reflection Puzatesled 0320

pieces 0 through — 2 at orientation 0. Also, if piecg— 1 is at 0, then no spinners in piege€an
move; thus we neeél(j — 1) # 0.

So suppose piecgis able to move. Which orientation should it change to? Ole 1! if a
spinner can move, it does move. Thus for any vertical spirmerece j — 1, the corresponding
spinner inj will change orientations. In Figure 16, the second to last@imay change from 2 to
1.

5.2. Graph and Label. To represent this puzzle on a graph, we will associate treddats defined
above with vertices and legal moves with edges. As hopedyrtiigh generated Is). Since only
one piece is moved at a time in the puzzle, this new labeliagGsay labeling.

To create this labeling when= 1, the top vertex on is labeled 0 and each other vertex,
moving counterclockwise, is labeled with the successitegiers through 3.

To construct this labeling scheme kg for n > 1:

(1) Construct 4 copies of the labeling b’lj‘l, and index these copies from 0 to 3.

(2) Reflect copy 1 vertically, and add a 1 to the end of evergllabthe copy.

(3) Reflect copy 2 both vertically and horizontally, and adtita the end of every label in the
copy.

(4) Reflect copy 3 horizontally, and add a 3 to the end of ewaogllin the copy.

(5) Place copy 0 as the top copy and the others in order calot&wise. Finally connect
each copy to all of the other copies, as shown in Figure 17.

As in the Spin-Out puzzle and associated labeling, thidiladpdas finite-state recognition and
error correction, which we prove generally in the next secti

116

14 Skubak, Stevenson

00 30 33 03
0 3 10 20 2 13
1 21 22 12
1 2
01 31 32 02

FIGURE 17. The Reflection-Method labelings k¢ andKZ

6. DIMENSION 2™

The puzzle on four dimensions suggests an easy extensigrirofit to all dimensions which
are powers of 2. The extended puzzles will retain the slidisygect of Spin-Out, but the spinners
will be replaced by pieces which consist of a stack of spisn&vhen a piece is composedrof
spinners, it will have possible orientations, since each spinner can be in onecobtientations.
For n pieces, there will b¢2™" = d" configurations. The sliding rules will determine which
pieces can change, and new spinning rules will determinethewpieces can change. Together
they will define which configurations can change to which gumfations. Note that all proofs
in this section apply to the Spin-Out and Reflection puzzispresent, these additional puzzles
are mathematical constructions and they may be difficulthgsjzally construct so that all the
mathematical rules are completely enforced.

We need a way to associate orientations of the pieces wittbats® throughl — 1. We define
the orientations of our pieces as follows:

e For adimensionl = 2™, each puzzle piece will consist nfspinners stacked one on top of
the other.

e To find orientationj, write j as a binary number. To set a piece in this orientation, let the
1's (rightmost) bit represent the top spinner; a 0 bit me&asit is horizontal, while a 1
bit means that it is vertical. Similarly, let the 2’s bit regent the spinner just below the
top spinner, the 4’s bit the next spinner, etc. Continue imthanner; thém— 1)’s bit will
represent the bottom spinner.

e Thus for eachj € {0,...,d — 1} we have a distinct orientation and corresponding binary
number. Since there are exaadyrientations, we know we have defined all possibilities.

Example 6.1.Suppose & 8= 23, That s, m= 3, so the pieces are composedapinners. Then,
for example, th® = 000, orientation consists of all horizontal spinners, the- 111, orientation
has all vertical spinners, and tt&= 011 orientation has a horizontal spinner on the bottom with
two vertical spinners above it.

117

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 15

FIGURE 18. Piece orientations for the Dimension 8 Puzzle

Note that the B orientation will always consist of all horizontal spinneMote also that Spin-
Out and the Reflection Puzzle both consistently follow tlEming scheme.

Now, for an iteratiom for n > 1, we will haven puzzle pieces. We will call the leftmost piece
the d" piece and continue numbering the pieces from left to righusTthe rightmost piece is the
(n—1)Stpiece. Given a configuration of our puzzle, we will label ithva string of characters from
{0,...,d —1}, where each piece 0 through- 1 is represented by the number of the orientation it
is in. To avoid confusion, we will writd (j) to refer to the orientation of piede

Example 6.2. Continuing from the example above, Figure 19 has the labé#03

|
| |
\
FIGURE 19. An example configuration for the Dimension 8 Puzzle. Tibegs are
numbered left to right 0, 1, 2, and 3.

6.1. Rules. The rules of this puzzle are nearly the same as for the RefteBliizzle. First, the'®
piece may always change orientation, and may change to ey atientation.

To spin at least one spinner of t§i8 piece, we must have that pieces 0 throygh2 are 0 and
piecej—1is not 0. In our notation, we need0) throughf(j —2) to be O andf(j —1) # 0. If
these conditions are satisfied, then we must move as manyespinf thej piece as possible;
that is, any spinner that can switch between its horizomdheertical positions must do so.

For example, in Figure 19, piece 2 is able to change ori@mtsati Since the bottom spinner of
piece 1 is horizontal, the bottom spinner of piece 2 cannatenblowever, the other two spinners
can move, and so they must become horizontal. Thus we mayehhr orientation of piece 2
from 7 to 4.

The goal of the puzzle is, given some initial configuratianmove all the pieces to orientation
0. Since this puzzle can be representeckljyas we prove shortly, we know that the minimum
solution path for any two configurations is not longer th&h-21, the diameter of the graph. This
quantity is the same as for both the Spin-Out puzzle and tHeugEles. Another way of “solving”
this puzzle might be to choose two configurations and move fome to the other. Of course,

118

16 Skubak, Stevenson

puzzles are fun, but the focus of the paper is the puzzlegioglship to the family of iterated
complete graphs, which we will now prove, after some pralany lemmas.

It would be helpful to be able to know which orientation pigcean move to without thinking
in terms of spinners. To do this, we define a special operafidre operator> denotes bitwise
addition on two numbers; that isso s means write both andsas binary numbers and do a bitwise
addition (also known as a XOR, or addition without carry).

Lemma 6.3(Orientation Change Functionlf f (0) through f(j —2) areOand f(j — 1) # 0, then
piece j may move to(f —1) @ f(j). Because fj— 1)@ f(j) # f(]), piece j can make a change
to another distinct orientation.

Proof. Recall that we defined our orientations to coincide with binraumbers representing the
spinners in a piece; a 0 is a horizontal spinner, and a 1 istecakspinner. Then consider that
movement of the spinners of piegaare completely dictated by the positions of the spinners of
piecej — 1. In particular, any horizontal spinners in piece 1 block movement in piecg of the
spinner in the same horizontal plane. Therefore, any 0'sénbinary representation ¢f j — 1)
dictate that no change should occur in the correspondisgrbthe binary representation 6fj).
Since O+ x = x in bitwise addition, our formula holds in this case.

For the remaining case, consider the vertical spinnejjsHr, i.e. the 1's in the binary repre-
sentation off (j — 1). These allow movement of the corresponding spinnejjsand according to
our rule, the spinners must change. Sineell= 0 and 14+ 0= 1 in bitwise addition, our formula
holds for each bit. Thus the resdltj — 1) & f(j) is the orientation to which piecemay move.

Finally, note that sincé(j — 1) # 0, it has at least one bit equal to 1, which causes a change in
thatbitinf(j),sof(j—21)® f(j) # f(j). O

Note thatf(j —1) & f(j) can equalf (j — 1). In fact, this occurs if and only if (j) = 0. Thus
the configuration 0..0x0 may move to 0..0xx.

Lemma 6.4 (Reversibility of Moves) All moves in this puzzle are reversible.

Proof. Clearly all moves by the leftmost piece are reversible simeenay move this piece at any
time. To consider moves by some other piece, firsklet{1,...,d —1} andy € {0,...,d —1}.
Also, letW be the empty string or some fixed string consisting of charadtom{0,...,d — 1}.
Now suppose the configuration .00xyW may move to 0..0xzW (where there may be any fixed
nonnegative number of leading zeros).

By Lemma 6.3z=x@y. Then in Q..0xzW, the piece az may change tx® z=X® (XDY).
It is easy to check that bitwise addition (the XOR) is asdb@a Also, note that any string added
bitwise to itself is simply the zero string sincerll = 0+ 0= 0. Thusx® (X®Yy) = (X X) by =
0@y, which simply equaly. Therefore the configuration.0.0xzZW may move to 0..0xyW as
desired. OJ

Thus we know thatp is associative as well as commutative, and that each number own
inverse undeg. These properties will be of further use to us.

6.2. Graph and Labeling. Now that we have a puzzle, we wish to show that it is in fact the
puzzle we were looking for—the puzzle that fits the griggi{for d = 2™). We label each vertex in
K§ with the label of some puzzle configuration and connect twtices if the two configurations
are one legal move apart. Since we can only move one piecaratathe labeling scheme is a

119

A New Puzzle on Iterated Complete Graphs with Dimension 2 17

Gray code. Also, by Lemma 6.4, the edges are not directed; ayeatvays undo the last move we
made. The following lemmas will help in our proof.

Lemma 6.5(Corner Labels) The puzzle configuratioris .. Ok for k= {0,...,d — 1} have exactly
d — 1 adjacent configurations (where there may be any nonnegativeer of leading zeros).

Proof. By a rule of our puzzle, the®piece, at orientation 0, may always change to any other
orientation 1...,d — 1. This gives ugl — 1 possible moves. To see that there are no others, note
that there is no piece whefégj — 1) #~ 0. Since this is required for a piege# 0 to move, no other
moves are possible. O

Lemma 6.6 (Non-Corner Labels)All other configurations (those not of the foln. .0k for k=
{0,...,d —1}) have exactly d moves.

Proof. First, note that any configuration not of the form @k for k= {0,...,d — 1} instead has
the form Q... OxyWwhere there may be any nonnegative number of leading ze366, and where
W is the empty string or some string consisting of characters f0,...,d — 1}. Again, the first
piece may always change to any other orientation.1d — 1, giving usd — 1 possible moves.
Now, we show that there is exactly one more. Sirgé 0O, the piecej such thatf(j) =y is the
only piece that ha$(0) throughf(j —2) equal to O and (j — 1) # 0. Therefore piecg is the only
other piece that may move. By Lemma 6.3, pigaaay change from orientationto some other
distinct orientation, giving us a total dfmoves. OJ

Lemma 6.7. For a fixed ye {0,...,d — 1}, the function defining the possible change of the char-
acter y in the configuratiof...Oxy... of domain xc {1,...,d — 1} is a bijection onto
{0,...,d—1}\{y}. That is, for any other character z not y, there is some nanzesuch that
0...0xy... may change t@...0xz... .

Proof. First, let the piece with orientatioy be piecej. Sincex # 0, y does move, and so this
function is well-defined. By Lemma 6.3, pie¢eactually changes, spis not a valid element of
the range; thus the domain and range are the same size. Noeedenly show that this function
is injective. So suppose that bath andx, changey to z. Thatis,x; &y =z=x @Y. Bitwise
addingy shows thak; = xo. O

Theorem 6.8. The described generalized Spin-Out puzzle fits the grgphlKat is, each vertex
in K|j represents a configuration of pieces, and each edge repesevalid move between two
configurations.

Proof. We will use induction on the number of puzzle piesgeswvhich will correspond to the
iteration of the graplKj. First consider the puzzle with one puzzle piece consisifrg spinners.
Because this piece is th&@iece, it may change to any orientation at any time, and tsecius
the only piece, these are the only moves we can make. Cldaslgdorresponds to the complete
graphKq = K}.

Now assume that the puzzle with— 1) pieces corresponds to the grap[ﬁl. We will consider
the puzzle witm pieces. Note that if we may move thi€ piece in some puzzle, thg + 1)S piece
(and any pieces farther right) is essentially irrelevans s&en in the example in Figure 19, the
last piece does not affect what moves are legal by piece @ghrpiece 2. Thus we consider the
puzzle withn pieces to be a combination dfpuzzles, each with — 1 pieces, one puzzle for each

120

18 Skubak, Stevenson

possible orientation of our added piece. Therefore, oneacker representing the orientation of
the new piece will be appended to each label. dtenaller puzzles are each copiesK(SF1 by
our induction hypothesis. Then all that remains is to shaat thesed subgraphs connect in the
correct manner.

Recall that an iterated complete graph of dimengidmasd corner vertices (vertices that are
degreed — 1). We claim that exactly one vertex from each of t("gé‘l subgraphs will become a
corner vertex oKj: the vertex 0..0, which we know is a corner vertex by Lemma 6.5. To see
this, note that irkj, the label 0..0 will be appended with somec {0,...,d —1}. Simply using
Lemma 6.5 once more shows that the vertex.Or is a corner vertex oK}, giving usd such
corner vertices. Clearly these are the only ones, since they vertex oiKQ‘l, when appended by
somer € {0,...,d— 1}, cannot have the form.0.0r. By Lemma 6.6, these other vertices are not
a corner vertices, and we have verified this claim.

Next we show that every other corner of ea\(ﬂ‘Tl subgraph connects to exactly one different

KQfl subgraph at one of its corner vertices. Each of these otleecuertices in thda(g’l graphs
have the form 0..0sfor se {1,...,d -1} (Lemma 6.5). Thus, i, their new labels have the
formO...0stforse {1,...,d—1} andt € {0,...,d—1}. Then Q..0stmay move to 0..0s(s®t),
which is in the(s@t)" subgraph; by Lemma 6.3 this is a different subgraph thatftrseibgraph.
So consider some fixels‘i(’j‘*l subgraph, i.e. fit in 0...0st. By Lemma 6.7, over all values
of s (we knows # 0), t will change to every character excepttself. This implies that this
fixed subgraph must be connected to each of the alhed subgraphs exactly once. Sinte
was arbitrary, this is true for eact("g’l subgraph. This finishes our proof. O

6.3. Recursive Labeling. Theorem 6.8 tells us how to construct our graph and labetmg the
puzzle. We wish, however, to have a way to recursively caosthe labelings on the family of
iterated complete grapli§] without referring to the puzzle.

Unfortunately, this labeling of the family of iterated colei@ graphs of these dimensions is not
unique. For at least dimension 8, there exist other labglihgt still preserve the desired property
of having the reflected binary Gray code along each diagooat D...0. However, it does not
appear that any puzzle easily associates with any othdiriglvee have found.

The base case for our labeling is the complete gridph- Koll. Clearly any labeling of the
vertices would correspond to the puzzle, so without lossenfegality we will label some “top”
vertex 0 and label in order counterclockwise, and call thilingL .

Now assume we have] *. We know thatL]} is based ord copies ofL} * by Theorem 6.8;
however, if we simply placed each copy down, the edges cdimgethese subgraphs would not
draw the graph as we have neatly depicted it in this paperefdre we will permute each subgraph
so that the edges are in the desired locations. Clearly wtiloss of generality, we may place the
0t subgraph any way we wish, so we will not permute it. Then tatere]:

e Wheni = 0, the copy is placed in the top{Pposition and 0 is appended.

e For all otheri, the permutatioii; is applied to the last character of each label initheopy
of Lg‘l, wherel"; bitwise adds to the last character in a label. Thatfig(...x) = ... (X®1).
Then thisi!" copy is placed in thé" position counterclockwise from the top position, and
the characteris appended to each label.

121

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 19

e Finally, for eachi, the vertex at positiorj from the top position is connected to tHe
corner of j" subgraph. Ifj =i, the vertex is a corner of the entire graph and no edge is
drawn.

Example 6.9. Figure 20 shows ¥ and L2, the recursive labeling for the graphsiand K2. As an
example of how to permute a subgraph, look at the subgraplediately counterclockwise of the
top position, thelSt subgraph. This was labeled by applyifig to L% and appendind. Note that
061=1,161=0,261=3, etc.

00 70 77 70
10 % 60 67 17
20 5 5 % 27
30 4 7 37
11 61 66 16
01 71 06

o

36

7
1§§k6 > / & %6
2\%§5
3 4 55\ 25
3 35
0 5 %@ 05
L ® s
ISR 7N
63 64 14
03 73 74 04

FIGURE 20. The labeling for the first and second iterations for thaetision 8
graph, corresponding to the extended Spin-Out puzzlesaiid 2 pieces respec-
tively.

Lemma 6.10. Each permutatiorfj, for any i€ {0,...,d — 1}, is a graph automorphism onfjL
That is, applying any; does not change the structure or any edges of the graph.

Proof. First of all, note thaf’; is in fact a permutation on the vertices. Indeed, suppese.y) =
[i(...2). (Sincerl; only changes the last character, we know that the rest ofatbel Imust be
identical.) Butl'i(...y) =...(y@i)andli(...2) = ...(z®i). Theny@i=z®i andy = z so the
labels...y and...z are the same. ThUs is injective, and sinc€&; maps a set to itself]; is a
bijection.

Now, we show that for adjacent verticegs in L]}, we have that the verticdg(u) andli(v) are
adjacent i (L}). There are three cases. (In all cases, the number of leagiing may be positive
or zero.)

(1) If the vertex is labeled 0.0x, then it is adjacent only to thd — 1 verticesy0...0x
forye {0,...,d—1} (see Lemma 6.5). Call this set of verticBs Now I;(0...0x) =
0...0(x@1i), which, again by Lemma 6.5, is adjacent only€..0(x® i) for
y e {0,...,d —1}. The set of these vertices is clearly equal i(5).

122

20 Skubak, Stevenson

(2) If the vertex is labeled Q.0xz then it is adjacent to only the vertices in the set
S={y0...0xz:y e {0,...,d—1}} U{0...0x(x® 2) }.
Butl(0...0x2) = 0...0x(z®i), which is adjacent only to
{y0...0x(z®i):ye{0,...,d—1}} U{0...Ox(x® zdi)} =Ti(S).

(3) The remaining possibility is that the vertex is labeled.0xzWfor some nonempty string
of characterdV. Itis only adjacent to the labels corresponding to all clesnaf the leading
character in the label, and also to the label.Ox(x® z)W. Clearly, applyind”; (changing
the last character iW) preserves these adjacencies.

Thus all edges are preserved. O
Theorem 6.11.This recursive labeling is the same labeling as describethi@orem 6.8.

Proof. Since Lemma 6.10 shows that applying soifip¢o a subgraph does not change the edges
within that subgraph, we only need show that the new edgegndbatween the subgraphs are in
fact the correct connections. Note thatis the identity permutation since we do not permute the
ot subgraph.

So fix some subgraphin L7, and take thg™" corner vertex wherg + i. Recall thaf"; was first
applied to the subgraph and thiewas appended. Thus, since it is a corner, the label has thre for
0...0(jei)i=w.

Now we claimed in our construction method that this verteousthconnect to thé" corner ofjth
subgraph. Similar to above, thH& subgraph hadl; applied andj appended, so the label is of the
form 0...0(i @ j)]j. But this configuration may move ta00(i® j)(i® j@® j)=0...0(i® j)i =V,
since® is commutative. Thus the two vertices are indeed adjacente$ j were arbitrary, all
connections between the subgraphs are correct, and we faxanghe theorem.

O

6.4. Codeword Recognition. Using the G-U construction as described earlier in the paper
know exactly what vertices are code vertices for each gr&phce these sets are defined recur-
sively, we can use them in combination with the recursivelialy to produce recursive definitions
for the actual codewords themselves. It will be helpful tiereo a labeled graphf with a code

Gjj orUj associated with it. Thus we defi@} as the labeled graph} with the G}j code scheme,
andH/ asLj with theU/ code scheme. (We use this notation because the code vaticgsre

the codewords of the PIECC &f}, while the code vertices dfi} are a helper set of vertices.)
Then when we writd";(C) or of I'i(H]), we mean that it permutes the labels “underneath” the
code scheme, without moving the code vertices of@fer U] graph. We also use theto denote

an appendinge i means appenito X.

Lemma 6.12.
For an odd iterationn, §=C"*e0 U I Mi(H] 1) ei.
For an even iteration n, fi=H} 1e0 U UL M(Cl 1) ei.

Proof. This follows immediately from the G-U construction and tleeursive labeling. For odd
n, the 0" subgraph of the labeled grafl] is formed by placing a copy dfg‘l and appending O.
The G-U construction shows that thd 8ubgraph is a G graph, hence ﬂ?!;é_lo 0. For all otheii,

123

A New Puzzle on Iterated Complete Graphs with Dimension 2 21

theit" subgraph was labeled usiﬁQLg’l), and the code vertices chosen using the U graph. Thus
the termd’; (Hg‘l). The other equation is obtained similarly. O

Recall that in the G-U construction, we often have to rotatees G or U scheme so that the top
vertex becomes some other corner vertex. This plays a latgerr our codeword definitions, so
we formalize that rotation here. LBf be the permutation on the grapB§ andU ' that rotates the
entire set 2i /d counterclockwise; that is it rotates so that the top corfeemerly at the & corner,
now lies at thé™ corner. See Figure 21 for an example. Note that the fun®janly moves the
code verticespot the labels associated with them, so that if we wiRteCY) or R (H{), we mean
thatR; rotates the code scheme “above” the labels without movirgpanging them.

00 70 77 70 0 70 770

10 60 67 17 10 60 67 17

20 6 5 27 20 5 27

300 4 7 300 4 7
1 61 6 16 11 61 66 16

01 71 06 01 71 76 06

31 36 31 % 36
2R 5 6 g 2R_5 6

FIGURE 21. An example of the R function

Theorem 6.13.
(1) For n odd, R(C{) =T (Cf).
(2) Forneven, RH]) =Ti(HY).
(3) Forneven[(Cj) =Cf.
(4) Fornodd,li(H}) =H].

Proof. These four results are so closely linked that the truth of @mgy of them depends on the
truth of at least one other. We prove them using as little ddpecy as possible, and at the end
show that we know enough base cases to establish each wrsalltiferations.

Beginning with (1), take sorr@SmJrl and consider what happens when we agplyRecall that
the G graph is made up of one smaller G graph@ndL smaller U graphs. First, th® subgraph,
which hadl™; applied to it in the the recursive labeling and all of whog®ela end iri, has become
the one G subgraph. This givestgCa™) ei.

Next, for j # i, the j" subgraph, which haflj applied to it in the recursive labeling and all of
whose labels end in is a U graph. However, this U graph has been rotated so fhafgtvertex is
its it corner vertex, giving uR; o I (Hgm) ¢ | (where theo denotes normal function composition).

124

22 Skubak, Stevenson

Thus in total we have tha (C3™™) = I (C3M ei U UjRiolj(H3™ e j. But suppose (3)
held; then the first element would be ju’ﬁmo i. Supposing (2) holds allows us to rewrite the
union asUJ-#i o r,-(Hgm) oj= Uj;éi Fiej (H§m> °j.

Now applyingrl; to both sides, we would have

FoR(CI™Y) =Ti(CiMei) U Mi(|JTinj(HIM e) =CiMe0 U [JTigj(HIM e (ja@i).

J# J#i
Sincej #i, we knowj @i =i jis not 0, but can be any other charactef1n...,d —1}. Thus
MoR(CE™™) =CgMe0 U (JTigj(HiM e (i@]) =C5m"
J#
by Lemma 6.12.

Thus, when their domains are restricted to odd iterationSofwe have thafjoR =1, so
thatR = I = I since numbers are their own inverses under bitwise addifiberefore we've
shown (1) if (2) and (3) are true.

Now the argument for (2) is only notationally different frombove and gives that, when re-
stricted to even iterations fy, we get that

o R(Hgm) = Hgm_loo U U ri@j(Cgm_l) o(jdi)= Hgm
J#i
by Lemma 6.12 if (1) and (4) are true. Thus we again have tisaticeed to this domaiR, =T’;.

For (3), take som€&2™ and consider its construction. In the labeling the tdf)@ubgraph was
not permuted, and then tlﬁém‘l graph was placed on top, simply giving Oém‘lo 0.

Now for any other subgraph we knowl; was applied. Also, however, tt(ézdm‘l graph was
rotated, moving its top corner to thi corner; that isR, was also applied. But if (1) holds, then
over the domain oE3™ %, we knowR, = ' = ;% so the two permutations cancel, giving us only
Cgm‘l ei. Thus if we would now apply anly;, all we would do is change the last characters, which

has no effect on the set of codewotd%;olcgm_l e i (it only changes their order on the graph).

The argument for (4) is the same as for (eﬁm“ is constructed with an unpermutet! 8ub-
graph, giving u9—|§mo 0. For other subgraphsbothl'; andR; were applied, so that if (2) holds,
we have the set of codeword§ ;- H2™ e i, which is unchanged under afy.

Finally, we show that we have a sufficient base to prove thiesas for all iterations. First, we
know that (4) holds foH]— nol"j can have an effect here, since it is the empty set.

Next, we establish (1) f(ﬁé, whose sole codeword is 0. We know tliatsends to 0, making
the codeword. SimilarlyR; rotates the G graph from the top to tiffecorner, again leavingas the
codeword. Thus the two functions are the same here.

Now, combining these two cases, we are able to prove (ZﬁlgorAIso, knowing that (1) holds

for C establishes (3) fo€2. These cases are sufficient to show each of these claimd for al
O

Corollary 6.14. For any dimension d= 2™, the codewords for the Powers of Two labeling are
described by the following recursive definitions:
for an even iteration n,

125

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 23

Cl=U% chteiand

Hi =H§ te0 U UL{Ti(CE) ol
for an odd iteration n,

ch = cgd—ll.o U g?;llri(Hg—l) eiand

Hn == U|:_0 H(rj-]— ol
Proof. The middle two equations are Lemma 6.12. The other two weregorwithin parts (3) and
(4) of Theorem 6.13. OJ

0
FIGURE 22. Nondeterministic finite-state Codeword Recognizertifigr Dimen-
sion 2" Puzzle

Corollary 6.15. A nondeterministic finite-state machine (Figure 22) thaid® strings right to left
and recognizes codewords follows directly from the remarsiefinitions in corollary 6.14.

Since the recognizer has only one accepting state, we ciy a®rse the machine to make
it deterministic by making it read the strings in the oppesitrection, left to right. We show this
deterministic machine in Figure 23. (For theory on finitatstmachines, see [21].) We leave out
several edges between the varidbystates so the structure of the machine can be more easily seen
these edges can be easily added by following thggeermutations directly. All edges involving
the G states and) states are shown. Also note that the machines for the labelsn@nsions 2
and 4 are of this form.

6.5. Error Correction.

Theorem 6.16. The finite-state machine shown in Figure 24 correctly ecorrects labels. The
recognizer must first be used; the ending state if the re@egms the start state for the corrector.
Note that for the transitions labeled withlfapermutation, each character follows that arrow and
permutes according to th&t All other edges do not change the characters.

126

24 Skubak, Stevenson

0
FIGURE 23. Deterministic finite-state Codeword Recognizer for@iraension 2' Puzzle

all[all

@ O G

i
/ d-1jd-1
0|0

FIGURE 24. finite-state Error Corrector for the Dimensidh Ruzzle

Proof. If we use the nondeterministic codeword recognizer in Fegiit, by a parity argument we
find that for any word, we end in one df+ 1 states: the codewoi@® state, thed — 1 stated V,

and theU € state. Thus this must be sufficient information to correfch. word ends in thé& state,
clearly we want to make no change, which is clearly refleatedtie corrector. Now recall that this
recognizer reads right to left, so that the leftmost bit & ldst read. Then if a word ends in some
FiU state, we can retrace one step, analogous to returning oteethie right. Note that this will
always place us in either th&y state or d& ,G state. Each of these states has exactly one 1-step path
to the accepting state; thus we need only change the lagi thietbit labeling this path to make
our word a codeword. This corresponds to the 1 middle states in the error-corrector; since the
corrector runs left to right, if we begin in one of these statee change only the leftmost bit to the
required character, which is dictated By This is clearly the case when the word is in the same
K(} complete graph as a codeword and only needs change its kfhitoor 0" piece.

127

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 25

Now, the more complicated case is correcting those wordstwdnd the recognizing process in
theU € state. This occurs when a word must change to a word outsiide iocimediate subgraph,
i.e. piecej # 0 must change orientations f¢j — 1) @ f(j) according to the rule. Then we must
have the & through(j — 2)"9 pieces at the 0 orientation, so we want to disregard alkirtros.
Clearly the error-correcting machine, beginning attthstate, does this. Then tti¢ — 1)St piece
should not be changed, but is important in deciding whatthpiece may change to. This also is
reflected in the corrector; the first nonzero orientationasainhanged, but takes the machine to a
state that rememberg j — 1). Since we wanf (j) to change tof (j) @ f(j — 1), we want to use

[t(j—1), which the machine does. These are all the possible casesfdre the machine is able to
properly correct words. O

128

26 Skubak, Stevenson

7. OTHER EVEN DIMENSIONS

Together with the SF labeling, we have now classified receisibelings corresponding to puz-
zles on the families of iterated complete graphs of odd dsimenand of dimensions that are
powers of two. The SF Puzzle is a Towers-of-Hanoi-like peizaihile the latter puzzles, based on
the Spin-Out puzzle, are completely different. What abbatdther even dimensions? It is clear
that these two types of puzzle do not easily extend to thdss dimensions, the first of which is
6. Instead we can combine the two types of puzzles to prochepuzzle and the labeling that
we’re looking for.

7.1. Dimension 6. The smaller example of the combined puzzle is for dimendierB- 21. Asin
the Towers of Hanoi, we havepieces stacked on three towers labeled 0, 1 and 2 from lafjha r
Usually, our pieces are disks that have no orientation, abdhly a piece’s tower matters. Now,
we will give each piece two orientations, 0 and 1, which cgpond to a horizontal and a vertical
orientation respectively (which is why we change the teotugy from ‘disk’). For a given piece
j, we will combine the towet; and orientation; to define itstotal orientation f(j) astj-2+rj.
Therefore there are six total orientations that each piacebe in. The distinct combinations of
towers and relative orientation clearly give distinct \eddrom 0 to 5. This is illustrated in Figure
25.

FIGURE 25. Plate positions for the Dimension 6 Puzzle

We label configurations of the puzzle, as usual, by stringsesenting the orientations of the
pieces. The leftmost digit will correspond to the smallestpe and continue in order of size with
the rightmost digit corresponding to the largest piece. slthe game configuration for iteration
n= 2 in Figure 26 corresponds to the label 50.

FIGURE 26. An Example Configuration of the Dimension 6 Puzzle

7.1.1. Rules. The normal Towers of Hanoi rules still apply. Plates mustegisvbe stacked from
largest on the bottom to smallest at the top. Only the snighlese on a tower may be moved,
and it may only move to a tower containing either no platesnty plates larger than itself. (Note

129

A New Puzzle on Iterated Complete Graphs with Dimension 2 27

that this requires all the plates smaller than this platectédgether on one tower.) As usual, the
smallest piece may always move in any way, to any orientation
In addition, piecg # 0 piece may only be moved if
(1) the(j —2)" piece through the'd piece are all the same and have orientation 0 (they are
equivalent to 0 mod 2)

(2) tj—1 equaldp throught;_»

(3) iftj=tj_q, thenrj_1 #0
Note that this means that even if we can move a piece in regaiaers of Hanoi, we may not be
able to move it in this new puzzle.

If the conditions above are met, then pigamay move to towerz_; —t; at the same time as it
moves to orientation;_; @ rj. A few examples of moves can be found in Figure 27.

50 93
o o o _— o o o

42 40

10 11
o) o @) E— O O o

FIGURE 27. Example moves for the Puzzle on Dimension 6

7.1.2. Graph and Label.These rules give us the labeling of the graph shown in Fig8re\bte
that there are two Towers of Hanoi labelings embedded in gaaph, and that there are three
reflected binary Gray code labelings on three of the outside® (each with some simple permu-
tations of characters).

130

28 Skubak, Stevenson

00 30 35 45
10 55
0 5 40 0 3505
SRAN aw
1 4 01 31 3 44
51 1 04 14
2 3 42 3| 03
52 43 13
22 32 33 23

FIGURE 28. The Puzzle Labeling fdt} andK2

7.2. General Dimensions. Every even number can be written@22™ where g is odd anch > 1.
So, as we did for dimension 6, we will combine the two stylepuizle, an SF puzzle of dimen-
siong and an extended Spin-Out puzzle with dimensifnt® define our general puzzle for any

dimension.

The goal of these puzzles is a combination of the SF and SptrgQals. That is, given some
initial configuration, to move all the pieces to orientation a specific tower. Since this puzzle
can be represented)] as we will prove, we know that the minimum solution path foy &wno
configurations is not longer thaf'2- 1, the diameter of the graph. Another way of “solving” this
puzzle might be to choose two configurations and move fromotige other. Again, the focus of
this paper is the puzzle’s relationship to the family ofated complete graphs.

Definition 7.1. For a dimension d= g- 2™ with g odd, define the puzzle as follows. The puzzle has
g towers, numbere@ through q. There are n puzzle pieces, each consisting of nmepE. Each
piece has2™ orientations, numberef through2™ — 1, on each of q towers. These orientations
are defined exactly as in the extended Spin-Out puzzle (s&erS@), by writing the orientation in
binary and letting each bit represent one spinner of thegiec
For a given piece j, the combination of the towgahd orientation § defines theotal orienta-
tion f(j) ast-2"+rj. Therefore each piece has2" = d possible total orientations in all. This

makes @ configurations for the puzzle with n pieces.

Pieces are numbered from t18¥" piece, the least restricted (which can be thought of as the
smallest or leftmost piece), through tfre— 1)St piece, the most restricted (biggest or rightmost).
There are three rules that define legal moves between coafigos:

(1) The 0" Piece Rule TheO™ piece may always move to any other total orientation.
(2) Conditions for Movement For any j+ 0, the f piece may move if all of the following

conditions are true.

131

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 29

(a) the total orientations of piecé through j— 2 are all the same and are equivalent to
0 mod2™, that is, they are on the same tower and their orientatioresCar
(b) tj_1 is the same astthrough §_»; i.e., pieces0 through j— 1 are all on the same
tower
(c) if tj = tj_1, then f(j — 1) is not the same as(®) through f(j —2); that is, if all
pieces0 through j are on the same tower, then piecej has rj_1 # 0
(3) The Total Orientation Change Function If the Conditions for Movement are satisfied, the
tower of piece | may change to

(2tj_1—t;)mod q
at the same time as its orientation changes to
[f(j—1) @ f(j)imod 2" = rj_1r,

Note that, conditions (a) and (c) are exactly the dimensiBre@nditions, and that condition
(b) is exactly the SF Puzzle condition. Also, as expected,= 1 this definition reduces to the
Dimension 2" puzzle, and ifn = 0 it reduces to the SF Puzzle.

Lemma 7.2(Reversibility) All moves are reversible and all edges are undirected.

Proof. First note that all moves by thd(iece are reversible because that piece can always move
anywhere.

So suppose a piece# 0 can move. Lek = Omod2. Also let K< w,y,z< d —1 andW be
the empty string or composed of characters from 0 thralighl. Then this puzzle configuration
has the fornx...xywW. Suppose it can move ta..xyzW (where there may be any nonnegative
number of leading characters.) Let the tower of the piece at total orientatibe calledt, and
the orientation of this piece be. Similarly definety, ry, ty, andry. Thent; is 2, —t, modqg, and
rz="ry®rw.

So consider the configuration..xyzW. The piece at orientationmay move to a tower
(2ty —tz)mod g= (2t, — (2t, — tw))mod g= ty. It may change to the relative orientatiofbr, =
ry® (ry®rw) = ry by the associativity ofs. Since the tower and relative orientation complete
define the total orientatioz,may change tev and therx. .. xyzZWmay move to. . . xywW O

Lemma 7.3(Corner Labels) The configuration x . x(x+Yy) where x= Omod2™ and0 <y < 2™
has exactly d- 1 possible moves. In other words, it corresponds to a corngexe

Proof. First note that any piece in this configuration with totakotationx cannot satisfy condition
(c) and so cannot move. So consider the pigedgth total orientationx+y. Sincey < 2™ and
f(j —1) = x, we know thatj =tj_;. Also, we have thatj_; = 0. Again by condition (c) this
piece cannot move either. O

Lemma 7.4(Non-corner Labels)All other configurations have exactly d possible moves, and s
are non-corner vertices.

Proof. We split the other vertices into three cases.

(1) If a configuration begins ix...x for x= 0 mod2", then there must be a next character
that is on a different tower, or it would be a corner by Lemn& Then condition (c) does
not apply. Clearly conditions (a) and (b) are also satisfied.

132

30 Skubak, Stevenson

(2) If a configuration begins ir...x(x+y) for x= 0 mod2" and 0< y < 2™, then again there
must be a next characteor it would be a corner by Lemma 7.3. Also assume th#t0
since that is the case above. Then consider the piece withaéntationz the ji piece.
Clearly conditions (a) and (b) are satisfied, but sifjce tj_;, we must check that (c) is
satisfied. Butj_; =y # 0, and so we've proven this case.

(3) Finally, if a configuration is neither a corner nor onelad tibove cases, it must begin with
somezwwith z not equal to 0 mod'2, that is,rg # 0. Conditions (a) and (b) are trivially
satisfied, and sincg # 0, () is satisfied whethey =t;_, or not.

0

Lemma 7.5.When {j — 1) = x+y for x= 0 mod2™and0 <y < 2™, the function determining the
relative orientation of a piece j, defined by f &rj = y®rj, attains all valued through2™ — 1,
and equals yif and only if y= 0.

In terms of the puzzle, we take a piece j with a given totalnbeigon. Then we keep_t;
constant but changejr to all possible values. Then the range of relative oriemtasi to which
piece j may move has all possible valugshrough2™ — 1. Furthermore, piece |j retains its
orientation rj if and only if y= 0 (thus if it does not change tower, this is not an actual move).

Proof. This proof is nearly trivial. Since; is fixed andy changes and both are less thédh-21,
by the definition ofp, the bitwise additiory$ r; must attain all possible values 0 through-21.
Also, clearlyrj is returned only ify = 0. O

Theorem 7.6. The puzzle defined in Definition 7.1 for dimension d and itenat corresponds to
the iterated complete graph{K That is, each puzzle configuration represents a vertex ao e
legal move between configurations represents an edge.

Proof. The 0" piece, by the first rule, may always move to any other totadrastion 1 through
d— 1. Then the puzzle with only one piece has thgsenfigurations and can move freely between
them. This clearly corresponds to the complete giépk- K.

So assume that the puzzle with- 1 pieces corresponds Kg‘l. We will add a new piece that
is more restricted (or bigger, or to the right) than all theestpieces. Note that, by our rules, legal
moves by the © and by aj™ piece are not affected by the orientation or even existeheamyp
piecesj + 1 or higher. Thus the new puzzle is simglycopies of the puzzle with — 1 pieces.

In each copy, the new, added piece has a different orientétibroughd — 1. By our induction
hypothesis, these smaller puzzles corresporkiié‘fo1L subgraphs, so we need only show that they
connect in the correct manner to crekfg

Fix someith subgraph(Q‘l. First we show that this subgraph has exactly one cornerdladso
a corner ofKj. Then we prove that the othdr— 1 corners of the subgraph connect to each of the
d — 1 other subgraphs, and that there are no other connectibnsdrethem. (By Lemma 7.2, all
edges are undirected as desired.) Then, sirearbitrary, we will have proven our claim.

In the it subgraph, each label was lengthened by the charac®y Lemma 7.3, the corner
of Kj in this subgraph must then have the lakel. xi with xequidomod2" andi = x+y with
0 <y< 2™ But sincey < 2™ we have only one choice forso thati = x+y. Then the vertex
X...Xiis the one and only corner &} in this subgraph.

Now consider some other corner vertex in tHesubgraph OKQ‘l. Then by Lemma 7.3 its
label inK} must have the fornw. .. w(w+ 2)i with w = 0mod2" and 0< z < 2™. Also we do not

133

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 31

have thatz= 0 andw = x at the same time, or this configuration is the corner we haweady
addressed. Denote the piece with total orientation pjedde have two cases:

(1) If w=x, thenz# 0. Thereforew...w(w+ z)i does not have the correct form to be a
corner ofKJ. Since it was, however, a corneri§f—*, we must be able to changeNote
thattj =tj_1 sincew = x andi = x+y. Thus the last piece stays on this tower since
2tji_1—tj =t;. By Lemma 7.5, for K z < 2™,we have that;_1 ¢ r; becomes everything
exceptr; (since the tower remains the same, that value would represeactual change
of the piece). Then these corners connecte-2 other subgraphs.

(2) On the other hand, suppose# x. Thent;j # tj_1 sincex andw represent total orientation
both equivalent to Omod2but distinct. By Lemma 7.5, for each valuewf the value of
rj changes to all of its possiblé"dalues; there arg— 1 possible values fav (sincew is
notx). Also, since our total orientation i8+-r; andr; < 2™, all these values are distinct.
Thus these corners of the subgraph connect to exggthl) 2™ other subgraphs. Note also
that these subgaphs must be different from those in (1) o are on a different tower.
Then we have a total of 2— 1+ (q—1)2"=q-2"—1=d — 1 connections to distinct
other subgraphs as needed.

Finally, if we have some vertex that was not a cornngle, then it has degreé by Lemma
7.4. We know, also by this lemma, that no vertex can have e@dggher thard. Since adding a
more restricted piece cannot change legal moves by piesgsdstricted than itself, we know that
our new piece must not be able to move. Thus the connectidnebe subgraphs above are the

only such connections.
O

7.3. Conclusions on the Puzzle for General DimensionAs desired, we have now found a puz-
zle that can represent the iterated complete gigpfor any iteratiomn and any dimensiod. The
simplest caseq] = 2 andd = 3, have been known and well-studied for years. (The Towers of
Hanoi puzzle supposedly dates back to Buddhist legendgnSidns to these two puzzles provide
interesting puzzles in their own right, but we show that we ga further by combining the two
types using a simple and beautiful theorem: every integan isdd number times a power of 2.

Further research could be done to prove that the puzzle feergedimensions has finite-state
machines for codeword recognition and error-correctior.bélieve this to be the case, though the
recursive definitions quickly become very complicated.cAfer both Spin-Out and the Towers of
Hanoi puzzle, we have an easy way to map the codewords to atsafitbe natural numbers and
back, processes that are called decoding and encoding.favie dimension 4 Reflection Puzzle
these processes are not simple though, again, we beligvexiss.

Even with these few open areas, this general puzzle makesletaa rather intriguing relation-
ship between a series of puzzles and the family of iteratetpbete graphs.

8. NEwW LABELINGS

The following are a couple of labelings which deserve to lwduided in this discussion. It is
surprising that they were not presented in any past rese&iitiile they do not satisfy all of the
properties that we would like, they are intuitive and hav@emice characteristics.

134

32 Skubak, Stevenson

8.1. The Corner-Distance Labeling. Recall that the corners & are thed vertices whose de-
grees arel — 1. Assign each corner ¢} a unique number fronf0,...,d — 1}. It makes sense to
assign 0 to the “top” corner and move in one direction, fomegke counterclockwise, numbering
sequentially. We will use this convention. We give eachesethe labeb(0),...,5(d — 1), where
d(i) is the distance from the vertex to corneFigure 29 has some examples.

033

011 123

213
101 Aon 303
312 3

FIGURE 29. Corner-distance labels &3, K2, andK3.

21 716 725 734 743 752 761

Now define a function
l:Lgx{0,...,d=1} — L} by

1(8,i) = 8(0) +2",...,8(i — 1) +2",8(i),8(i +1) + 2",...,8(d — 1) + 2".

That is, given a labeb and the position of one of its componentd,adds 2 to all but thei®
component of that label. The functibmlso operates on sets, mapping all labels in the set without
changing their relative positions. The valuenokill be clear when we use this notation.

Example 8.1. Given that I3 = 01— 10, then
L3 =1(L},0)—1(L3,1) =03—-12—21-30.

lterating fromL] to L} ** involves connecting copies ofL]. The vertices in thé" subgraph of
K2 will remain the same distance from ti&corner, but will be 2 further from the other corners.
Thus,Lj satisfies the recursion in Figure 30, usthg- 4 as an example.

0111 1110

I(Ly0)— ILY'3)

_ L' =
(L)L 2)

4

NG

1011 1101

FIGURE 30. Recursive corner-distance label construction for disien 4.

135

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 33

Theorem 8.2. The corner-distance labeling assigns a unique label to e@rtex of K.

Proof. Fix d > 2. K is the complete graph ahvertices. Each vertex &€} has degred — 1 and
so is a corner vertex. The labels are strings of lertiver {0, 1} with exactly one zero. Only
corneri’s label has a zero in thd' position because no other vertex is distance zero from corne
i. Thus, no labels orK(} are repeated. Now assume that no labelKgrare repeated for some
n> 1. Given two label; andd; of vertices orK{, we haved;(j) # &(j) for somej by our
assumption. When; andd; are in the same subgraph Kf, iterating tng“L1 involves adding
2" to the same component 6f andd,. Of course, this preserves the inequality. Wierand

O, are in different subgraphs, iterating involves addifigd®different components. Then we must
check that; () # d2(j) £2". This is true sincés(j),2(j) € {0,...,2" —1}. Thus, every pair
of labels®; and &, of K™ will have &,(j) # 8(j) for somej. Therefore, the corner-distance
labeling assigns a unique label to each vertex. O

The corner-distance labels can be used to find the distaooedne vertex to another. First,
we introduce some notation. Vfis a vertexy(i) means thé" component of the label of. Let
min(v) represent the position of the smallest component of thd tbe Remember that the first
component is in the'd position.

Example 8.3.1f the label of v is 671, then m{m) = 2.
The following algorithm finds the distancefrom vertexx to vertexy on K.

Algorithm 8.4. If min(x) = min(y) = i, then decrement n by one and subtratfrom all but the
i components of each label. Let these strings be the new l&relsand y. Repeat this until
min(x) # min(y) or n = 0. (If the original labels of x and y have nix) # min(y), then we have
not done anything yet.) If » 1, decrement n once more and subtratfrom all but the mirix)t"
label of x and all but the mify)!" label of y.

The distance d from x to y is given by

n n=0,1
d(x,y) = { min{ x(min(y)) +y(min() + 1,
X(6) +y(@) +2" 1+ 1: gz min(), min(y) b n>1
Proposition 8.5. Algorithm 8.4 correctly finds the distance between two gesti

Proof. Whenmin(x) = min(y), x andy are in the samKé‘*l subgraph. Then, by the recursive
structure of the corner-distance labeling, subtractfiig 'om all but the smallest components of
the labels ofk andy gives their corner-distance labels ﬁ@‘l. Continuing this gives the corner-
distance labels aof andy on the smallest subgraph that contaxrendy. If n= 1, the labels have
been reduced to those on the complete giéjahThend(x, y) =1. Ifn=0, the labels okand y on
K(} have their minimum in the same position. These labels airggstover{0,1} with exactly one
zero. Therk =y andd(x,y) = 0. If n> 1, thenx andy are inK{,“1 subgraphs oK. A path from

x to y will go through corners of both subgraphs. Then subtracihg from all but themin(x)t"
label ofx and all but themin(y)™" label ofy gives their labels ng‘l. Now x(i) andy(i) give the
distances to th&" corners of their subgraphs. The shortest path framy goes directly fromx's

136

34 Skubak, Stevenson

subgraph tg’s subgraph or else passes through one other subgraph.fbrher case, we go from
x to the corner ok’s subgraph adjacent s subgraph, one acrossys subgraph, and then from
the corner of/'s subgraph adjacent tds subgraph tg. That ismin{x(min(y)) + 1+ y(min(x)). In
the latter case, we go fromto a subgraph corngrwhich is neither adjacent tjs subgraph nor a
corner ofKj. Then one across to the other subgrgpbf which the distance from corner to corner
is 21— 1. Then one across s subgraph and the distance from corgef y's subgraph tay.
Thatisx(q) + 1+ (21— 1) + 1+ y(q).

The distance along a path through two subgraphs is at 1¢25t2- 1) +3 = 2"+ 1, while the
direct path hag(min(y)) +y(min(x)) +1 < 2(2"~1 — 1) +1=2"— 1. Thus, paths through two or
more subgraphs need not be considered. O

Proposition 8.6. The set of vertices onfKis a metric space.

Proof. We will show that the distance given by Algorithm 8.4 is a metric on the set of vertices
on K. Exchangingx andy in the algorithm yields the same distance. This is triviatkeck.
Thend(x,y) = d(y,x). We established in the proof of Proposition 8.5 théty) = 0= x=y. If

x =y, thenmin(x) = min(y) for every step in the algorithm so we will decrementte- 0. Then
x=y=-d(x,y) =0.

Only left is the triangle inequality. Distance is minimal égfinition. Proposition 8.5 establishes
thatd(x,z) is the distance traveled on a shortest path frolm z. Assume for some vertexthat
d(x,z) > d(x,y) +d(y,z). Then going througly is a shorter path fromto z, a contradiction since
d(x,z) is already minimal. Then it must be thdtx,z) < d(x,y) +d(y,z). Equality holds only
wheny is on a shortest path fromto z O

We can now refer to the distance between two vertices, rétherfrom one to another, without
confusion.
The corner-distance labeling &3 has the finite-state codeword recognizer and error-canrect

presented in Figure 8.1.
0|0
1 1|0
. gg
0[1
11

FIGURE 31. Machines for recognition of codewords (left) and exorrection
(right) onK?Z for the corner-distance labeling.

D

The recognizer reads from right to left the first componerd &bel in binary and checks if it’s
divisible by three. The double circle (state 0) is the adogpstate. If you end up in state 1 or 2,
start at that state in the error corrector. Read from righéftothe first component of the label in
binary, recording the output. The corrector fsut | output The outputd(0) is the corrected

137

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 35

first component of the label. The second comporéhj hasd(1) = (2" — 1) — §(0), which the
reader may verify.

The machines in Figure 8.1 were given by Bode[5]. The recagrénds in statewhen a binary
number isr mod 3. The corrector then “sends” the number to the nearestdd3mumber.

Conjecture 8.7. The corner-distance labeling has no finite-state machinedoeword recogni-
tion ford > 2.

A proof of Conjecture 8.7 would show that the set of codewantK] for a fixedd > 2 is not a
regular language. This normally requires appealing to tirefng Lemma. We were not success-
ful. Even when the labels are written in bakat seems that an indefinite amount of information
from the first component would have to be remembered to distat between codeword and non-
codeword. Of course, a finite-state machine can only deal aviinite amount of information.

There is, however, Algorithm 8.8 for codeword recognitiontbe corner-distance labeling.

Algorithm 8.8. Given a label 3, Dy,...,Dg4_1 on K}, G(Do, Dy, ...,Dq4_1, n) = trueif and only
if Dg,D1,...,Dg_1 is a codeword.
The base cases are given by

true, Do=0,Dix =1
false else
U(Do,D1,...,Dg_1, 1) = false

G(Do,Dy,...,Dg_1, 1) =

The base cases are obvious because we require that the tiex Mabeled 01... be a codeword.
The other cases are given by

e when n is even

G(Do,Dy,...,Dg-1, N) = G(Dj,Dis1—2"1, .. ,Ditg-1, N—1), Dj is min
U(Dg,D1—2"1,....Dg_1—2"1 n-1), Do is min

U(Dg,Dq,...,Dg4—-1, n) = i i
(o,Y1, ,Ud-1,) G(Do—zn_l,.--,Di,---,Ddfl_zn_l7n_1)7 Di750|8m|n

e and when n is odd

G(Dg,D1—2"1Dg_1—2"1 n-1), Do is min
G<D07 Dlu"'7Dd—17 n) - (ln_l ! n—1) 1 1

U(Do—2""",...,Dj,...,Dg-1—2""*, n—1), Djxgis min
U(Dg,Dy,...,Dg_1, n) = U(Dj,Di;1—2"1....Diyq_1, n—1), D; is min

where addition of subscripts is mod d.

Algorithm 8.8 follows directly from the G-U construction @nhe recursive structure on the
corner-distance labeling. Permuting the components obeal,|asG does whem is even andJ

138

36 Skubak, Stevenson

whenn is odd, corresponds to rotating a subgraph. Recall thatieaning G requires making

d copies ofGQ*l and connecting them so that the top vertex of every copy msnaiconnected.
So thek!" copy will rotate 2k/d radians. Then corner 0 becomes corkefl becomes corner
k+1, etc. Corned — 1 becomes corner O of the fh@g‘l subgraph. Since the corners change
the components of the labels permute accordingly. This srevthe addition mod comes from.
Subtracting 2-1 from all but the minimum component of a label correspondsatioipg down to

its subgraph. In a sense, this is the opposite of iterating.

8.2. The Subgraph Labeling. The G-U construction produces the PIECCKjh by breaking

it down into subgraphs, and subgraphs of subgraphs, etcn iTt#hould be easy to recognize
codewords with a labeling scheme that corresponds to sphgraNe were right about this. We
will show that the Subgraph labeling supports finite-stat®gnition.

To construct the labeling, start with the complete grtg@h ond vertices. Label each vertex
of K§ a unique number fror{0,...,d —1}. It makes sense to assign O to the “top” corner and
move in one direction, for example counterclockwise, nummgesequentially. We will use this
convention. Let the vertex with labklbe called the™" vertex or vertex. Iterating tok3, make d
copies oﬂ(d2 and choose one to be the top. Form edges between the coplest sloet top copy is
adjacent to the top vertices of the others and vertex O ofajheapy is still a corner. The top copy
will be called the & subgraph. Call a non-top copy tk#® subgraph, wherk is vertex of the top
copy to which the subgraph is adjacent. Now appekdathe labels in th&" subgraph. Figure
32 has some examples.

00

01
0 10 20
1 A 2 11 22

12 21 112 121 122 211 212 221

FIGURE 32. Subgraph labels dfi, K2, andK3.

We see that label 221, for example, is first vertex in the sesabgraph of the second subgraph.
The labeling_j satisfies the recursion in Figure 33, usthg: 4 as an example.

Theorem 8.9. The machine in Figure 33 correctly recognizes codewordsfjoikh the subgraph
labeling.

Proof. This machine started out nondeterministic, with two sttates and one accepting states.
For the moment, imagine the roles of the start state and tingegiates in Figure 33 are reversed.
Note the four columns of states. The first column on the lefth(wne state) corresponds to G
even, the second to G odd, third to U even, and fourth to U odd.

Whenn is even, we start at the top state in the G even column. Re&diveymove to G odd
and now we are in a subgraph whdd&corner was a top vertex because G rotates whsreven.

139

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 37

0 3

n-1 n-1
0oL 3oL

L= t= | X1
oL 2oL

1 2

FIGURE 33. Recursive subgraph label construction for dimension 4.

FIGURE 34. The codeword recognizer for subgraph labeling{gn

Thed G odd states “remember” which of tliecorners was top. Now, whamis odd, G makes
its top subgraph G even and the others U even without rotatMigenn is even, U makes its top
subgraph U odd in column 4 and the others G odd. Note thad gtates in column 3 also know
which was top. Whem is odd, U read and rotates a copy of U even so the “top” is at kie
corner. This covers all the transitions.

In the G-U construction, onlyaé, corresponding to a G odd state, has a codevertex and it is a
top vertex. The last componepbf a subgraph label gives the location of the vertex<gn The
label is a codeword if the label’s vertex is irtﬁ whose top was rotated to th& vertex. Thus,
the only way to land on G even, the accepting state, is to be®nad state and read from the last
component that the vertex started as a top vertex.

This proves the non-deterministic machine you were askedagine. Note that each transition
is bidirectional. We could read the labels in reverse ordfewe start at the accepting state, we
will end at one of the two start states. So we exchange th&s o obtain the deterministic
machine. O

140

38 Skubak, Stevenson

Theorem 8.10.The machine in Figure 33 has a minimal number of states toyeice codewords
on KJ.

Proof. The state minimization algorithm[21] groups states thaemjuivalent to arrive at a minimal
number of states. We begin by grouping states into acceptidghon-accepting. If we start at any
two statesA andB in a group, read a string, and end up in states belongingfierelift groups, we
know thatA andB are distinct. In this way, we determined that the machineisnral whend = 3.

In particular, after reading all possible strings (0, 1, 2haf length one, the states in columns 1
and 4 are found to be distinct. Since the machine correspgrtdid > 3 has all the states and
transitions of thed = 3 machine, we know the state minimization algorithm spljtstie states
in columns 1 and 4 for all > 3. Going from ad machine to a + 1 adds two new states to the
bottom of the machine. Starting at one new state and reatltages us to the state in column 1.
The other state goes to column 4. Thus, the new states musthed O

8.3. Conclusions on the New LabelingsNo attempt was made to fit a puzzle to the corner-
distance or subgraph labelings. No simple methods are kfomwarious tasks like error correc-
tion, encoding, and decoding on the labelings. They do net tize Gray code property. On the
other hand, they have some attractive qualities like easgtaaction and recognition. Also, each
labeling on a graph has symmetries. The fact that the laleslsrithe attributes of the actual graph
may make them useful for further study of iterated complespis.

REFERENCES

[1] A. Barg. Some new NP-complete coding problemblems of Information TransmissioB0(3):44-49, 1994.
[2] A. Barg. Complexity issues in coding theolyandbook of Coding Theoy998.
[3] E.R. Berlekamp, R.J. McEliece, and C.A van Tilborg. Oa thherent intractability of certain coding problems.
IEEE Trans. Inf. TheoryiT-24(3):384-386, May 1978.
[4] N. Biggs. Perfect codes in graphls.Combibatorial Theory(B)15:289—-296, 1973.
[5] David Bode. Alternate Labelings for Graphs RepresanBerfect-One-Error-Correcting Codes. 1998.
[6] J. Bruck and M. Noar. The hardness of decoding linear sodih preprocessindEEE Trans. Inf. Theory
IT-36:331-335, 1990.
[7] P. Cull and E.F. Ecklund Jr. Towers of Hanoi and AnalydisAtgorithms. American Mathematical Monthly
92(6):407-420, June-July 1985.
[8] Paul Cull, Mary Flahive, and Robby Robsdifference EquationsSpring Science+Business Media, New York,
2005.
[9] Paul Culland Ingrid Nelson. Error-correcting codesloatowers of Hanoi graphBiscrete Math, 208/209:157—
175, 1999.
[10] Paul Cull and Ingrid Nelson. Perfect Codes, NP-Conguiess, and Towers of Hanoi GrapBsill. Inst. Combin.
Appl, 26:13-38, 1999.
[11] M. Garey and D. Johnsoi€omputers and Intractability: A Guide to the Theory of NPafdetenessw. H.
Freeman, San Francisco, 1979.
[12] R. Hamming. Error detecting and error correcting co@edl Syst. Tech. ,J29:147-160, 1950.
[13] R. Hill. A First Course in Coding Theorpxford University Press, Oxford, 1986.
[14] Kathleen King. A new puzzle based on the SF labellingerfited complete graphs. 2004.
[15] Sandi Klavzar, Uros Milutinovic, and Ciril Petr. 1-gect codes in Sierpinski graphBull. Austral. Math. Sog.
66:369-384, 2002.
[16] Stephanie Kleven. Perfect Codes on Odd Dimension 8gkpGraphs. 2003.
[17] J. Kratochvii. Perfect Codes in Graplsoc. VII Hungarian Collog. Combin. Eget987.
[18] J. Kratochvii.Perfect Codes in General Graphscademia, Prague, 1991.
[19] J. Kratochvii. Regular Codes in Regular Graphs are @iffi Discrete Mathematigsl33:191-205, 1994.

141

A New Puzzle on Iterated Complete Graphs with Dimensidn 2 39

[20] J. Kratochvii and M. Krivanek. On the computational qaexity of codes in graphs.ecture Notes in Computer
Science324:396-404, 1988.

[21] Harry R. Lewis and Christos H. Papadimitridelements of the Theory of Computation, SecondREdntice-
Hall, New Jersey, 1998.

[22] F.J. MacWilliams and N.J.A. Sloan€&he Theory of Error-Correcting CodeNorth-Holland, Amsterdam, 1977.

[23] Ingrid Nelson. Coding Theory on the Towers of Hanoi. 399

[24] S.C. Ntafos and S.L. Hakimi. On the complexity of somaliog problems.EEE Trans. Inf. TheoryIT-
27(6):794-796, Nov 1981.

[25] Kirk Pruhs. The SPIN-OUT puzzI&CM SIGCSE Bulletin25:36—38, 1993.

[26] Carla Savage. A Survey of Combinatorial Gray Co®&M Review39(4):605-629, 1997.

[27] A. Tietavainen and A. Perko. There are no unknown pélfeary codesAnn. Univ. Turky148:3-10, 1971.

[28] Elizabeth Weaver. Gray codes and puzzles on iterategplaie graphs. 2005.

AcknowledgmentdMuch of the work here was carried out by students in the REr8ar Pro-
gram at Oregon State University in previous years. We wakikd thank the following people for
their contributions: Ingrid Nelson, Jessica Cavanaughijrikgtoller, David Bode, Be Birchall, Ja-
son Tedor, Shaun Alspaugh, Nathan Knight, Kathleen Melg@bsistopher Frayer, Shalini Reddy,
Stephanie Kleven, Kathleen King, Pamela Russell, and edita\WWeaver. Many of their papers
appear on the websitg¢ t p: / / mat h. or egonst at e. edu/ ~nmat h_r eu/ REU2008/ .

BUCKNELL UNIVERSITY
E-mail addressel i zabet h. skubak@ucknel | . edu

OREGONSTATE UNIVERSITY
E-mail addressst evni ch@ni d. or st . edu

142

