
Malgorzata Peszynska, Oregon State University Mathematics

Notes on implementation of a solver for Stefan problem in semismooth New-
ton framework using complementarity condition framework

Date: July 7, 2018

1. Model

We provide below the notes on implementation of a numerical scheme for Stefan problem

∂
∂t

(u)−D∇2v = f(1a)

u ∈ β(v)(1b)

In this system u is the enthalpy, v is the temperature. The multivalued graph β describes
the relationship u = v + LH(v) equivalently

u ∈ β(v) =


v, v ≤ 0

[0, L], v = 0

v + L, v + L.

(2)

The relationship (2) can be also written as, with m(r) := max(0,min(r, L)) (this is one of
semismooth functions used for Mixed Complementarity constraint). (See [GMPS paper] or
[Ulbrich]. )

u−m(u) = v,(3)

with

m(r) :=


0, r ≤ 0

r, 0 ≤ r ≤ L

L, r > L.

(4)

The system (1) requires initial condition on u and boundary conditions on v.

2. Discretization

We discretize u, v independently using conservative FD. (Integrated in space and time,
with uniform spatial grid parameter h and time step n.) In residual form we have

Rj := h2(unj − un−1
j ) + τD(2vnj − vnj−1 − vnj+1)− h2τfnj = 0,(5a)

Rφ
j := unj −m(unj )− vnj = 0.(5b)

It remains to specify boundary conditions (in v) and initial condition (in u), or previous time
step value.

1



3. Solver

At each time step n we solve simultaneously for un and vn using Newton’s method. (within
the framework of Semismooth Newton methods Ulbrich]).

The residuals Rj in (5a), (5b) must be evaluated at each j, and we must compute the

jacobian i.e. the derivatives
dRj
duj

,
dRj
duj±1

, which go to JAC. Next we calculate the block

matrix JACV which collects
dRj
dvj

,
dRj
dvj±1

etc.

For the second part of residual Rφ the derivatives depend on the cases in (4), and have to

be coded as such. Either way these are block diagonal matrices.
dRφj
duj

which go to PHIJAC

and
dRφj
dvj

which go to PHIJACV .

Finally we collect these. We use RES = [R;Rφ]T and

A =

[
JAC JACV

PHIJAC PHIJACV

]
(6)

In each Newton step we solve A∆R = −RES.

4. Code

function [x,v]=semi_nonlinear_Stefan2phase_forJulia (M,Tend,dt)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% solves a 1D nonlinear diffusion problem (Stefan two phase problem)

%% run as

%% semi_nonlinear_Stefan2phase_forJulia (50,1,0.001)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% M. Peszynska for Julia Kowalski, 7/2018

%% Copyright Department of Mathematics, Oregon State University

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a = 0; b = 1;

%Tend = 0.13;

%%% the control parameters below control the individual terms

Storage = 1;

Diffusion = 1e1;

Latent = 10;

%%%

function w = acc_2fun(x,u,v)

w = u ;% ones(size(u));

end

function w = acc_2dufun(x,u,v)

w = 1+0*u;

end

function w = acc_2dvfun(x,u,v)

w = 0*size(v);

end
2



%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function u = initial (x)

u =-1+0*x;

end

function v = boundary(x0,t)

v = -1; if x0>0,v=1;end;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function w = rhs_fun(x,u,t)

w = 0*u;

w(find(x>0.7 & x<0.8))=10;

end

function v = rhs_dfun(x,u,t)

v = 0*u;

end

%%%%%%%%%%%%%%%%%%%%%%%%

dx = (b-a)/(M-1);

x = a:dx:b; x = x’;

%%%% initial condition; also: initial guess for stationary problems

uold = initial (x);

vold = 0*uold;

clf;

t = 0;

totiter = 0;

maxit = 21;

tol = 1e-12;

ntime = 0;

nsteps = ceil(Tend/dt);

erru = zeros(nsteps,1); errv = erru; errvstat=erru;

%%%% time loop

while t < Tend

t = t + dt;

ntime = ntime + 1;

it = 0;

%% uold is previous time step

3



%% we compute u (new time step) using Newton’s iteration

oldacc = dx*dx*acc_2fun(x,uold,vold);

%% choose as initial Newton guess the value from previous iteration

u = uold; v = vold;

resnorm = inf;

while it < maxit && resnorm >= tol

%% compute properties using current values of u

acc = dx*dx * acc_2fun(x,u,v);

accdu = dx*dx* acc_2dufun(x,u,v);

rhs = dx*dx*dt * rhs_fun(x,u,t);

rhsd = dx*dx*dt * rhs_dfun(x,u,t);

%% accumulation terms

res = acc - oldacc - rhs;

%% diffusion terms

for j = 2:size(x,1) -1

res(j) = res(j) + Diffusion*dt*(2*v(j)-v(j-1)-v(j+1));

end

%% bcond in residual

j = 1; res (j,1) = dx*dx*(v(j)-boundary(a,t));

j = size(x,1); res (j,1) = dx*dx*(v(j)-boundary(b,t));

%%%% compute jacobians: jac=dres/du, jacv=dres/dv

jac = sparse(size(x,1),size(x,1));

jacv = sparse(size(x,1),size(x,1));

for j = 2:size(x,1) -1

%%% accumulation terms

jac(j,j) = accdu(j);

%%%% diffusion terms:

jacv(j,j) = jacv(j,j) + 2*Diffusion*dt;

jacv(j,j-1) = jacv(j,j-1) - Diffusion*dt;

jacv(j,j+1) = jacv(j,j+1) - Diffusion*dt;

%%%% contribution to diagonal terms from source terms

jac(j,j) = jac(j,j) - rhsd(j);

end

%% bcond in jacobian

j = 1;jacv(j,j) = dx*dx;

j = size(x,1);jacv(j,j) = dx*dx;

4



%%%% constraint equation

resphi = 0*res;

for j=1:length(resphi)

resphi(j) = u(j)-v(j) - max(0,min(u(j),Latent));

end

phijacu = sparse(size(x,1),size(x,1));

phijacv = sparse(size(x,1),size(x,1));

for j=1:length(u)

phijacv(j,j)=-1;

end

for j=1:length(u)

if u(j) <=Latent && u(j) >=0

phijacu(j,j)=0;

else

phijacu(j,j)=1;

end

end

%% jacobian for the bcond

phijacu(1,1) = 1;phijacu(M,M) = 1;

phijacv(1,1) = -1;phijacv(M,M) = -1;

%%

jacall = [jac,jacv;phijacu,phijacv];

resall = [res;resphi];

%%%% solve linear system

%%%%%%%% test size of residual: if small, quit

resnorm = norm(resall,inf);

%fprintf(’iter=%d res norm=%g\n’,it,resnorm);%pause

if it >1 %% force code to make at least one linear solve

if resnorm < tol, break; end

end

it = it + 1;

corr = jacall \ resall;

ucorr = corr(1:length(u));

vcorr = corr(length(u)+1:end);

unew = u - ucorr; vnew = v - vcorr;

u = unew; v = vnew;

end

5



%% Newton converged or broke ...

if it == maxit && resnorm >= tol

fprintf(’Time step =%d time=%g. STOP: Newton did not converge in %d iters\n’,...

ntime,t,maxit);

break;

end

totiter = totiter + it;

if 1

fprintf(...

’Time step=%d time=%g Newton finished. Iters=%d (total=%d, aver=%g). Final res norm=%g\n’,...

ntime,t,it,totiter,totiter/ntime,resnorm);

plot(x,unew,x,vnew);

% axis([a,b,-0.5,2]);

title(sprintf(’Time t=%g’,t));

legend(’enthalpy’,’temperature’);

pause(0.05);

end

uold = u;

vold = v;

end

5. Example

Th example hard-coded in the template starts from u(x, 0) = −1, and uses v(0, t) = −1,
and v(1, t) = 1. It also has a piecewise constant source whcih can be turned off if you wish.

The solution shows both u and v.
If you focus on v, you will see the characteristic discontinuity of derivative at the interface

when v = 0.

6. References

There are many proper references of course for Stefan problem. I include here only those
directly needed.
GMPS N. Gibson, P. Medina, M. Peszynska, R. Showalter, Evolution of phase transitions

in methane hydrate, J. Math. Anal. Appl. Volume 409, Issue 2 (2014), pp 816-
833, doi=10.1016/j.jmaa.2013.07.023. http://math.oregonstate.edu/ mpesz/docu-
ments/publications/GMPS13.pdf

Ulbrich Michael Ulbrich. Semismooth Newton methods for variational inequalities and con-
strained optimization problems in function spaces, volume 11 of MOS-SIAM Series
on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2011.

6


