Malgorzata Peszynska, Oregon State University Mathematics
Notes on implementation of a solver for Stefan problem in semismooth Newton framework using complementarity condition framework

Date: July 7, 2018

1. Model

We provide below the notes on implementation of a numerical scheme for Stefan problem

$$
\begin{array}{r}
\frac{\partial}{\partial t}(u)-D \nabla^{2} v=f \\
u \in \beta(v) \tag{1b}
\end{array}
$$

In this system u is the enthalpy, v is the temperature. The multivalued graph β describes the relationship $u=v+L H(v)$ equivalently

$$
u \in \beta(v)= \begin{cases}v, & v \leq 0 \tag{2}\\ {[0, L],} & v=0 \\ v+L, & v+L\end{cases}
$$

The relationship (2) can be also written as, with $m(r):=\max (0, \min (r, L))$ (this is one of semismooth functions used for Mixed Complementarity constraint). (See [GMPS paper] or [Ulbrich].)

$$
\begin{equation*}
u-m(u)=v, \tag{3}
\end{equation*}
$$

with

$$
m(r):= \begin{cases}0, & r \leq 0 \tag{4}\\ r, & 0 \leq r \leq L \\ L, & r>L\end{cases}
$$

The system (1) requires initial condition on u and boundary conditions on v.

2. Discretization

We discretize u, v independently using conservative FD. (Integrated in space and time, with uniform spatial grid parameter h and time step n.) In residual form we have

$$
\begin{align*}
R_{j}:=h^{2}\left(u_{j}^{n}-u_{j}^{n-1}\right)+\tau D\left(2 v_{j}^{n}-v_{j-1}^{n}-v_{j+1}^{n}\right)-h^{2} \tau f_{j}^{n} & =0, \tag{5a}\\
R_{j}^{\phi}:=u_{j}^{n}-m\left(u_{j}^{n}\right)-v_{j}^{n} & =0 . \tag{5b}
\end{align*}
$$

It remains to specify boundary conditions (in v) and initial condition (in u), or previous time step value.

3. Solver

At each time step n we solve simultaneously for u^{n} and v^{n} using Newton's method. (within the framework of Semismooth Newton methods Ulbrich]).

The residuals R_{j} in (5a), (5b) must be evaluated at each j, and we must compute the jacobian i.e. the derivatives $\frac{d R_{j}}{d u_{j}}, \frac{d R_{j}}{d u_{j} \pm 1}$, which go to $J A C$. Next we calculate the block matrix $J A C V$ which collects $\frac{d R_{j}}{d v_{j}}, \frac{d R_{j}}{d v_{j} \pm 1}$ etc.

For the second part of residual R^{ϕ} the derivatives depend on the cases in (4), and have to be coded as such. Either way these are block diagonal matrices. $\frac{d R_{j}^{\phi}}{d u_{j}}$ which go to PHIJAC and $\frac{d R_{j}^{\phi}}{d v_{j}}$ which go to PHIJACV .

Finally we collect these. We use $R E S=\left[R ; R_{\phi}\right]^{T}$ and

$$
A=\left[\begin{array}{cc}
J A C & J A C V \tag{6}\\
\text { PHIJAC } & \text { PHIJACV }
\end{array}\right]
$$

In each Newton step we solve $A \Delta R=-R E S$.

4. Code

```
function [x,v]=semi_nonlinear_Stefan2phase_forJulia (M,Tend,dt)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% solves a 1D nonlinear diffusion problem (Stefan two phase problem)
%% run as
%% semi_nonlinear_Stefan2phase_forJulia (50,1,0.001)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% M. Peszynska for Julia Kowalski, 7/2018
%% Copyright Department of Mathematics, Oregon State University
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a = 0; b = 1;
%Tend = 0.13;
%%% the control parameters below control the individual terms
Storage = 1;
Diffusion = 1e1;
Latent = 10;
%%%
function w = acc_2fun(x,u,v)
    w = u ;% ones(size(u));
end
function w = acc_2dufun(x,u,v)
    w = 1+0*u;
end
function w = acc_2dvfun(x,u,v)
    w = 0*size(v);
end
```


\%\%\%\%\%\%\%\%\%\%

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = initial (x)
    u =-1+0*x;
end
function v = boundary(x0,t)
    v = -1; if x0>0,v=1;end;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function w = rhs_fun(x,u,t)
    w = 0*u;
    w(find(x>0.7 & x<0.8))=10;
end
function v = rhs_dfun(x,u,t)
    v = 0*u;
end
```

\%
$\mathrm{dx}=(\mathrm{b}-\mathrm{a}) /(\mathrm{M}-1)$;
x = a:dx:b; $x=x$;
\%\%\%\% initial condition; also: initial guess for stationary problems
uold = initial (x);
vold = 0*uold;
clf;
$\mathrm{t}=0$;
totiter = 0;
maxit = 21;
tol $=1 \mathrm{e}-12$;
ntime = 0;
nsteps = ceil(Tend/dt);
erru = zeros(nsteps,1); errv = erru; errvstat=erru;
$\% \% \%$ time loop
while t < Tend
$\mathrm{t}=\mathrm{t}+\mathrm{dt}$;
ntime = ntime +1 ;
it = 0;
\%\% uold is previous time step
$\%$ we compute u (new time step) using Newton's iteration oldacc = dx*dx*acc_2fun(x,uold,vold);
$\% \%$ choose as initial Newton guess the value from previous iteration u = uold; v = vold;
resnorm = inf;
while it < maxit \&\& resnorm >= tol
$\% \%$ compute properties using current values of u
acc $=d x * d x$ * acc_2fun(x,u,v);
accdu = dx*dx* acc_2dufun(x,u,v);
rhs $=d x * d x * d t *$ rhs_fun($x, u, t)$;
rhsd $=d x * d x * d t *$ rhs_dfun($x, u, t)$;
$\%$ accumulation terms
res = acc - oldacc - rhs;
\%\% diffusion terms
for $\mathrm{j}=2: \operatorname{size}(\mathrm{x}, 1)-1$ res(j) $=\operatorname{res}(j)+$ Diffusion*dt* $(2 * v(j)-v(j-1)-v(j+1))$;
end
\%\% bcond in residual
$j=1 ; \quad$ res $(j, 1)=d x * d x *(v(j)$-boundary $(a, t))$;
$j=\operatorname{size}(x, 1) ; \operatorname{res}(j, 1)=d x * d x *(v(j)$-boundary $(b, t))$;
\%\%\%\% compute jacobians: jac=dres/du, jacv=dres/dv
jac = sparse(size(x,1),size(x,1));
jacv = sparse(size(x,1),size(x,1));
for $j=2: \operatorname{size}(x, 1)-1$ $\% \% \%$ accumulation terms jac(j,j) = accdu(j);
\%\%\%\% diffusion terms:
$\operatorname{jacv}(j, j)=\operatorname{jacv}(j, j)+2 *$ Diffusion*dt; jacv(j,j-1) = jacv(j,j-1) - Diffusion*dt; $\operatorname{jacv}(j, j+1)=\operatorname{jacv}(j, j+1)$ - Diffusion*dt;
$\% \% \%$ contribution to diagonal terms from source terms $j a c(j, j)=\operatorname{jac}(j, j)-\operatorname{rhsd}(j)$;
end
\%\% bcond in jacobian
$j=1 ; j a c v(j, j)=d x * d x$;
$j=\operatorname{size}(x, 1) ; j a c v(j, j)=d x * d x ;$

```
%%%% constraint equation
resphi = 0*res;
for j=1:length(resphi)
    resphi(j) = u(j)-v(j) - max(0,min(u(j),Latent));
end
phijacu = sparse(size(x,1),size(x,1));
phijacv = sparse(size(x,1),size(x,1));
for j=1:length(u)
    phijacv(j,j)=-1;
end
for j=1:length(u)
    if u(j) <=Latent && u(j) >=0
        phijacu(j,j)=0;
    else
        phijacu(j,j)=1;
    end
end
%% jacobian for the bcond
phijacu(1,1) = 1;phijacu(M,M) = 1;
phijacv(1,1) = -1;phijacv(M,M) = -1;
%%
jacall = [jac,jacv;phijacu,phijacv];
resall = [res;resphi];
%%%% solve linear system
%%%%%%%%% test size of residual: if small, quit
resnorm = norm(resall,inf);
%fprintf('iter=%d res norm=%g\n',it,resnorm);%pause
if it >1 %% force code to make at least one linear solve
    if resnorm < tol, break; end
end
it = it + 1;
corr = jacall \ resall;
ucorr = corr(1:length(u));
vcorr = corr(length(u)+1:end);
unew = u - ucorr; vnew = v - vcorr;
u = unew; v = vnew;
```

end

```
    %% Newton converged or broke ...
    if it == maxit && resnorm >= tol
        fprintf('Time step =%d time=%g. STOP: Newton did not converge in %d iters\n',...
            ntime,t,maxit);
        break;
    end
    totiter = totiter + it;
    if 1
        fprintf(...
            'Time step=%d time=%g Newton finished. Iters=%d (total=%d, aver=%g). Final res n
            ntime,t,it,totiter,totiter/ntime,resnorm);
        plot(x,unew,x,vnew);
            axis([a,b,-0.5,2]);
        title(sprintf('Time t=%g',t));
        legend('enthalpy','temperature');
        pause(0.05);
    end
    uold = u;
    vold = v;
end
```


5. Example

Th example hard-coded in the template starts from $u(x, 0)=-1$, and uses $v(0, t)=-1$, and $v(1, t)=1$. It also has a piecewise constant source whcih can be turned off if you wish.

The solution shows both u and v.
If you focus on v, you will see the characteristic discontinuity of derivative at the interface when $v=0$.

6. References

There are many proper references of course for Stefan problem. I include here only those directly needed.
GMPS N. Gibson, P. Medina, M. Peszynska, R. Showalter, Evolution of phase transitions in methane hydrate, J. Math. Anal. Appl. Volume 409, Issue 2 (2014), pp 816833, doi=10.1016/j.jmaa.2013.07.023. http://math.oregonstate.edu/ mpesz/documents/publications/GMPS13.pdf
Ulbrich Michael Ulbrich. Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, volume 11 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

