Problem 1. Discuss the error in the approximation of f'(x) by the difference quotient $D_h f = \frac{f(x+h)-f(x)}{h}$.

Solution: We assume f is C^2 smooth in some interval $x \in [a, b]$ including (x, x + h). We expand f(x + h) with Taylor polynomial with the remainder in Lagrange form [1, p.203]

(1)
$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi) \ \xi \in (x, x+h).$$

We see then that $D_h f(x) = f'(x) + \frac{h}{2} f''(\xi)$. Since f'' is bounded on (x, x + h), the error $e(h) = |D_h f(x) - f'(x)| = O(h)$ is of first order in h.

Problem 2. Confirm the findings in Problem 1 with numerical experiments for $f(x) = \frac{1}{1+x^2}$.

Solution: We implement code (show the code if required). Figure 1 shows the convergence plot generated which confirms the first order of convergence. Table 1 shows again that the error e(h) decreases linearly with h.

FIGURE 1. The error e(h) appears to have the same slope as the linear trend.

h	e(h)	α
0.1	0.024886877828054	
0.01	0.002499876243744	0.998051906332859
0.001	0.000249999875134	0.999978717718038
0.0005	include more data	
DEPER 1 Metal: $(1) + 10$ scaled at (1)		

TABLE 1. Matching e(h) to h^{α} reveals that $\alpha \approx 1$.

References

- [1] P.M.Fitzpatrick Advanced Calculus. American Mathematical Society, 2006.
- [2] CTAN archive of the LaTeX packages https://ctan.org/pkg/