MTH XXX Homework Template.
Prof. M. Peszynska

FirstName LastName
Due: Friday 02/13/1976

Problem 1. Discuss the error in the approximation of $f^{\prime}(x)$ by the difference quotient $D_{h} f=\frac{f(x+h)-f(x)}{h}$.
Solution: We assume f is C^{2} smooth in some interval $x \in[a, b]$ including $(x, x+h)$. We expand $f(x+h)$ with Taylor polynomial with the remainder in Lagrange form [1, p.203]

$$
\begin{equation*}
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi) \quad \xi \in(x, x+h) \tag{1}
\end{equation*}
$$

We see then that $D_{h} f(x)=f^{\prime}(x)+\frac{h}{2} f^{\prime \prime}(\xi)$.. Since $f^{\prime \prime}$ is bounded on $(x, x+h)$, the error $e(h)=\left|D_{h} f(x)-f^{\prime}(x)\right|=O(h)$ is of first order in h.

Problem 2. Confirm the findings in Problem 1 with numerical experiments for $f(x)=\frac{1}{1+x^{2}}$.
Solution: We implement code (show the code if required). Figure 1 shows the convergence plot generated which confirms the first order of convergence. Table 1 shows again that the error $e(h)$ decreases linearly with h.

Figure 1. The error $e(h)$ appears to have the same slope as the linear trend.

h	$e(h)$	α
0.1	0.024886877828054	
0.01	0.002499876243744	0.998051906332859
0.001	0.000249999875134	0.999978717718038
0.0005	\ldots include more data	
TABLE 1. Matching $e(h)$ to h^{α} reveals that $\alpha \approx 1$.		

References

[1] P.M.Fitzpatrick Advanced Calculus. American Mathematical Society, 2006.
[2] CTAN archive of the LaTeX packages https://ctan.org/pkg/

