1. Show that trapezoidal method is of second order for non-autonomous case.

2. Consider the θ-method defined as
 \[U^{n+1} = U^n + h \left[\theta f(U^n) + (1 - \theta) f(U^{n+1}) \right] \]
 for an autonomous ODE, where $0 \leq \theta \leq 1$ is a parameter.
 Verify that the local truncation error of the method is at least first-order.
 For what value of θ is the method second-order ?.

3. (MATLAB) Consider the IVP
 \[f(u, t) = \lambda u + \sin(t), \quad y(0) = 1 \text{ for } 0 \leq t \leq 10. \]
 i) Implement FE and BE methods for this problem.
 ii) Plot the exact solution and the approximate solutions obtained with
 FE, BE with $h = 0.1$ and $h = 0.2$, when $\lambda = -5$. Discuss the behavior of
 the error from the plot.
 iii) Find the global error for each h by taking $e_h := \max \{ |U^n - u(t_n)| \}$.
 Consider $h = 0.1, 0.01, 0.001$. Does the error behave as predicted by theory ?
 Compare how fast/slow the algorithm runs for various values of h.
 Extra: implement trapezoidal and midpoint methods and repeat iii).

4. Solve 5.9(b,c) or 5.13