MTH 452-552/Winter 2013, Assignment 2, due Monday, 1/21
All students solve all problems.

1. (MATLAB) Wse the difference formulas $D_{-} f, D_{0} f, \tilde{D}_{+} f$, where the latter is the one-sided second-order accurate formula discussed in class, to approximate the derivative of $f(x)=\cos (x)$ at $x=.5$. Use h ranging from $1 E-1$ down to $1 e-12$ (step by the factor of $1 / 10$). Compare the approximation with the exact value. Discuss behavior of the error (confirm theoretical order of convergence and reveal instability which occurs for very small h). (Use loglog plot).
2. (MATLAB) Consider the IVP $f(u, t)=\lambda u+\sin (t), y(0)=1$ for $0 \leq t \leq 10$.
i) Implement FE and BE methods for this problem.
ii) Plot the exact solution and the approximate solutions obtained with FE, BE with $h=0.1$ and $h=0.2$, when $\lambda=-5$. Discuss the behavior of the error from the plot.
iii) Find the global error for each h by taking $e_{h}:=\max _{n}\left\{\left|U^{n}-u\left(t_{n}\right)\right|\right\}$. Consider $h=0.1,0.01,0.001$. Does the error behave as predicted by theory ? Compare how fast/slow the algorithm runs for various values of h.
3. (EXTRA) Solve 1.1 from text.
