MTH 452-552/Winter 2013, Assignment 5
Solve two problems or more for extra credit. (452) students can solve 3 instead of (2).

1. (452-552) (i) For the one-step γ-method from midterm exam, calculate the growth factor $R(z)$. Recall that each of the optimal $\gamma_{1,2}=1 \pm \sqrt{2} / 2$ gives formally the second order accuracy.
(ii) Use both the optimal $\gamma_{1,2}$ and the non-optimal $\gamma_{3}=0.5$ in the following.
Plot the stability region for the method (i.e., plot the curve $|R(z)|=1$ and verify which region is "outside"). Plot order stars (i.e., the curves $\left.\left|e^{-z} R(z)\right|=1\right)$.
Use the plots to confirm the convergence order, and to discuss stability of the method: what is the region of absolute stability, is the method A-stable, is it L-stable. Which γ would you choose to have a 2-order convergent method which can work with the largest time step possible ?
2. (452) In computational part of this problem use initial data $u(0)=1, u^{\prime}(0)=$ 0.
(i) For the harmonic oscillator problem $u^{\prime \prime}+\omega u=0$, with $\omega>0$, written as a linear system of ODEs, find the eigenvalues λ. Is it possible to choose the time step k for FE method for $\omega=100$ to prevent the solutions from increasing?
(ii) Now change the system to that with damping where $u^{\prime \prime}+u^{\prime}+\omega u=0$, and answer the same questions as in (ii). Provide plots of solution computed with FE and a "good" h, and one with a "bad" h, if they can be found. [You can use circle_demo.m in computational experiments to illustrate what you are finding by hand calculation. Of course the analytical solution for your problem is different from that coded.]
(iii) Consider now the non-linearized harmonic oscillator $v^{\prime \prime}+\omega \sin (v)=0$. Implement a solution for this problem using FE. Plot the difference between v and u from (i) when $\omega=100$. Is the linearized problem a good approximation to the original one?

Extra: implement a predictor-corrector $P(E C)^{20}$ for the non-linearized problem (i.e., use a fixed-point iteration. Show results, compare to other solutions you found.)
3. (552) Consider the Lorentz system as discussed in class with initial data $\mathbf{v}=[0,2,10]^{T}$. You can use the code lorentz.m as a starting point: note
that the code computes a (FE) solution and a predictor-corrector solution of first order.
(i) Linearize the Lorentz system about the initial data \mathbf{v}.
(ii) Calculate the eigenvalues of the Jacobian for the linearized system. [You can do it by hand or using MATLAB]. What should be the time step for the linearized system? What about with initial data $\mathbf{w}=[0,0,0]^{T}$?
(iii) Implement the solution of the linearized system and compare the solutions to those of the original system up to roughly $T=0.35$. Discuss what happens after that until $T=.8$. [Hint: a good time step to start your experiments with is $k=.01$, but experiment with time step found in (ii)]. Comment on what should happen for initial data equal \mathbf{w}. What does happen?
(iv) Extra: implement checking the eigenvalues of the Jacobian of the original system as the solutions evolve in time. At some t the eigenvalues change dramatically qualitatively, and this is accompanied by the behavior of the solution. Discuss appropriate time step choices.

Implement the true BE method, or any higher order accurate L-stable method such as the γ method for pbm (1), or TR-BDF2. You should code the nonlinear solver carefully: either with Newton's method, or fixed point with error control.

