MTH 623/Peszynska/Spring 2012 Worksheet 2. Please show all your work. Use proper mathematical notation.

Consider an IVP problem for

 $u_t + vu_x = 0,$

where v > 0 is constant, with a smooth initial data $u_0(x)$. Show that the solution is the limit of viscosity solutions.

Construct the viscosity solution to this problem i.e. u^ϵ which satisfies

$$u_t^{\epsilon} + v u_x^{\epsilon} = \epsilon u_{xx}^{\epsilon}$$

and pass to the limit using steps below.

1. Use the change of variable $w^{\epsilon}(x,t) = u^{\epsilon}(x+vt,t)$. and show that w satisfies the heat equation.

2. Write explicit formula for $w^{\epsilon}(x,t)$ using the fundamental solution to the heat equation.

3. Substitute back to obtain u^{ϵ} from w^{ϵ} .

4. Take the limit as $\epsilon \to 0$. Show it is equal to $u_0(x - vt)$. Justify the elements of the limiting process.

What happens if u_0 is piecewise constant instead of smooth ?