
MTH 654/659
Parallel computing methods

Instructor:
Malgorzata Peszynska

Mathematics
Oregon State University

Parallel computing:
Algorithm + Architecture + Software

• Algorithm = Computation + Communication

• Architecture = *PU + Memory + “cables”
• In our class we will use

– Parallel cluster (COE+COS+…):
• Distributed memory machine
• Communication through Message Passing software (MPI)

– Desktops with GPUs (in MLC)
• Host (CPU) + device (GPU) model
• Shared memory/threads model
• Communication through memory read/write

• Software (for communication):
• Must be able to exchange data between processors/threads

– Send + receive
• Must be able to perform “reduce” operations

– Add results from all processors

Parallel computing:
Algorithm + Architecture + Software

• Simple parallel example: compute PI (again !!!)
• Algorithm: exchange partial sums
• Architecture: cluster
• Software: use MPI (calls from Fortran)

• Overlapping DD for solving PDE/ linear system
• Algorithm: use block Jacobi, solve in *any* way on every processor
• Architecture: cluster
• Software: use MPI (calls from Fortran)

• Newton-CG
• Algorithm: use special BLAS
• Architecture: GPU (shated memory)
• Software: use CUDABLAS

Example 1: compute Pi (part 1)
program mypi

implicit none
c%%%%% MPI declarations

include 'mpif.h'
integer nproc, rank, p, ierr, rc

c%%%%% problem declarations
integer myn,n, istart, iend
double precision h,s,x,glob_pi
integer i

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
call MPI_INIT(ierr)
if (ierr .ne. MPI_SUCCESS) then

print *,'Error starting MPI program. Terminating.'
call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)

end if
c%%%% what is my number (rank+1) and total number of processors

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

c
p = rank + 1
if (rank.eq.0) then

write(6,*) 'Number of processors=',nproc
endif

Example 1: compute Pi (part 2)
c%%%% set size of subproblem as a constant

myn = 100
n = nproc * myn
h = 1.D0/n

c%%% compute the integral using midpoint rule
s = 0D0
istart = rank*myn + 1
iend = p*myn
do i = istart, iend

x = i*h - h/2D0
s = s + 1D0 / (1D0+x*x)

enddo
s = s * 4.D0 * h

c %%% PARALLEL: must add all values
call MPI_ALLREDUCE(s,glob_pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,
$ MPI_COMM_WORLD,ierr)

c %%% finished
if (rank.eq.0) then

write(6,*) 'Finished with ',n,' subitervals. Result=',glob_pi
write(6,*) 'Error = ',abs(glob_pi-atan(1.0)*4D0)

c%%%%%%%%%%%%%%%%%%%%%%%%%%%
call MPI_FINALIZE(ierr)

end

Example 2: overlapping DD
• Either “real” Domain Decomposition

• E.g., Schwarz methods
• (we’ll talk about these later)

• Or … just simply a way to solve linear systems/numerical
PDE on multiple processors

• Use Jacobi method as an example
• Show how to implement it in parallel

– Decompose into subdomains; each processor owns a subdomain
– What needs to be communicated between subdomains ?

» Send-receive ghost values (uleft, uright)
» Reduce operations: compute norm

• The parallel version of Jacobi method can be generalized to an
iterative method (block Jacobi) in which each processor/subdomain
solves its own part of the linear system

– Each iteration of such solver uses SAXPY, SDOT, SNRM2,SGEMV
– For consistence, interface values need to be communicated

function iter = myjacobi (myn,tol,maxiter)
• %% myn = size of problem
• %% tol = tolerance for size of residual
• %% maxiter = max number of iterations acceptable

initialize (could be done outside code)
n = myn; %% size of global problem
h = 1/(myn+1); %% n,h are global
myA = zeros (myn,myn);
for i = 1:myn myA(i,i)=2;end;
for i = 2:myn myA(i,i-1)=-1;end;
for i = 1:myn-1 myA(i,i+1)=-1;end;
myb = h * h * ones(myn,1);
%%% initial guess: could be given externally
u0 = zeros(myn,1);

overall flow of Jacobi iteration
u = u0;
for iter = 1:maxiter

myr = myb - myA*u;
rerr = norm(myr);
glob_err = rerr;
fprintf('%d %g\n',iter,glob_err);

%%% is it time to stop ?
if glob_err < tol break;end;

perform the update …

for k = 1:myn
%% collect right hand side terms in every row
s = 0;
for j = 1:k-1 s = s + myA(k,j)*u(j);end;
for j = k+1:myn s = s + myA(k,j)*u(j);end;

%% compute new guess in row k
unew (k,1) = (myb(k) - s)/myA(k,k);

end;
u = unew;

end

Do this in parallel:
divide and conquer

• solve a problem of size n = myn * nproc

• paradigm:block Jacobi
• must be able to exchange data between processors

myn + myn + ….. + myn = n

Decompose data

[1…myn] [myn+1 … 2*myn] ….. [myn*(nproc-1)+1..myn*nproc=n

• analyze what is happening to data between two processors
local to proc 1 local to proc 2 local to proc nproc

important to proc 1 important to proc 2 important to proc nproc

LOCALLOCAL
urighturightuleftuleft

Domain decomposition: overlapping
• blue and yellow values lag

between iterations
• similar to block Jacobi solver

myA

Aleft

Aright

function iter = myjacobi_parallel
(myn,tol,maxiter)

• %% myn = size of local problem
• %% tol = tolerance for size of residual
• %% maxiter = max number of iterations acceptable

• EACH processor must know
– its own number p
– total number of processors nproc

• EACH processor must be able to access
– its local data
– all data important to her

• Processors must be able to communicate
– with immediate neighbors
– with everybody

initialize
n = myn*nproc; %% size of global problem
h = 1/(n+1); %% n,h are global

%%% only local variables allocated
myA = zeros (myn,myn);
for i = 1:myn myA(i,i)=2;end;
for i = 2:myn myA(i,i-1)=-1;end;
for i = 1:myn-1 myA(i,i+1)=-1;end;
myb = h * h * ones(myn,1);

%%% off-diagnal blocks represented
Aright = -1;
Aleft = -1;

%%% initial guess: could be given externally
u0 = zeros(myn,1); u = u0;

Jacobi iteration … parallel (1)
for iter = 1:maxiter

%%% make sure every processor has current data in uleft, uright
%%% PARALLEL sendsend your own data: u(1), u(myn)
%%% PARALLEL receivereceive uleft, uright

%%% compute residual
myr = myb - myA*u;
%%% use important data on the left and right
if p > 1 myr(1) = myr(1) - Aleft*uleft(p);end;
if p < nproc myr(myn) = myr(myn) - Aright*uright(p);end;

Jacobi iteration … parallel (2)
%%% compute norm of residual
rerr = norm(myr);
%%% collect norms from all processors .. execute
%%% PARALLEL reduce reduce operation
glob_err = rerr;
fprintf('%d %g\n',iter,glob_err); %%% only if p=1

%%% is it time to stop ?
if glob_err < tol break;end;

perform the update …

for k = 1:myn
%% collect right hand side terms in every row
s = 0;
for j = 1:k-1 s = s + myA(k,j)*u(j);end;
for j = k+1:myn s = s + myA(k,j)*u(j);end;
%%% incorporate values from left and right
if k ==1 if p > 1 s = s + Aleft*uleft(p);end;end;
if k == myn if p < nproc s = s + Aright*uright(p); end; end;

%% compute new guess in row k
unew (k,1) = (myb(k) - s)/myA(k,k);

end;
u = unew;

end

Example 2: how to start implementation
c%%%% same initialization as in Example 1 ….

p = rank + 1
n = nproc * myn
uleft = 0D0;
uright = 0D0;

c%% %%% every processor records its number in vector u
do i = 1, myn

u(i) = p;
enddo

c
write(6,*) 'Proc ',p,' data before
',uleft,(u(i),i=1,myn),uright

c%%%%%%%%%%%%%%%%%%%%%%%%%%%% example of exchange data

Example 2: how to update vector
c exchaNnge data

tag = 0
if (p.lt.nproc) then

call MPI_Send(u(myn), 1, MPI_DOUBLE_PRECISION, rank + 1,
& tag,MPI_COMM_WORLD,ierr);

endif
if (p.gt.1) then

call MPI_Send(u(1), 1, MPI_DOUBLE_PRECISION, rank - 1,
& tag,MPI_COMM_WORLD,ierr);

endif
if (p.lt.nproc) then

call MPI_RECV (uright, 1, MPI_DOUBLE_PRECISION, rank + 1,
& tag,MPI_COMM_WORLD,status,ierr);

endif
if (p.gt.1) then

call MPI_RECV (uleft, 1, MPI_DOUBLE_PRECISION, rank - 1,
& tag,MPI_COMM_WORLD,status,ierr);

endif
write(6,*) 'Proc ',p,' data after ',uleft,(u(i),i=1,myn),uright

Now back to Example 2:
how to implement using MPI ?

• Initialize MPI
• How to perform global reduce operations ?
• How to exchange data between processors ?

– Send
– Receive

• Also
– Wait (for synchronization)
– Broadcast

• MUST understand the logical flow so as not to lead to
– Deadlock of all processors

• Waiting for somehting that will never happen
– Livelock (starvation) of a processor

• Never getting the resources it needs

Details on parallel operations
• use MPI (Message Passing Interface) developed/

described at
• http://www-unix.mcs.anl.gov/mpi/

• we will use a few elementary operations as subroutine
calls from Fortran
– initialization/introduction/finalize operations

• call MPI_INIT (ierr)

• call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

• call MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

• call MPI_FINALIZE(ierr)

Details on parallel operations
• cd operations

– PARALLEL reduce reduce operation
• call MPI_ALLREDUCE(rerr,glob_err,1,MPI_DOUBLE_PRECISION,

MPI_SUM,MPI_COMM_WORLD, ierr)

– PARALLEL send send operation
• call MPI_Send (what, count, MPI_DOUBLE_PRECISION,

where,

tag,
MPI_COMM_WORLD,ierr)

– PARALLEL receive receive operation
• call MPI_RECV (what, howmuch, MPI_DOUBLE_PRECISION,
wherefrom,

tag,

MPI_COMM_WORLD,status,ierr)

Caution suggested: parallel disasters
• Five->four philosophers (mathematicians ?)

• Nobody ever gets to eat (DEADLOCK)
• Only proc. 1,3 eat (LIVELOCK, STARVATION)

Disaster example 1: what is wrong ?
• Trying to compute c=(a+b)/2.

– value of a belongs to proc 0, value of b belongs to proc 1
• try the code
if (rank.eq.0) then

call MPI_RECV (b, 1, MPI_DOUBLE_PRECISION, 1,0,
MPI_COMM_WORLD,status,ierr)
call MPI_Send (a, 1, MPI_DOUBLE_PRECISION,1,0,

MPI_COMM_WORLD,ierr)
else

call MPI_RECV (a, 1, MPI_DOUBLE_PRECISION, 1,0,
MPI_COMM_WORLD,status,ierr)
call MPI_Send (b, 1, MPI_DOUBLE_PRECISION,1,0,

MPI_COMM_WORLD,ierr)
endif

• this is a classical DEADLOCK: mismatched calls

• Trying to compute c=(a+b)/2.
– value of a belongs to proc 0, value of b belongs to proc 1

• try the code
if (rank.eq.0) then

call MPI_Send (a, 1, MPI_DOUBLE_PRECISION,1,1,
MPI_COMM_WORLD,ierr)

call MPI_RECV (b, 1, MPI_DOUBLE_PRECISION, 1,1,
MPI_COMM_WORLD,status,ierr)

else
call MPI_Send (b, 1, MPI_DOUBLE_PRECISION,0,0,

MPI_COMM_WORLD,ierr)
call MPI_RECV (a, 1, MPI_DOUBLE_PRECISION, 0,0,

MPI_COMM_WORLD,status,ierr)
endif

• this is a classical DEADLOCK: mismatched calls

Disaster example 2: what is wrong ?

Disaster example 3: what is wrong ?
• Trying to compute c=(a+b)/2.

– value of a belongs to proc 0, value of b belongs to proc 1
• try the code
if (rank.eq.0) then

call MPI_RECV (b, 1, MPI_DOUBLE_PRECISION, 1,0,
MPI_COMM_WORLD,status,ierr)
call MPI_Send (a, 1, MPI_DOUBLE_PRECISION,1,0,

MPI_COMM_WORLD,ierr)
else

call MPI_RECV (a, 1, MPI_DOUBLE_PRECISION, 0,0,
MPI_COMM_WORLD,status,ierr)
call MPI_Send (b, 1, MPI_DOUBLE_PRECISION,0,0,

MPI_COMM_WORLD,ierr)
endif

• this is a classical DEADLOCK

• Trying to compute c=(a+b)/2.
– value of a belongs to proc 0, value of b belongs to proc 1

• try the code
if (rank.eq.0) then

call MPI_Send (a, 1, MPI_DOUBLE_PRECISION,1,0,
MPI_COMM_WORLD,ierr)

call MPI_RECV (b, 1, MPI_DOUBLE_PRECISION, 1,0,
MPI_COMM_WORLD,status,ierr)

else
call MPI_Send (b, 1, MPI_DOUBLE_PRECISION,0,0,

MPI_COMM_WORLD,ierr)
call MPI_RECV (a, 1, MPI_DOUBLE_PRECISION, 0,0,

MPI_COMM_WORLD,status,ierr)
endif

• this could result in a DEADLOCK, remedy: unblocking
send/recv ?

Example 4: could things go wrong ?

Other issues in parallel performance
• load balancing

– dynamic for FE meshes
– dynamic for CFD
– dynamic for transient problems
– dynamic for nonlinear solvers and sophisticated preconditioners

• speedup and Amdahl’s law: T(N,p) >= T(N,1)/p
– parallel efficiency

• scaled speedup (especially for out-of-core problems)
– change N when p changes

• parallel implementations of solvers typically have worse
properties than serial (single-processor) implementations
– E.g.: Gauss-Seidel inherently serial
– multigrid has issues

How to run the MPI code (Ex.1 and 2)
• go to your cluster account
• get (scp) all files/type new program
• compile

– mpif77

• submit a job to queue (uses mpirun ..)
– must use a job file
– input from file only
– output can go to screen, will be saved in job log file

• wait for job to finish
– qstat the queue

• PLEASE
– do not submit multiple jobs before first one is done
– ask for help when needed

Example 3: use GPUs
• Here we will use various online resources

– Consult class webpage for links describing the GPU setup

• In our examples we will take advantage of highly
optimized libraries for GPUs
– cudaBLAS

• Our example is CG implementation
– Uses BLAS or BLAS-like functions

• SAXPY, SDOT, SNRM2, SGEMV

• We will use C in this example on Linux computers in MLC
– Information through class website

