Course Announcement: MTH 654

Large Scale Scientific Computing Methods

http://www.math.oregonstate.edu/~mpesz/teaching/65

Course content: theory

- theory and implementation details for solving large linear and nonlinear systems of equations
- Newton-Krylov methods, multigrid and domain decomposition

Course content: weekly lab

- introduction to parallel computing
- how to function in a high performance computing environment
- a module on multicore architectures ar on programming GPUs for using NVID CUDA programming environment Students: the class is designed for motivated graduate students and well prepared undergraduates.

Contact me with questions - also on scheduling -

Class MTH 655/659 information

- Attendance in labs required:
- Fridays (8:30-)9:00-10:00- in MLC Kidder 108 computer lab
- (start 8:30-can leave at 10:00)
- must complete each lab project
- Individual project: paper and (optional) presentation in March
- Fill out questionnaire
- must have OSU ID and ONID username
- NO CLASS this Wednesday
- Reading/review:
- see http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/

Class MTH 655/659 information

- Algorithms and theory
- nonlinear problems: Newton-based tor $F(U)=0$
- linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
- parallel implementation theory
- domain decomposition
- multigrid
- Additional topics as time permits:
- primer on optimization (nonlinear, continuous, unconstrained)
- Non-numerical algorithms and their parallel implementation
- Implementation
- MATLAB prototypes for testing properties of algorithms and applications
- Fortran (C for geeks) for REAL scientific computing
- overview of Unix will be given
- Fortran+MPI for parallel implementation on a cluster
- Module on programming GPUs

Solution of nonlinear equations $F(U)=0$

- Ex.: find x :

$$
e^{-x}=x^{2}
$$

$$
x \approx 0.7
$$

- set-up

$$
f(x)=e^{x} x^{2}-1
$$

- solve

$$
f(x)=0
$$

Find $x \in(a, b): \quad f(x)=0$

Use Newton's method

- given an initial quess $x^{(0)}$, iterate $\ldots X^{(1)}, X^{(2)}, X^{(3)}, \ldots$

Newton: step1

also known as method of tangents

- the next guess (iterate) is found by

$$
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}
$$

Newton: step2

Newton: step3

Newton: steps 4,5

- until convergence
- residual is small $\left|f\left(x^{(k)}\right)\right| \leq \tau$
- subsequent iterates do not differ much

$$
\left|x^{(k)}-x^{(k-1)}\right| \leq \beta
$$

Properties of Newton's method

- Iteration

$$
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}
$$

written as

$$
\left\{\begin{array}{c}
\partial^{(k+1)}=\left(f^{\prime}\left(x^{(k)}\right)\right)^{-1} f\left(x^{(k)}\right) \\
x^{(k+1)}=x^{(k)}-\partial^{(k+1)}
\end{array}\right.
$$

- Convergence: what conditions ?
- local convergence: for what initial guess?
- conditions ?
- global: (for any initial guess) how ?
- line search, trust regions, and other
- Use in optimization $\min _{x} J(x)$

$$
f(x)=J^{\prime}(x)
$$

Newton's method in N-dimensions

- 1D variant for $\mathrm{f}(\mathrm{x})=0 \quad f: R \mapsto R, X \in R$

$$
\left\{\begin{array}{c}
\partial^{(k+1)}=\left(f^{\prime}\left(x^{(k)}\right)\right)^{-1} f\left(x^{(k)}\right) \\
x^{(k+1)}=x^{(k)}-\partial^{(k+1)}
\end{array}\right.
$$

- N-D Variant for $\mathbf{F}(\mathbf{U})=\mathbf{0}$

$$
\begin{gathered}
\mathbf{F}: R^{N \times 1} \mapsto R^{N \times 1}, \mathbf{U} \in R^{N \times 1} \\
\left\{\begin{array}{c}
\partial^{(k+1)}=\left(\mathbf{D F}\left(\mathbf{U}^{(k)}\right)\right)^{-1} \mathbf{F}\left(\mathbf{U}^{(k)}\right) \\
\mathbf{U}^{(k+1)}=\mathbf{U}^{(k)}-\partial^{(k+1)} \\
\mathbf{D F} \in R^{N x N}
\end{array}\right.
\end{gathered}
$$

Newton's method efficiency and scaling

- Solve an N-dimensional problem $\mathbf{F (U)}=\mathbf{0}$

$$
\mathbf{F}: R^{N x 1} \mapsto R^{N x 1}, \mathbf{U} \in R^{N x 1}
$$

- using Newton's method:
find

$$
\mathbf{F}\left(\mathbf{U}^{(k)}\right), \mathbf{D F}\left(\mathbf{U}^{(k)}\right)
$$

solve

 update$$
\begin{equation*}
\mathbf{U}^{(k+1)}=\mathbf{U}^{(k)}-\partial^{(k+1)} \tag{1}
\end{equation*}
$$

How to solve most accuratelylefficiently

- a linear problem?

$$
\mathbf{A U}=\mathbf{b}
$$

$$
O\left(N^{3}\right)
$$

- a nonlinear problem ?

$$
\mathbf{F}(\mathbf{U})=\mathbf{0} \quad O\left(\# \text { iters } * N^{3}\right)
$$

The answer depends ...
-on the underlying application - on properties of A, F

Linear solvers: how to solve $\mathbf{A U}=\mathbf{b}$

- Problem: solve

$$
\begin{aligned}
& \mathbf{A U}=\mathbf{b} \\
& \mathbf{A} \in R^{N \times N}, \mathbf{U} \in R^{N \times 1}, \mathbf{b} \in R^{N \times 1}
\end{aligned}
$$

- How large is N ?
- does A fit in computer memory ? (8 bytes x $\mathrm{NxN}=$?)
- is A full (dense) / sparse ?
- how does the speed of the method (number of FLOPs) scale with N ? What is the exponent in $O\left(N^{\alpha}\right)$
- Two main classes of methods
- direct
- iterative

Linear solvers: direct versus iterative

- Ex.:Gauss-Jordan elimination (or QR decomposition)

- requires storage $O\left(N^{2}\right)$
- scales $O\left(N^{3}\right)$
- do not preserve sparsity
- special variants ILU, ICCL
- band direct solvers exist

$$
O\left(N^{2}\right)
$$

- IDEA: $\mathbf{A U}=\mathbf{b}$
iterate $\quad \mathbf{U}^{(k)} \mapsto \mathbf{U}^{(k+1)}$
$k=1,2, \ldots$ until convergence requires only product $\mathbf{Y}=\mathbf{A V}$
- no storage necessary
- stationary methods: $O\left(N^{2} \log N\right)$
- Jacobi, G-S, SOR
- non-stationary methods $O\left(N^{1.17}\right)$
- Krylov family:
- CG, PCG, GMRES
- multigrid $O\left(N^{1}\right)$

Motivation: solving large systems of nonlinear PDEs

- PDEs = partial differential equations
- PDEs are mathematical models of
- continuum mechanics
- fluid flow in subsurface and surface waters
- gas dynamics
- heat conduction
- transport of contaminants
- and more
- Let us call a generic system of (coupled nonlinear) PDEs

$$
F(U)=0
$$

Steps of solving large systems of nonlinear PDEs

- Coupled nonlinear PDEs
- PDEs imposed over a region D in space and time interval $(0, T)$
- boundary conditions on boundary of D
- initial conditions at $\mathrm{t}=0$
- Numerical discretization of DEs/PDEs
- discretize in space: grid over D
- finite differences, elements, volumes
- discretize in time, use time step Δt
- finite differences
- ANALYSIS of sche:mes: MTH 552, 553, 654, 655 (FE)
- Error $U-U_{h}$
- for accuracy we must have MANY grid points in D, small Δt
- Solve the system $F_{h}\left(U_{h}\right)=0$ as fast as possible
- solving general linear systems: MTH 551

Example: linear PDE on a simple domain

- model

$$
F(U)=0
$$

is Poisson equation

$$
-\Delta U=b
$$

- discretized model

$$
-\Delta_{h} U_{h}=b_{h}
$$

Discrete (linear) model

- linear discrete model $F_{h}\left(U_{h}\right)=0$ or

$$
\begin{aligned}
& -\Delta_{h} U_{h}=b_{h} \text { or } \mathbf{A U}=\mathbf{b} \\
& U_{h} \equiv\left[\begin{array}{c}
u_{1,1} \\
u_{2,1} \\
\ldots \\
u_{9,7} \\
u_{9,8}
\end{array}\right]=\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\ldots \\
U_{71} \\
U_{72}
\end{array}\right]=\mathbf{U}
\end{aligned}
$$

Structure of Δ_{h}

index i

Details on the stencil in Δ_{h}

row 30

How to best solve $\quad \mathbf{A U}=\mathbf{b}$

- Exploit
- sparsity of A
- band structure of A
- Exploit positive definiteness of A
- Exploit its origin
- PDE
- Modern methods:
- multigrid
- domain decomposition

- parallel algorithms

Divide \mathbf{D} and conquer $\mathbf{A U}=\mathbf{b}$

- Iterative solver: must rommınicate data between yellow arid blue zones

- domain decomposition
- overlapping or nonoverlapping
- Matrix/vector view: similar to block decomposition

- implement on single processor or multiprocessor computer

Domain decomposition: overlapping

- blue arrd yellow values lag between iterations

- similar to block Jacobi solver

Domain decomposition: non-overlapping

- external iteration
- solve for interface degrees of freedom (external iteration)

- form the Schur complement (eliminate interface unknowns)

Solve system $\mathbf{A U}=\mathbf{b}$ on a multiprocessor computer system

- Need to communicate data between processors
- distributed memory or shared memory ?

Parallel solution: distributed memory multiprocessor systems

- Issues: computation time versus communication time

- Implementation: MPI (Message Passing Interface)

Parallel solution: shared memory

- Processors communicate with one global (shared) memory: bus contention and latency
- Expensive not always scalable solutions

Example: nonlinear PDE on a complicated domain

- given a PDE model $F(U)=0, x \in D$
- discretize D
- define discrete model

$$
F_{h}\left(U_{h}\right)=0
$$

Example of $F(U)=0$: multi-phase / multi-component flow

Phase: m, component: \mathbf{M}

$$
\begin{aligned}
& \text { mass conservation } \\
& \frac{\partial\left(\phi N_{M}\right)}{\partial}+\nabla \cdot U_{M}=q_{M} \\
& \text { volume constraints } \\
& \text { def.: mass } \\
& \text { concentration } \\
& \text { def.: mass flux } \\
& \text { def.: phase velocity } \\
& \text { def.: capillary } \\
& \text { pressure relation } \\
& \text { constitutive eqs. }
\end{aligned}
$$

Example: simulate oil and gas recovery

- oil and gas displaced by water contained in D: region in which there is oil and gas and water (brine)

$$
F(U)=0
$$

- must discretize D (decide which scheme to use)

My example: oil and gas recovery

- original domain

- decomposition into 20 processors
- results

- how accurate is this solution ?
- that is uitūtilé siviy
- take MTH 55\& and/or 65* ?

Summary of choices: algorithm/implementation

- computing platform
- serial / workstation
- parallel / distributed memory: MPI
- parallel / shared memory OpenMP
- parallel supercomputer (PetaFLOPS): a hybrid ?

- discretization method
- finite differences
- finite elements
- nonlinear solver
- Newton-based:
» local convergence
» global convergence

- linear solver
- full or sparse matrix ?
- direct
$\mathbf{A U}=\mathbf{b}$
- iterative

Choices: programming environment

Interpretative environment

- ex: MATLAB
- quick development
- workstation
- graphics available

- may not scale
- not efficient
- not parallel
- portable
- Windows, Unix, MAC ?
- but not to supercomputing platforms

Compiled environment

- ex.: FORTRAN, C, C++
- requires post-processing (graphics output to files)
- can reuse "dusty shelves" (legacy code)
- can use highly optimized libraries
- computational kernels as efficient as computer-ly possible
- parallel (MPI, OpenMP)
- can be mz prtable between superco

Class MTH 655/659 information

- Algorithms and theory
- nonlinear problems: Newton-based for $F(U)=0$
- linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
- parallel implementation theory
- domain decomposition
- multigrid
- primer on optimization (nonlinear, continuous, unconstrained)
- Implementation
- MATLAB prototypes for testing properties of algorithms and applications
- Fortran (C for geeks) for REAL scientific computing
- overview of Unix will be given
- Fortran+MPI for parallel implementation on a cluster
- Module on use of GPUs for scientific computing
- Current information
- http://www.math.oregonstate.edu/~mpesz/teaching/654_F09

Class MTH 655/659 information

- Attendance in labs required:
- Fridays (8:30-)9:00-10:00-(10:30) in MLC
- (start 8:30-can leave at 10:30)
- must complete each lab project
- Individual project: paper and (optional) presentation in Nov./Dec.
- Fill out questionnaire
- must have OSU ID and ONID username
- NO CLASS this Wednesday
- some other no-class dates TBA
- Reading/review:
- http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/

