

Class MTH 655/659 information

• Attendance in labs required:
– Fridays (8:30-)9:00-10:00- in MLC Kidder 108 computer lab
– (start 8:30-can leave at 10:00)
– must complete each lab project

• Individual project: paper and (optional) presentation in
March

• Fill out questionnaire
– must have OSU ID and ONID username

• NO CLASS this Wednesday
• Reading/review:

• see http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/

Class MTH 655/659 information

• Algorithms and theory
• nonlinear problems: Newton-based for F(U)=0
• linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
• parallel implementation theory
• domain decomposition
• multigrid
• Additional topics as time permits:

– primer on optimization (nonlinear, continuous, unconstrained)
– Non-numerical algorithms and their parallel implementation

• Implementation
• MATLAB prototypes for testing properties of algorithms and

applications
• Fortran (C for geeks) for REAL scientific computing

– overview of Unix will be given
• Fortran+MPI for parallel implementation on a cluster
• Module on programming GPUs

Solution of nonlinear equations F(U)=0

• Ex.: find x:

• solution:

• set-up

• solve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2xe x 

7.0x
1)(2  xexf x

0)(xf

0)(:),(Find  xfbax

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

Use Newton’s method

• given an initial guess , iterate …

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

)0(x

)0(x ,...,,)3()2()1(xxx

Newton: step1
also known as method of tangents

• the next guess (iterate) is found by

)('
)(

)(

)(
)()1(

k

k
kk

xf
xfxx 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

*

)0(x)1(x

Newton: step2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

*

)0(x)1(x)2(x

)('
)(

)(

)(
)()1(

k

k
kk

xf
xfxx 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

*

Newton: step3

)0(x)2(x)1(x
)3(x

)('
)(

)(

)(
)()1(

k

k
kk

xf
xfxx 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

*

)0(x)2(x
)3(x

)4(x

• until convergence
– residual is small
– subsequent iterates do not differ much

Newton: steps 4,5

)1(x

 )1()(kk xx
)()(kxf

Properties of Newton’s method

• Iteration

written as

• Convergence: what conditions ?
– local convergence: for what initial guess ?

• conditions ?
– global: (for any initial guess) how ?

• line search, trust regions, and other

• Use in optimization

)('
)(

)(

)(
)()1(

k

k
kk

xf
xfxx 












)1()()1(

)(1)()1()())('(
kkk

kkk

xx
xfxf

)(')(
)(min
xJxf

xJx



Newton’s method in N-dimensions

• 1D variant for f(x)=0

• N-D Variant for












)1()()1(

)(1)()1()())('(
kkk

kkk

xx
xfxf

0F(U) 
111 ,: NxNxNx RRR UF 

RxRRf ,: 












)1()()1(

)(1)()1()())((
kkk

kkk

UU
UFUDF

NxNRDF

Newton’s method efficiency and scaling

• Solve an N-dimensional problem

• using Newton’s method:

• actually, we solve

• that is, we need to be able to solve a generic linear
system

0F(U) 
















)1()()1(

)(1)()1(

)()(

 update
)())((solve
)(),(find

kkk

kkk

kk

UU
UFUDF
UDFUF

)(1NO

)(2NO

)(3NO)()()(kkk UδUDF 

111 ,: NxNxNx RRR UF 

bAU 

How to solve most accurately/efficiently

• a linear problem ?

• a nonlinear problem ?

0F(U) 

bAU )(3NO

)(# 3NitersO 

The answer depends The answer depends ……
••on the underlying applicationon the underlying application
••on properties of A, Fon properties of A, F

Linear solvers: how to solve

• Problem: solve

• How large is N ?
– does A fit in computer memory ? (8 bytes x NxN = ?)
– is A full (dense) / sparse ?
– how does the speed of the method (number of FLOPs) scale with

N ? What is the exponent in

• Two main classes of methods
– direct
– iterative

11,, NxNxNxN RRR 



bUA
bAU

bAU 

)(NO

Linear solvers:
direct versus iterative

• Ex.:Gauss-Jordan elimination
(or QR decomposition)

• requires storage
• scales
• do not preserve sparsity
• special variants ILU, ICCL

– band direct solvers exist

• IDEA:

• no storage necessary
• stationary methods:

• Jacobi, G-S, SOR

• non-stationary methods
• Krylov family:

– CG, PCG, GMRES

• multigrid

bAU 

 product only requires
econvergenc until,2,1

 iterate)1()(

AVY

UU










k

kk


































*00
**0

0**
00*

A

)(3NO
)(2NO

)(1NO

)log(2 NNO

)(2NO

All scaling information for 3D linear PDE models, optimal parameters [Heath’97]

)(17.1NO

Motivation: solving large systems
of nonlinear PDEs

• PDEs = partial differential equations
• PDEs are mathematical models of

• continuum mechanics
• fluid flow in subsurface and surface waters
• gas dynamics
• heat conduction
• transport of contaminants
• and more ….

• Let us call a generic system of (coupled nonlinear) PDEs

0)(UF

Steps of solving large systems of
nonlinear PDEs

• Coupled nonlinear PDEs
• PDEs imposed over a region D in space and time interval (0,T)
• boundary conditions on boundary of D
• initial conditions at t=0

• Numerical discretization of DEs/PDEs
– discretize in space: grid over D

• finite differences, elements, volumes
– discretize in time, use time step

• finite differences
– ANALYSIS of schemes: MTH 552, 553, 654, 655 (FE)

• Error
• for accuracy we must have MANY grid points in D, small

• Solve the system as fast as possible
• solving general linear systems: MTH 551

t

t

0)(hh UF

hUU 

Example: linear PDE on a simple domain

• model

is Poisson equation

• discretized model

0)(UF

bU 

hhh bU 

Discrete (linear) model

• linear discrete model
or

or

U

















































72

71

2

1

8,9

7,9

1,2

1,1

......

U
U

U
U

u
u

u
u

Uh

0)(hh UF

hhh bU  bAU 

4,3u

iindex
jindex

30U

Structure of

















































72

71

2

1

8,9

7,9

1,2

1,1

......

U
U

U
U

u
u

u
u

Uh

h

iindex
jindex

30U

29U 31U

21U

39U

4,3u

3,3u

5,3u

4,2u
4,4u 30U

Details on the stencil in
h

  1000 0000014100 00001 

30

30 row

312921 39

Matrix of the system

iindex
jindex

30U
bAU 

How to best solve

• Exploit
– sparsity of A
– band structure of A

• Exploit positive
definiteness of A

• Exploit its origin
– PDE

bAU 

• Modern methods:
– multigrid
– domain decomposition
– parallel algorithms

Divide D and conquer
• Iterative solver: must

communicate data between
yellow and blue zones

• domain decomposition
– overlapping or nonoverlapping

• Matrix/vector view: similar to
block decomposition

• implement on single processor
or multiprocessor computer

bAU 

Domain decomposition: overlapping
• blue and yellow values lag

between iterations
• similar to block Jacobi solver

Domain decomposition: non-overlapping
• external iteration
• solve for interface degrees of

freedom (external iteration)

• form the Schur complement
(eliminate interface unknowns)

Solve system
on a multiprocessor computer system

• Need to communicate data between processors
• distributed memory or shared memory ?

bAU 

Parallel solution: distributed memory
multiprocessor systems

• Issues: computation time versus communication time

• Implementation: MPI (Message Passing Interface)

Parallel solution:
shared memory

• Processors communicate with one global (shared)
memory: bus contention and latency

• Expensive not always scalable solutions

Example: nonlinear PDE
on a complicated domain

• given a PDE model

• discretize D
• define discrete model

DxUF  ,0)(

0)(hh UF

Example of :
multi-phase / multi-component flow

 
MM

M qU
t
N





mM
m

mm
m

M nSN  
 *

1

 DGPkKV mm
m

m
m  



mmM
m

m
m

M VnU  
 *

1

 
m

mS 1  
M

mMn 1

,...)(
12121

, mmm
c

mm SPPP 

),(mMmmm nP 

mass conservation

volume constraints

def.:

mass
concentration

def.:

mass flux

def.:

phase velocity

def.:

capillary
pressure relation

constitutive eqs.

Phase: m, component: M

Specific model

0)(UF

Example: simulate oil and gas recovery
• oil and gas displaced by water

contained in D: region in which
there is oil and gas and water
(brine)

• must discretize D (decide
which scheme to use)

• must solve the system for

• must post-process the results
– assess accuracy
– visualize what is going on

0)(UF

0)(hh UF
hU

My example: oil and gas recovery
• original domain

• decomposition into 20
processors

• results

• how accurate is this solution ?
– that is another story
– take MTH 55& and/or 65* ?

Summary of choices:
algorithm/implementation

• computing platform
• serial / workstation
• parallel / distributed memory: MPI
• parallel / shared memory OpenMP
• parallel supercomputer (PetaFLOPS): a hybrid ?

• discretization method
• finite differences
• finite elements

• nonlinear solver
• Newton-based:

» local convergence
» global convergence

• linear solver
• full or sparse matrix ?

– direct
– iterative

0UF )(

bAU 

Choices:
programming environment

• ex: MATLAB
• quick development
• workstation
• graphics available
• may not scale
• not efficient
• not parallel
• portable

• Windows, Unix, MAC ?
• but not to supercomputing

platforms

• ex.: FORTRAN, C, C++
• requires post-processing

(graphics output to files)
• can reuse “dusty shelves”

(legacy code)
• can use highly optimized

libraries
• computational kernels as

efficient as computer-ly
possible

• parallel (MPI, OpenMP)
• can be made portable between

supercomputing platforms

In this class we will do both types of implementation

Interpretative environmentInterpretative environment Compiled environmentCompiled environment

Class MTH 655/659 information

• Algorithms and theory
• nonlinear problems: Newton-based for F(U)=0
• linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
• parallel implementation theory
• domain decomposition
• multigrid
• primer on optimization (nonlinear, continuous, unconstrained)

• Implementation
• MATLAB prototypes for testing properties of algorithms and

applications
• Fortran (C for geeks) for REAL scientific computing

– overview of Unix will be given
• Fortran+MPI for parallel implementation on a cluster
• Module on use of GPUs for scientific computing

• Current information
• http://www.math.oregonstate.edu/~mpesz/teaching/654_F09

Class MTH 655/659 information

• Attendance in labs required:
– Fridays (8:30-)9:00-10:00-(10:30) in MLC
– (start 8:30-can leave at 10:30)
– must complete each lab project

• Individual project: paper and (optional) presentation in
Nov./Dec.

• Fill out questionnaire
– must have OSU ID and ONID username

• NO CLASS this Wednesday
– some other no-class dates TBA

• Reading/review:
• http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/

	Slide Number 1
	Class MTH 655/659 information
	Class MTH 655/659 information
	 Solution of nonlinear equations F(U)=0
	Slide Number 5
	Use Newton’s method
	Newton: step1�also known as method of tangents
	Newton: step2
	Newton: step3
	Newton: steps 4,5
	Properties of Newton’s method
	Newton’s method in N-dimensions
	Newton’s method efficiency and scaling
	How to solve most accurately/efficiently
	Linear solvers: how to solve
	Linear solvers: �direct versus iterative
	Motivation: solving large systems �of nonlinear PDEs
	Steps of solving large systems of nonlinear PDEs
	Example: linear PDE on a simple domain
	Discrete (linear) model
	Structure of
	Details on the stencil in
	Matrix of the system
	How to best solve
	Divide D and conquer
	Domain decomposition: overlapping
	Domain decomposition: non-overlapping
	Solve system �on a multiprocessor computer system
	Parallel solution: distributed memory�multiprocessor systems
	Parallel solution: �shared memory
	Example: nonlinear PDE �on a complicated domain
	Example of : �multi-phase / multi-component flow
	Example: simulate oil and gas recovery
	My example: oil and gas recovery
	Summary of choices: algorithm/implementation	
	Choices: �programming environment
	Class MTH 655/659 information
	Class MTH 655/659 information
	Slide Number 39

