


Class MTH 655/659 information

• Attendance in labs required: 
– Fridays (8:30-)9:00-10:00- in MLC Kidder 108 computer lab
– (start 8:30-can leave at 10:00)
– must complete each lab project

• Individual project: paper and (optional) presentation in 
March

• Fill out questionnaire
– must have OSU ID and ONID username

• NO CLASS this Wednesday  
• Reading/review: 

• see http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/



Class MTH 655/659 information

• Algorithms and theory
• nonlinear problems: Newton-based for F(U)=0
• linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
• parallel implementation theory
• domain decomposition
• multigrid
• Additional topics as time permits:

– primer on optimization (nonlinear, continuous, unconstrained)
– Non-numerical algorithms and their parallel implementation

• Implementation
• MATLAB prototypes for testing properties of algorithms and 

applications
• Fortran  (C for geeks) for REAL scientific computing

– overview of Unix will be given
• Fortran+MPI for parallel implementation on a cluster
• Module on programming GPUs



Solution of nonlinear equations F(U)=0

• Ex.: find x:

• solution: 

• set-up

• solve
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Use  Newton’s method

• given an initial guess          , iterate …
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Newton: step1 
also known as method of tangents

• the next guess (iterate) is found by
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Newton: step2
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Newton: step3
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• until convergence
– residual is small  
– subsequent iterates do not differ much

Newton: steps 4,5
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Properties of Newton’s method

• Iteration

written as

• Convergence: what conditions ?
– local convergence: for what initial guess ?

• conditions  ?
– global: (for any initial guess) how ?

• line search, trust regions, and other

• Use in optimization
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Newton’s method in N-dimensions

• 1D variant for f(x)=0

• N-D Variant for
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Newton’s method efficiency and scaling

• Solve an N-dimensional problem

• using Newton’s method:

• actually, we solve

• that is, we need to be able to solve a generic linear 
system
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How to solve most accurately/efficiently

• a linear problem ?

• a nonlinear problem ?
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The answer depends The answer depends ……
••on the underlying applicationon the underlying application
••on properties of A, Fon properties of A, F



Linear solvers: how to solve          

• Problem: solve

• How large is N ?
– does A fit in computer memory ? (8 bytes x NxN = ?)
– is A full (dense) / sparse ? 
– how does the speed of the method (number of FLOPs) scale with 

N ?  What is the exponent in 

• Two main classes of methods
– direct
– iterative
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Linear solvers: 
direct      versus        iterative

• Ex.:Gauss-Jordan elimination 
(or QR decomposition)

• requires storage
• scales  
• do not preserve sparsity
• special variants ILU, ICCL

– band direct solvers exist 

• IDEA: 

• no storage necessary
• stationary methods: 

• Jacobi, G-S, SOR

• non-stationary methods
• Krylov family:

– CG, PCG, GMRES

• multigrid
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Motivation: solving large systems 
of nonlinear PDEs

• PDEs = partial differential equations 
• PDEs are mathematical models of 

• continuum mechanics
• fluid flow in subsurface and surface waters
• gas dynamics
• heat conduction
• transport of contaminants
• and more ….

• Let us call a generic system of (coupled nonlinear) PDEs
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Steps of solving large systems  of 
nonlinear PDEs

• Coupled nonlinear PDEs
• PDEs imposed over a region D in space and time interval (0,T)  
• boundary conditions on boundary of D
• initial conditions at t=0

• Numerical discretization of DEs/PDEs
– discretize in space: grid over D

• finite differences,  elements, volumes 
– discretize in time, use time step  

• finite differences
– ANALYSIS of schemes: MTH 552, 553, 654, 655 (FE)

• Error  
• for accuracy we must have MANY grid points in D, small

• Solve the system                                  as fast as possible
• solving general linear systems: MTH 551
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Example: linear PDE on a simple domain

• model                                        

is Poisson equation

• discretized model
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Discrete (linear) model

• linear discrete model                                 
or    

or 
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How to best solve

• Exploit 
– sparsity of A
– band structure of A

• Exploit positive 
definiteness of A

• Exploit its origin
– PDE
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• Modern methods:
– multigrid
– domain decomposition
– parallel algorithms



Divide D and conquer
• Iterative solver: must 

communicate data between 
yellow and blue zones

• domain decomposition
– overlapping or nonoverlapping

• Matrix/vector view: similar to 
block decomposition

• implement on single processor 
or multiprocessor computer
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Domain decomposition: overlapping
• blue and yellow values lag 

between iterations
• similar to block Jacobi solver



Domain decomposition: non-overlapping
• external iteration
• solve for interface degrees of 

freedom (external iteration)

• form the Schur complement 
(eliminate interface unknowns)



Solve system                    
on a multiprocessor computer system 

• Need to communicate data between processors
• distributed memory or shared memory ?
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Parallel solution: distributed memory 
multiprocessor systems

• Issues: computation time versus communication time

• Implementation: MPI (Message Passing Interface)



Parallel solution: 
shared memory

• Processors communicate with one global (shared) 
memory: bus contention and latency

• Expensive not always scalable solutions



Example: nonlinear PDE 
on a complicated domain

• given a PDE model

• discretize D 
• define discrete model
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Example of                       : 
multi-phase / multi-component flow
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mass conservation

volume constraints

def.:
 

mass 
concentration

def.:
 

mass flux

def.:
 

phase velocity

def.:
 

capillary 
pressure relation

constitutive eqs.

Phase: m, component: M

Specific model
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Example: simulate oil and gas recovery
• oil and gas displaced by water 

contained in D: region in which 
there is oil and gas and water 
(brine)

• must discretize D (decide 
which scheme to use)

• must solve the system for

• must post-process the results
– assess accuracy
– visualize what is going on 
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My example: oil and gas recovery
• original domain

• decomposition into 20 
processors

• results

• how accurate is this solution ?
– that is another story 
– take MTH 55& and/or 65*  ?



Summary of choices: 
algorithm/implementation

• computing platform
• serial / workstation
• parallel / distributed memory: MPI 
• parallel / shared memory OpenMP
• parallel supercomputer (PetaFLOPS): a hybrid ?

• discretization method
• finite differences
• finite elements

• nonlinear solver
• Newton-based: 

» local convergence
» global convergence 

• linear solver
• full or sparse matrix ?

– direct 
– iterative
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Choices: 
programming environment

• ex: MATLAB
• quick development
• workstation
• graphics available
• may not scale
• not efficient
• not parallel
• portable 

• Windows, Unix, MAC ?
• but not to supercomputing 

platforms

• ex.: FORTRAN, C, C++
• requires post-processing 

(graphics output to files)
• can reuse “dusty shelves” 

(legacy code)
• can use highly optimized 

libraries
• computational kernels as 

efficient as computer-ly 
possible

• parallel (MPI, OpenMP)
• can be made portable between 

supercomputing platforms

In this class we will do both types of implementation

Interpretative environmentInterpretative environment Compiled environmentCompiled environment



Class MTH 655/659 information

• Algorithms and theory
• nonlinear problems: Newton-based for F(U)=0
• linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
• parallel implementation theory
• domain decomposition
• multigrid
• primer on optimization (nonlinear, continuous, unconstrained)

• Implementation
• MATLAB prototypes for testing properties of algorithms and 

applications
• Fortran  (C for geeks) for REAL scientific computing

– overview of Unix will be given
• Fortran+MPI for parallel implementation on a cluster
• Module on use of GPUs for scientific computing

• Current information
• http://www.math.oregonstate.edu/~mpesz/teaching/654_F09



Class MTH 655/659 information

• Attendance in labs required: 
– Fridays (8:30-)9:00-10:00-(10:30) in MLC
– (start 8:30-can leave at 10:30)
– must complete each lab project

• Individual project: paper and (optional) presentation in 
Nov./Dec.

• Fill out questionnaire
– must have OSU ID and ONID username

• NO CLASS this Wednesday  
– some other no-class dates TBA

• Reading/review: 
• http://www.math.oregonstate.edu/~mpesz/teaching/654_F09/
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