Course Announcement: MTH 654

Large Scale Scientific Computing Methods

http://www.math.oregonstate.edu/~mpesz/teaching/65

O T
flop ... KEflops... Mflc:ups:. . GLflops... Tflaops... Fiflops
Course content: theory Course content: weekly lab
@ theory and implementation details for @ introduction to parallel computing
solving large linear and nonlinear systems @ how to function in a high performance
of equations computing environment
® 'I:'Idewtc_rn—glir ylov methods, muiltigrid and @ a module on multicore architectures ar
omain decomposition on programming GPUs for using NVID

_ _ _ CUDA programming environment
Students: the class is designed for motivated graduate students and well

prepared undergraduates.

Contact me with questions — also on scheduling -

INSTRUCTOR: MALGORZATA PESZYNSKA, MATHEMATICS DEPARTMEMNT

e Attendance in labs required:
— Fridays (8:30-)9:00-10:00- in MLC Kidder 108 computer lab
— (start 8:30-can leave at 10:00)
— must complete each lab project

* Individual project: paper and (optional) presentation in
March

* Fill out questionnaire
— must have OSU ID and ONID username

e NO CLASS this Wednesday

 Reading/review:
» see http://www.math.oregonstate.edu/~mpesz/teaching/654 F09/

Algorithms and theory

nonlinear problems: Newton-based @

linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
parallel implementation theory

domain decomposition

multigrid

Additional topics as time permits:

— primer on optimization (nonlinear, continuous, unconstrained)
— Non-numerical algorithms and their parallel implementation

Implementation

MATLAB prototypes for testing properties of algorithms and
applications

Fortran (C for geeks) for REAL scientific computing
— overview of Unix will be given

» Fortran+MPI for parallel implementation on a cluster
* Module on programming GPUs

E Ex.: find x:

e solution:

Find x € (a,b): f(x)=0
2 , \

|

x® x@ y®

(0), iterate ...

0.5F

o)

1)

_05 -

x

-1

I L SR L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

» the next guess (iterate) is found by f(x®
(K)o (k) (x*)

X =X = 0
B (x™)

15F

0.5F

(D

(k4D 3 () f (X(k))
— oK)
' (x*™)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

(k4D () _ f(x)

fr(x™")

1.5

0.5

=0.8)|F

(1)

until convergence
— residual is small | f (X(k)?L< -
— subsequent iterates! do not diff

r much ‘X(k) _ X(k—l)l < ,B

e lteration LKD) _ 0 _ f(x*)
f'(x")
written as
(Ak+1) v (K) v -1 (k)
o =(1'(x™)) " f(x*™)
X(k+1) » X(k) _5(k+1)

\
e Convergence: what conditions ?

ergence: for what initial guess ?
e conditions ?
— global: (for any initial guess) how ?

 line search, trust regions, and other

- Use in optimization mjn_J(x)
X

f(x)=J"(x)

e 1D variant for f(x)=0 f 'R R, XeR

r8(|<+1) o (f |(X(k)))—1 f (X(k))
w(k+D) _ (k) _ 5(k+D)

.

or F(U)=0
F RNXl =S RNXl,U = RNXl
0% = (DF(UX)) 'F(UW)
U(k+1) i U(k) _a(k+1)
DF ¢ R™

\

"« Solve an N-dimensional problem F(U) — O
F g RNXl L RNXl U c RNXl

e using Newton’s method:

find F(UY),DF(U®) = Oo(N?

(k+D) _ 71k

update A

e alinear problem ?

AU=b O(N?®)

e a nonlinear problem ?

F(U)=0 O(#iters=N®)

The answer depends ...
on the underlying application
on properties of A, F

[inear solvers: howi 0 solve AU ¢

e Problem: solve

AU=Db
AE RNXN,UE RNXl,bE RNXl

e How largeis N ?
— does A fit in computer memory ? (8 bytes x NxN = ?)
— Is A full (dense) / sparse ?

— how does the speed of the method (number of FLOPS) scale with
N ? What is the exponent in O(N 0‘)

e Two main classes of methods
— direct
— Iterative

e Ex.:Gauss-Jordan elimination o IDEA: AU = b
(or QR decomposition) : (k) (ks1)
Iiterate UV > U

k =1,2,...until convergence
AR 010 * * requires only product Y = AV

***O O*

*OO***

no storage necessary
stationary methods:O(N “ log N)

: 2

e requires storage O(N) » Jacobi, G-S, SOR
3 - 1.17

« scales O(N) * non-stationary methods O(N*"")
« do not preserve sparsity * Krylov family:

. . — CG, PCG, GMRES
e special variants ILU, ICCL

— band direct solvers exist 1
O(N 2) e multigrid O(N)

All scaling information for 3D linear PDE models, optimal parameters [Heath’97]

 PDEs = partial differential equations

« PDEs are mathematical models of
e continuum mechanics
 fluid flow in subsurface and surface waters
e gas dynamics
* heat conduction
 transport of contaminants
e and more

 Let us call a generic system of (coupled nonlinear) PDEs

F(U)=0

e Coupled nonlinear PDEs
« PDEs imposed over a region D in space and time interval (0,T)
* boundary conditions on boundary of D
* initial conditions at t=0

e Numerical discretization of DEs/PDEs
— discretize in space: grid over D
e finite differences, elements, volumes

— discretize in time, use time step
« finite differences

— ANALYSIS of schemes: MTH 552, 553, 654, 655 (FE)

 Error U U

« for accuracy we must have MANY grid points in D, small At

e Solve the syste U)ﬁ)as fast as possible
-‘mS

» solving general Iin

e model
FU)=0

IS Poisson equation

—AU =D

e discretized model

_AhUh :bh

e linear discrete model Fh (U h) — O

_AU, =b, o AU=b

ul,l Ul
u2,l U2
U, = — =U
u9,7 U7l
| Ugg | U,

= >

Index |

Index |

Index |

 Exploit
’sparsity of A
— pand structure of A
 EXxploit positive
definiteness of A

e EXxploit its origin
— PDE

« Modern methods:
— multigrid
— domain decomposition
— parallel algorithms

lterative solver: must

commiinicate data between
yellow arid blue zones

domain decomposition
— overlapping or nonoverlapping

Matrix/vector view: similar to
block decomposition

Implement on single processor
or multiprocessor computer

r . .
w 'd yellow values lag « similar to block Jacobi solver
between Iteratons

« external iteration o form the Schur complement
- solve for interface degrees of (eliminate interface unknowns)
freedom (external iteration)

O O O OO0

 Need to communicate data between processors
e distributed memory or shared memory ?

e |Ssues: computation time versus communication time

==

 Processors communicate with one global (shared)
memory: bus contention and latency

e EXxpensive not always scalable solutions

FU)=0,x¢e

Fh(Uh) :

given a PDE mode

discretize D

define discret

Phase: m, component: M

mass conservation

§(¢NM)+VU
A

volume constraints

def.: mass
concentration

def.: mass flux
def.: phase velocity

def.: capillary
pressure relation

constitutive eqs.

oil and gas displaced by water
contained in D: region in which

there is oil and gas and water S permeability

(brine) F (U) A O

e must discretize D (decide
which scheme to use)

permeability

oIL

0.6751
0.6135
0.5519

must solve the system for U y

 must post-process the results
— assess accuracy

— visualize what is going on

results

» original domaj

faults

igh

[*]
permeability

e decomposition into 20
processors

how accurate is this solution ?

e | a

— thatic Giouier stury

— take MTH 55& and/or 65* ?

computin
 serial / workstation
» parallel / distributed memory: MPI
» parallel / shared memory OpenMP
» parallel supercomputer (PetaFLOPS): a hybrid ?

e discretization method
 finite differences
» finite elements

e nonlinear solver
 Newton-based:

» local convergence 8
» global convergence F(U) I O
 linear solver

 full or sparse matrix ? Al] _ b
— direct B

— iterative

Interpretative environment

| Compiled environment

e ex: MATLAB
quick development

graphics available
may not scale

not efficient

not parallel

portable
* Windows, Unix, MAC ?

* but not to supercomputing
platforms

workstation = '
(-

ex.. FORTRAN, C, C++
requires post-processing
(graphics output to files)
can reuse “dusty shelves”
(legacy code)

can use highly optimized
libraries

computational kernels as
efficient as computer-ly
possible

parallel (MPI, OpenMP)

can be m rtable between
superc latforms

@class we will do both types of impleme@

e Algorithms and theory

nonlinear problems: Newton-based for F(U)=0

linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
parallel implementation theory

domain decomposition

multigrid

primer on optimization (nonlinear, continuous, unconstrained)

e Implementation

MATLAB prototypes for testing properties of algorithms and
applications

Fortran (C for geeks) for REAL scientific computing
— overview of Unix will be given

Fortran+MPI for parallel implementation on a cluster
Module on use of GPUs for scientific computing

e Current iInformation

http://www.math.oregonstate.edu/~mpesz/teaching/654 F09

e Attendance in labs required:
— Fridays (8:30-)9:00-10:00-(10:30) in MLC
— (start 8:30-can leave at 10:30)
— must complete each lab project
* Individual project: paper and (optional) presentation in
Nov./Dec.

* Fill out questionnaire
— must have OSU ID and ONID username

e NO CLASS this Wednesday
— some other no-class dates TBA

 Reading/review:
 http://www.math.oregonstate.edu/~mpesz/teaching/654 FQ09/

	Slide Number 1
	Class MTH 655/659 information
	Class MTH 655/659 information
	 Solution of nonlinear equations F(U)=0
	Slide Number 5
	Use Newton’s method
	Newton: step1�also known as method of tangents
	Newton: step2
	Newton: step3
	Newton: steps 4,5
	Properties of Newton’s method
	Newton’s method in N-dimensions
	Newton’s method efficiency and scaling
	How to solve most accurately/efficiently
	Linear solvers: how to solve
	Linear solvers: �direct versus iterative
	Motivation: solving large systems �of nonlinear PDEs
	Steps of solving large systems of nonlinear PDEs
	Example: linear PDE on a simple domain
	Discrete (linear) model
	Structure of
	Details on the stencil in
	Matrix of the system
	How to best solve
	Divide D and conquer
	Domain decomposition: overlapping
	Domain decomposition: non-overlapping
	Solve system �on a multiprocessor computer system
	Parallel solution: distributed memory�multiprocessor systems
	Parallel solution: �shared memory
	Example: nonlinear PDE �on a complicated domain
	Example of : �multi-phase / multi-component flow
	Example: simulate oil and gas recovery
	My example: oil and gas recovery
	Summary of choices: algorithm/implementation	
	Choices: �programming environment
	Class MTH 655/659 information
	Class MTH 655/659 information
	Slide Number 39

