
MTH 654, Fall 2009, LAB1
The goal of this assignment is to become familiar with the programming

environment, to explore the concept of rate of convergence, memory limitations,
and of computational complexity.

1. Consider a sequence of iterates {xn} converging to some number x. That
is, the sequence of errors in the n-th iteration εn := |x− xn| converges to 0.

We say that this iteration has q-convergence rate α if εn+1 ≤ Cεαn. C is called
a factor1 Note: with α = 1, the convergence is linear, α = 2, the convergence
is quadratic. See [Kelley, Chapter 4.1] for additional definitions and conditions.
Explain the conditions.

A good estimate for α can be provided by calculating

α ≈ log(εn+1)− log(εn)
log(εn)− log(εn−1)

for a few subsequent iterations. When xn is close to x, the calculated ratio
should be close to α. Explain why.

Now define

• ak = 1 + 1
2k .

• bk = 3 + 1
k! .

• c1 = 2; for k > 1 : ck = c2k−1+1

2ck−1

• d1 = 2; for k > 1 : dk = dk−1 −
d2k−1−1

4

Explore: for each sequence, find its limit and convergence rate, if any.
Explain using calculus.

Hint for a) MATH: Note ak+1 − 1 = 1
2 (ak − 1).

Hint for a) MATLAB: you can set up example one as follows
n=10;a=zeros(1,n);for j=1:n a(j)=1+1/(2ĵ);end;
Choose some good n here: remember about underflow. (For some problems

the convergence will be neither linear nor quadratic, see the text by [Kelley] to
identify what kind it is).

2. Explore: The following formula comes from calculus

π

4
=
∞∑
j=1

(−1)j+1 1
2j − 1

= 1− 1
3

+
1
5
− . . .

Of course, on the computer we can only sum a finite number of terms, say N .
To compute π, the algorithm can be implemented in two ways a) by setting up an
array of values a(j) = (−1)j+1 1

2j−1 and then summing those, or b) without the

1(Note: in some other sources q is called the order and C the rate. Sorry, I do not explain
it, I just report it.)
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array, by summing the values directly. Also, you have to consider multiplication
by 4 (where should it go in the code ?).

i) Implement both variants of the algorithm and test its rate of convergence
by considering N = 10, 100, 1000, . . . (what is the largest N you can use for a)
and b) ?
ii) Discuss the complexity of the algorithm: time the execution of the loop in
which you add numbers (not the one in which you set up the array). To get
reasonable timings, perhaps that loop should be repeated. for example M=100
times. Let TN be the computational time for one loop without repetitions. We
expect TN to be linear with N : test whether indeed TN = a+bN . Interpret a, b.
Explain: how many floating point operations per loop have to be performed
in a) and b) ? In variant a), you additionally have to account for the time to
access the memory. How do times TN for a) and b) compare ? What is the
work/memory ratio for this algorithm ? (we define the work/memory ratio as
the ratio between the number of operations that have to be performed divided
by the number of memory locations referenced).
Extra: you could estimate the performance of the computer you are using in
terms of FLOPS (floating point operations per second). For variant b), the
performance in FLOPS would be the total number of floating point operations
that need to be performed, divided by the time in seconds. Try it on this
computer and on some other computers you have access to.

3. Newton’s algorithm: an M-file as provided by a link from lab page.
Execute the algorithm newton(2,1e-14) that is, with initial guess 2, tol-

erance 1e-14. Explore: Use other tolerance and initial guesses. Test the q-
convergence rate.

Determine experimentally the interval around the true solution such that if
initial guess is included in it, the convergence will be quadratic. Explain using
information in class (forthcoming) and theory from [Kelley, Chapter 5].

Change the function to f(x) = x2− 2x+ 1 and test convergence to the root.
What problems do you anticipate ?

Improve the algorithm: consider the following issues:

• what happens when you call newton(0,1e-8) ? how to prevent problems
?

• what to do if the algorithm is not converging ?

• change stopping criteria

• add testing for difference between subsequent iterates

Extra: The last part has an interesting feature in that a good estimate for
εn+1 is εn+1 ≈ υn+1 = |xn+1 − xn|. Test it. Note that this is a unique feature
of Newton’s algorithm.

4. Extra: Stability of numerical derivatives:
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Use the one-sided difference formula Dhf(x) = f(x+h)−f(x)
h to approximate

the derivative of f(x) = cos(x) at x = .5, with h ranging from 1E − 1 down to
the machine epsilon (step by a factor of 1/10). Discuss behavior of the error.
What is the behavior of central derivative ? (You may want to use loglog plot).
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