MTH 655/659 Large scale scientific computing methods

Instructor:

Malgorzata Peszynska
Mathematics
Oregon State University

Class MTH 655/659 information

- Attendance in labs required:
 - Fridays (8:30-)9:00-10:00-(10:30) in MLC Kidder 108 computer lab
 - (start 8:30-can leave at 10:30)
 - must complete each lab project
- Individual project: paper and (optional) presentation in March
- Fill out questionnaire
 - must have OSU ID and ONID username
- NO CLASS this Wednesday
 - some other no-class dates TBA
- Reading/review:
 - see
 http://www.math.oregonstate.edu/~mpesz/teaching/655_W07/index.
 html

Class MTH 655/659 information

- Algorithms and theory
 - nonlinear problems: Newton-based for F(U)=0
 - linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
 - parallel implementation theory
 - domain decomposition
 - multigrid
 - primer on optimization (nonlinear, continuous, unconstrained)
- Implementation
 - MATLAB prototypes for testing properties of algorithms and applications
 - Fortran (C for geeks) for REAL scientific computing
 - overview of Unix will be given
 - Fortran+MPI for parallel implementation on a cluster

Solution of nonlinear equations F(U)=0

• Ex.: find x:

$$e^{-x}=x^2$$

solution:

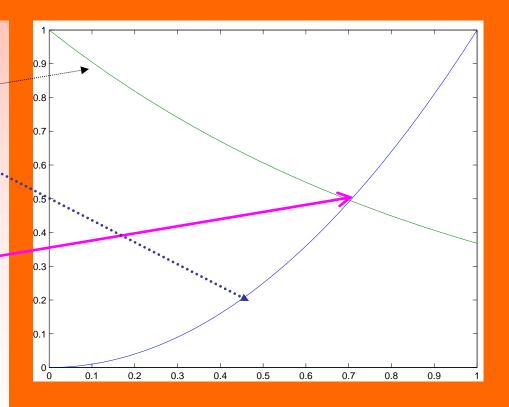
$$x \approx 0.7$$

set-up

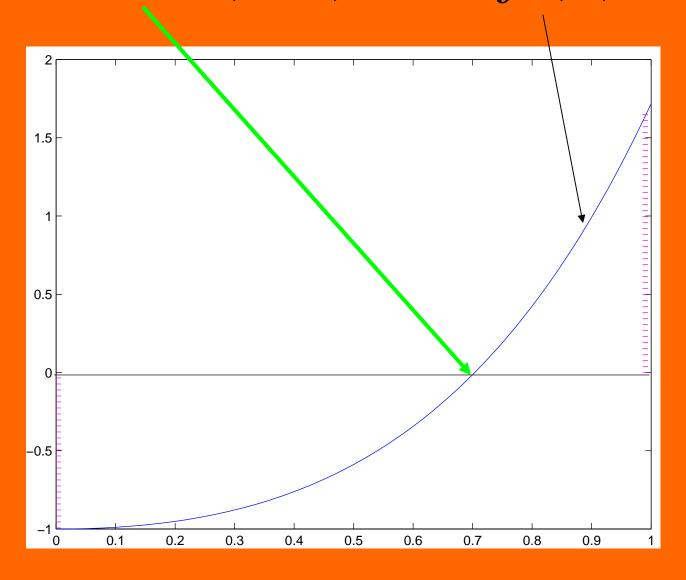
$$f(x) = e^x x^2 - 1$$

solve

$$f(x) = 0$$

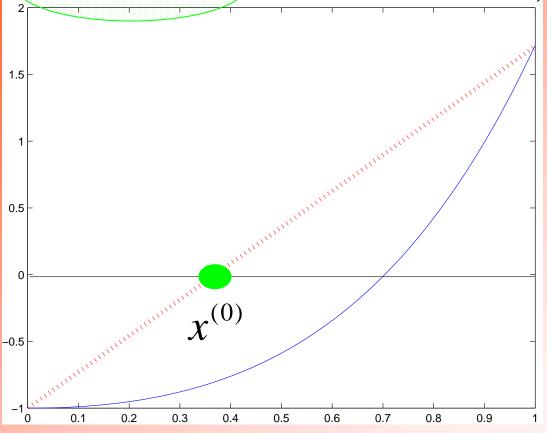


Find $x \in (a,b)$: f(x) = 0

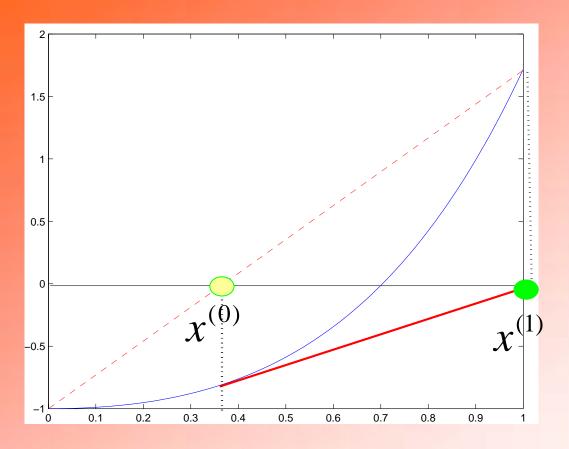


Use Newton's method

• given an initial guess $x^{(0)}$, iterate ... $x^{(1)}$, $x^{(2)}$, $x^{(3)}$,...

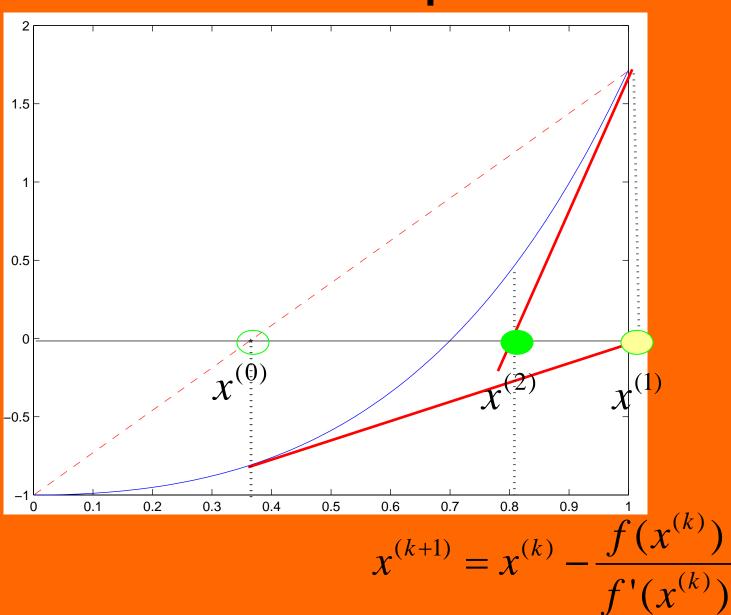


Newton: step1 also known as method of tangents

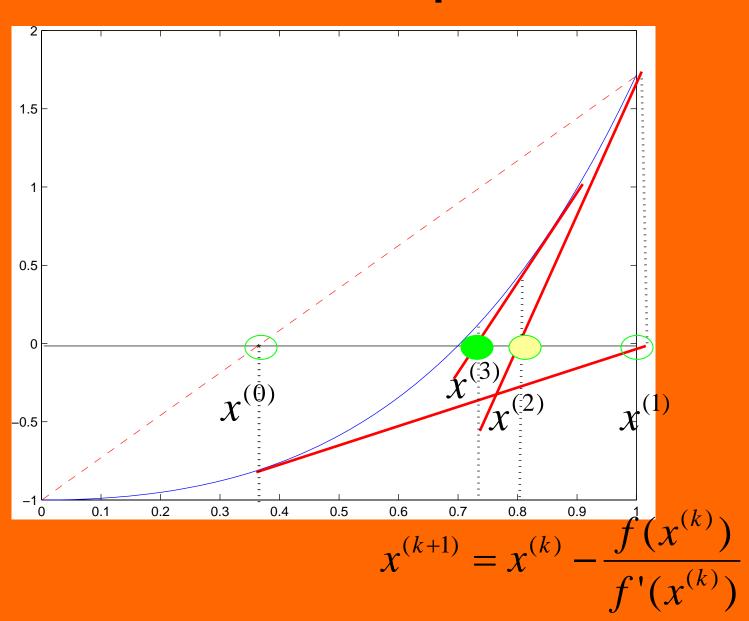


• the next guess (iterate) is found by $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$

Newton: step2



Newton: step3



Newton: steps 4,5

 $\boldsymbol{\mathcal{X}}^{(1)}$

- until convergence
 - $\begin{array}{c|c} \text{ residual is small} & f(x^{(k)}) \leq \tau \\ \text{ subsequent iterates do not differ much} & |x^{(k)} x^{(k-1)}| \leq \beta \end{array}$

$$|x^{(k)} - x^{(k-1)}| \le \beta$$

Properties of Newton's method

Iteration

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

written as

$$\begin{cases} \partial^{(k+1)} = (f'(x^{(k)}))^{-1} f(x^{(k)}) \\ x^{(k+1)} = x^{(k)} - \partial^{(k+1)} \end{cases}$$

- Convergence: what conditions?
 - local convergence: for what initial guess?
 - conditions ?
 - global: (for any initial guess) how?
 - line search, trust regions, and other
- Use in optimization

$$\min_{x} J(x)$$

$$f(x) = J'(x)$$

Newton's method in N-dimensions

• 1D variant for f(x)=0 $f: R \mapsto R, x \in R$

$$\begin{cases} \partial^{(k+1)} = (f'(x^{(k)}))^{-1} f(x^{(k)}) \\ x^{(k+1)} = x^{(k)} - \partial^{(k+1)} \end{cases}$$

• N-D Variant for F(U) = 0

$$\mathbf{F}: R^{Nx1} \mapsto R^{Nx1}, \mathbf{U} \in R^{Nx1}$$

$$\begin{cases}
\partial^{(k+1)} = (\mathbf{DF}(\mathbf{U}^{(k)}))^{-1} \mathbf{F}(\mathbf{U}^{(k)}) \\
\mathbf{U}^{(k+1)} = \mathbf{U}^{(k)} - \partial^{(k+1)}
\end{cases}$$

$$\mathbf{DF} \in R^{NxN}$$

Newton's method efficiency and scaling

• Solve an N-dimensional problem $F(\mathbf{U})=0$

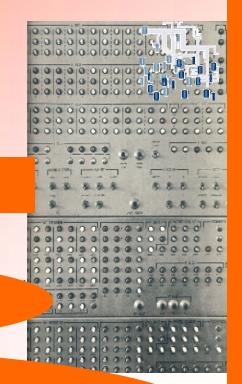
$$\mathbf{F}: \mathbb{R}^{Nx1} \mapsto \mathbb{R}^{Nx1}, \mathbf{U} \in \mathbb{R}^{Nx1}$$

using Newton's method:

find

$$\mathbf{F}(\mathbf{U}^{(k)}), \mathbf{DF}(\mathbf{U}^{(k)})$$

update $\mathbf{U}^{(k+1)} = \mathbf{U}^{(k)} - \partial^{(k+1)}$



How to solve most accurately/efficiently

a linear problem ?

$$AU = b$$

a nonlinear problem ?

$$F(U) = 0$$

The answer depends ...

- on the underlying application
- on properties of A, F

Linear solvers: how to solve $\mathbf{AU} = \mathbf{b}$

Problem: solve

$$AU = b$$

$$\mathbf{A} \in \mathbb{R}^{NxN}, \mathbf{U} \in \mathbb{R}^{Nx1}, \mathbf{b} \in \mathbb{R}^{Nx1}$$

- How large is N?
 - does A fit in computer memory ? (8 bytes x NxN = ?)
 - is A full (dense) / sparse ?
 - how does the speed of the method (number of FLOPs) scale with
 N ? What is the exponent in $O(N^{\alpha})$
- Two main classes of methods
 - direct
 - iterative

Linear solvers: direct versus iterative

 Ex.:Gauss-Jordan elimination (or QR decomposition)

$$\mathbf{A} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix} \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix}$$

- requires storage $O(N^2)$
- scales $O(N^3)$
- do not preserve sparsity
- special variants ILU, ICCL
 - band direct solvers exist $O(N^2)$

• IDEA: $\mathbf{AU} = \mathbf{b}$ iterate $\mathbf{U}^{(k)} \mapsto \mathbf{U}^{(k+1)}$ $k = 1, 2, \dots$ until convergence requires only product $\mathbf{Y} = \mathbf{AV}$

- no storage necessary
- stationary methods: $O(N^2 \log N)$
 - Jacobi, G-S, SOR
- non-stationary methods O(N^{1.17})
 - Krylov family:
 - CG, PCG, GMRES
- multigrid $O(N^1)$

All scaling information for 3D linear PDE models, optimal parameters [Heath'97]

Motivation: solving large systems of nonlinear PDEs

- PDEs = partial differential equations
- PDEs are mathematical models of
 - continuum mechanics
 - fluid flow in subsurface and surface waters
 - gas dynamics
 - heat conduction
 - transport of contaminants
 - and more
- Let us call a generic system of (coupled nonlinear) PDEs

$$F(U) = 0$$

Steps of solving large systems of nonlinear PDEs

- Coupled nonlinear PDEs
 - PDEs imposed over a region D in space and time interval (0,T)
 - boundary conditions on boundary of D
 - initial conditions at t=0
- Numerical discretization of DEs/PDEs
 - discretize in space: grid over D
 - finite differences, elements, volumes
 - discretize in time, use time step Δt
 - finite differences
 - ANALYSIS of schemes: MTH 552, 553, 654, 655 (FE)
 - Error $U-U_h$
 - for accuracy we must have MANY grid points in D, small Δt
- Solve the system $F_{h}(U_{h}) = 0$ as fast as possible
 - solving general linear systems: MTH 551

Example: linear PDE on a simple domain

model

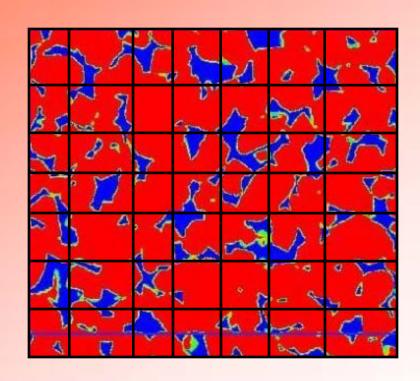
$$F(U) = 0$$

is Poisson equation

$$-\Delta U = b$$

discretized model

$$-\Delta_h U_h = b_h$$

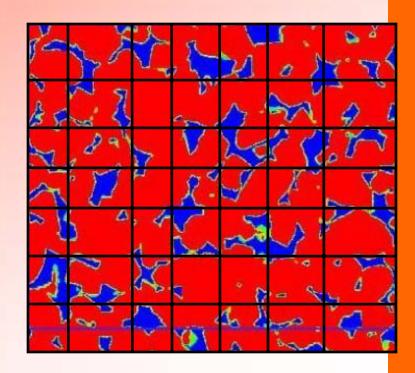


Discrete (linear) model

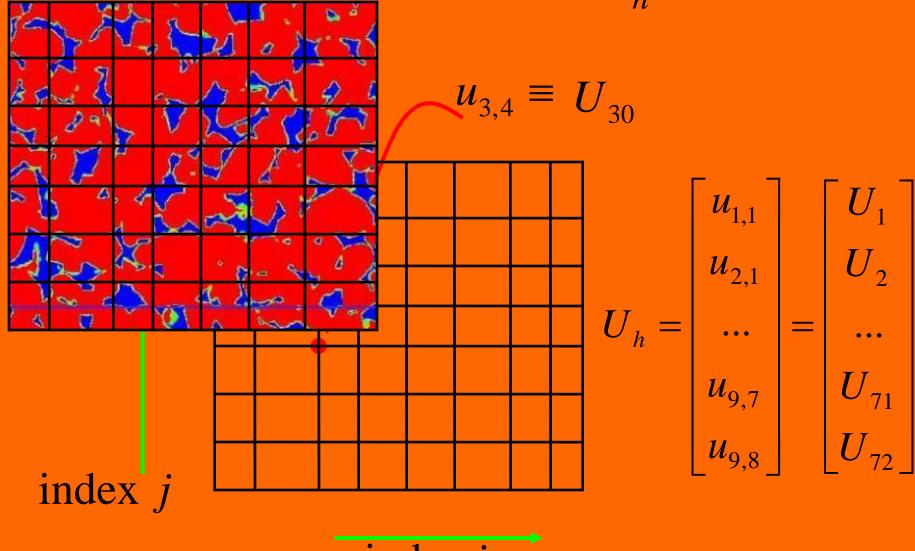
• linear discrete model $\,F_h(U_h)=0\,$ or

$$-\Delta_h U_h = b_h$$
 or $\mathbf{AU} = \mathbf{b}$

$$\begin{bmatrix}
u_{1,1} \\
u_{2,1} \\
U_{2}
\end{bmatrix} = \begin{bmatrix}
U_{1} \\
U_{2} \\
\dots \\
U_{9,7} \\
U_{9,8}
\end{bmatrix} = \mathbf{U}$$

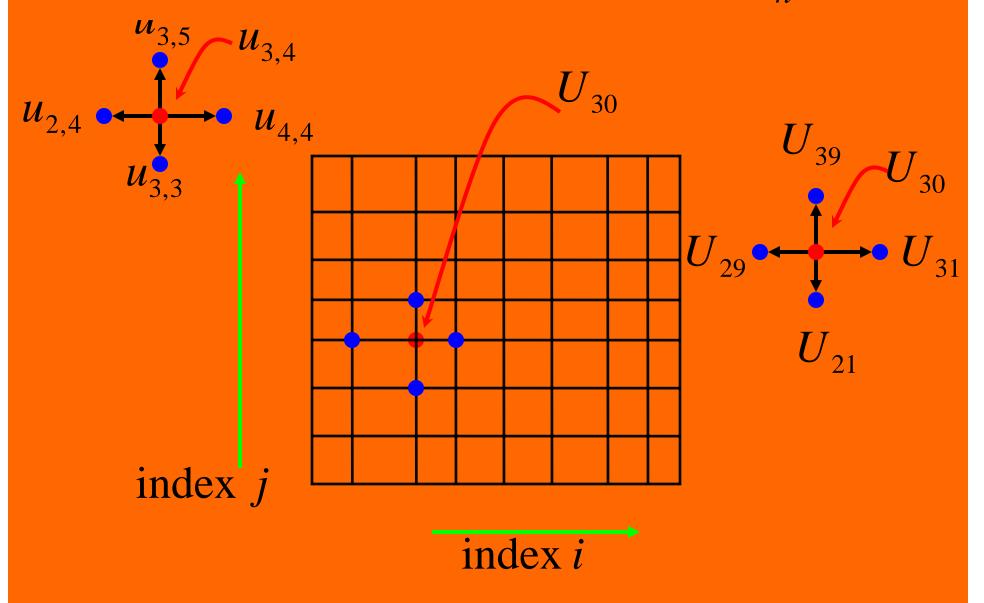


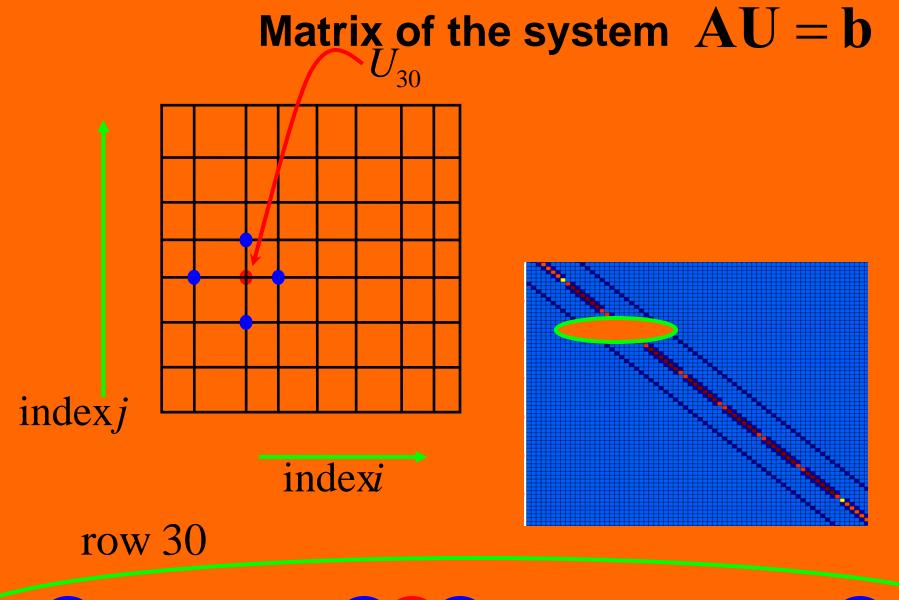
Structure of Δ_h

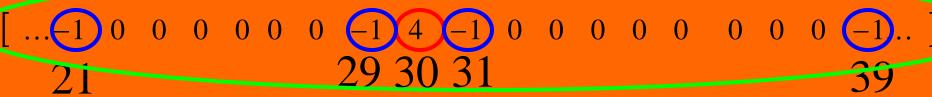


index i

Details on the stencil in Δ_h



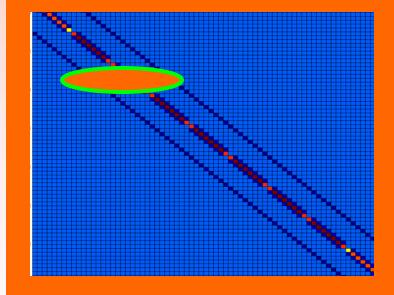




How to best solve AU = b

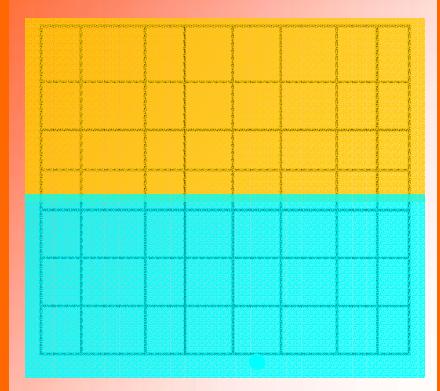
Exploit

- Modern methods:
 - multigrid
 - domain decomposition
 - parallel algorithms



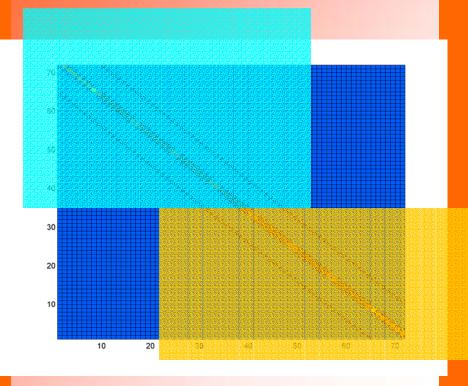
Divide D and conquer AU = b

 Iterative solver: must communicate data between yellow and blue zones



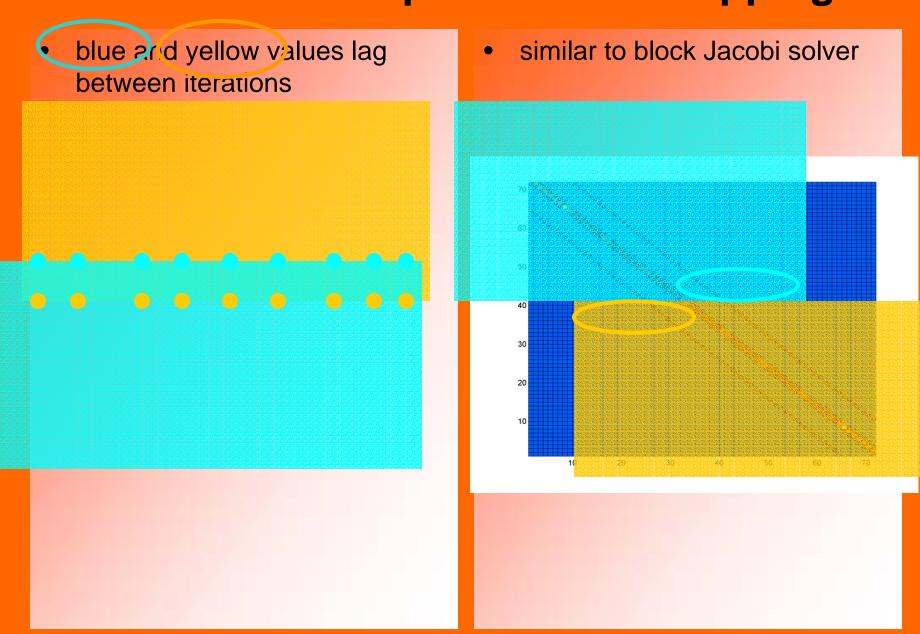
- domain decomposition
 - overlapping or nonoverlapping

 Matrix/vector view: similar to block decomposition



 implement on single processor or multiprocessor computer

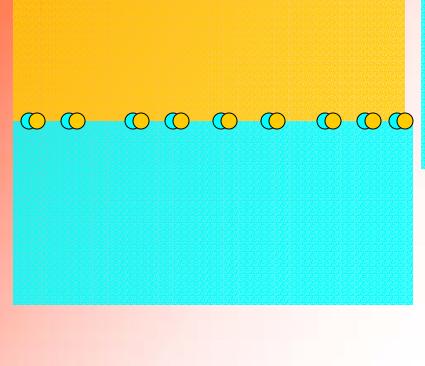
Domain decomposition: overlapping

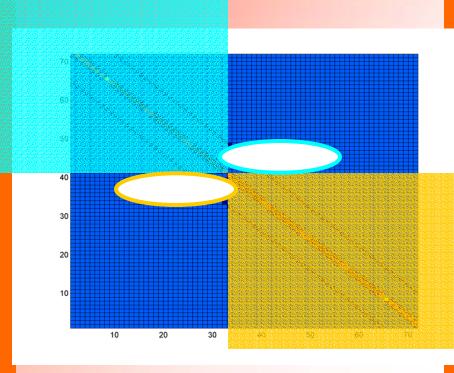


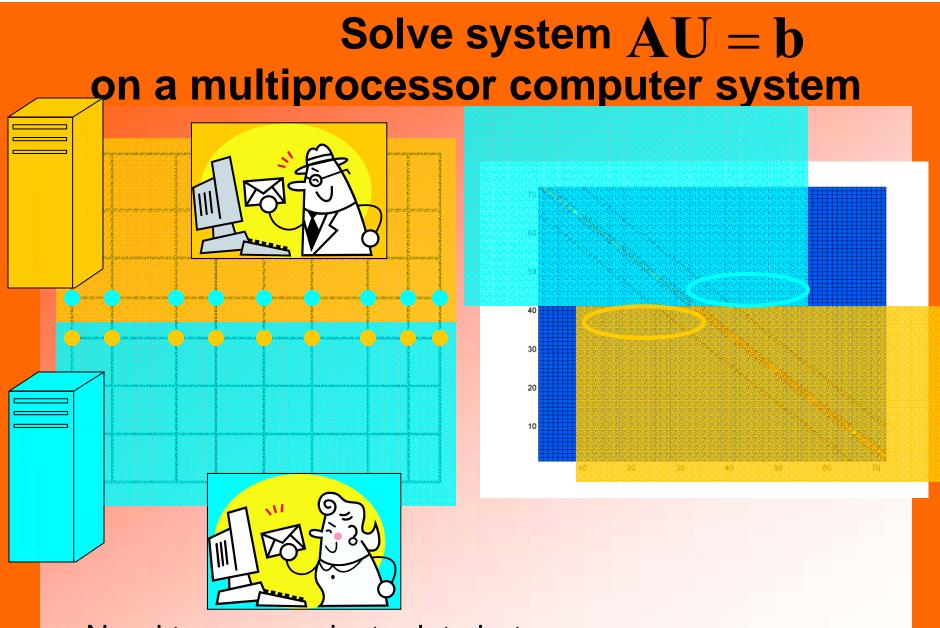
Domain decomposition: non-overlapping

- external iteration
- solve for interface degrees of freedom (external iteration)

 form the Schur complement (eliminate interface unknowns)

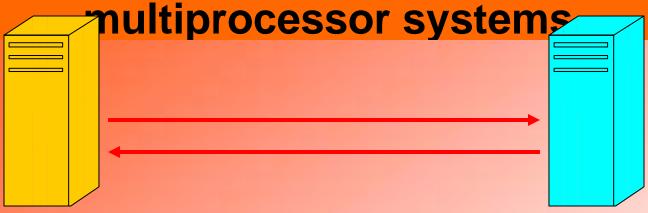






- Need to communicate data between processors
 - distributed memory or shared memory?

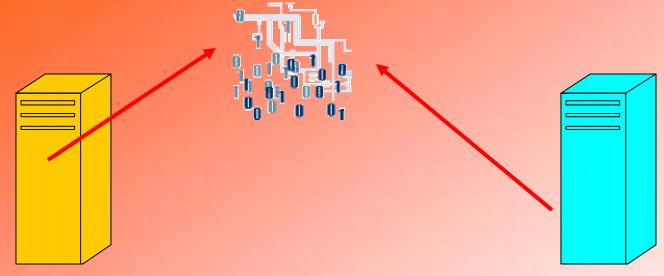
Parallel solution: distributed memory



Issues: computation time versus communication time

Implementation: MPI (Message Passing Interface)

Parallel solution: shared memory



- Processors communicate with one global (shared) memory: bus contention and latency
- Expensive not always scalable solutions

Example: nonlinear PDE on a complicated domain

$$F(U) = 0, x \in D$$

- discretize D
- define discrete model

$$F_h(U_h) = 0$$

Example of F(U)=0: multi-phase / multi-component flow

Phase: m, component: M

mass conservation volume constraints

def.: mass concentration

def.: mass flux

def.: phase velocity

<u>def.:</u> capillary pressure relation

constitutive eqs.

$$\frac{\partial (\phi N_{M})}{\partial t} + \nabla \cdot U_{M} = q_{M}$$

$$\sum_{m} S_{m} = 1 \qquad \sum_{m} n_{mM} = 1$$

$$N_{M} = \frac{1}{\rho_{m^{*}}} \sum_{m} S_{m} \rho_{1} n_{mM}$$

$$U_{M} = \frac{1}{\rho_{m^{*}}} \sum_{m} \rho_{1} n_{mM} N_{m}$$
Specific model
$$V_{m} = -K \frac{K_{m}}{\mu_{m}} (\nabla P_{m} - \rho_{m} G \nabla D)$$

$$P_{m_{1}} - P_{m_{2}} = P^{c}_{m_{1}, m_{2}} (S_{m_{1}}, ...)$$

$$\rho_{m} = \rho_{m} (P_{m}, n_{mM})$$

Example: simulate oil and gas recovery

oil and gas displaced by water contained in D: region in which there is oil and gas and water (brine)

F(U) = 0

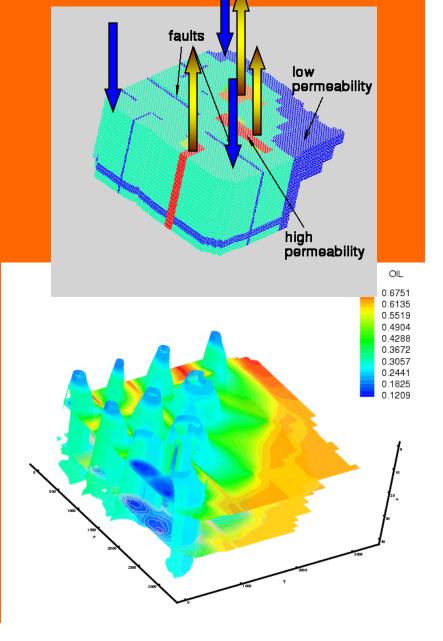
must discretize D (decide which scheme to use)

$$F_h(U_h) = 0$$

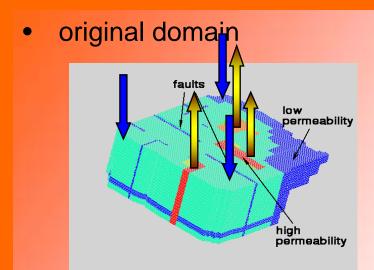
must solve the system for

 U_{k}

- must post-process the results
 - assess accuracy
 - visualize what is going on



My example: oil and gas recovery



decomposition into 20 processors

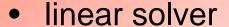
results

- how accurate is this solution?
 - that is another story
 - MTH 65* next year ?

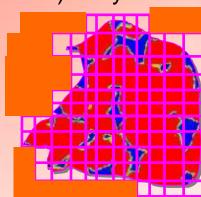
Summary of choices: algorithm/implementation

- computing platform
 - serial / workstation
 - parallel / distributed memory: MPI
 - parallel / shared memory
 - parallel supercomputer (PetaFLOPS): a hybrid ?

- finite differences
- finite elements
- nonlinear solver
 - Newton-based:
 - » local convergence
 - » global convergence



- full or sparse matrix ?
 - direct
 - iterative



$$\mathbf{F}(\mathbf{U}) = \mathbf{0}$$

$$AU = b$$

Choices: programming environment

Interpretative environment

- ex: MATLAB
- quick development
- workstation
- graphics available
- may not scale
- not efficient
- not parallel
- portable
 - Windows, Unix, MAC ?
 - but not to supercomputing platforms

Compiled environment

- ex.: FORTRAN, C, C++
- requires post-processing (graphics output to files)
- can reuse "dusty shelves" (legacy code)
- can use highly optimized libraries
- computational kernels as efficient as computer-ly possible
- parallel (MPI)
- can be made portable between supercomputing platforms

In this class we will do both types of implementation

Class MTH 655/659 information

- Algorithms and theory
 - nonlinear problems: Newton-based for F(U)=0
 - linear solvers: Jacobi family, Krylov family (CG,PCG,GMRES)
 - parallel implementation theory
 - domain decomposition
 - multigrid
 - primer on optimization (nonlinear, continuous, unconstrained)
- Implementation
 - MATLAB prototypes for testing properties of algorithms and applications
 - Fortran (C for geeks) for REAL scientific computing
 - overview of Unix will be given
 - Fortran+MPI for parallel implementation on a cluste
- Current information
 - http://www.math.oregonstate.edu/~mpesz/teaching/655_W07/index. html

Class MTH 655/659 information

- Attendance in labs required:
 - Fridays (8:30-)9:00-10:00-(10:30) in MLC
 - (start 8:30-can leave at 10:30)
 - must complete each lab project
- Individual project: paper and (optional) presentation in March
- Fill out questionnaire
 - must have OSU ID and ONID username
- NO CLASS this Wednesday
 - some other no-class dates TBA
- Reading/review:
 - http://www.math.oregonstate.edu/~mpesz/teaching/655_W07/index. html

