
MTH 655, Winter 2013, LAB2
The goal of this assignment is to explore applications problems in N ≥ 1 dimensions where Newton’s

iteration has substantial difficulties. For each problem we provide the applications background and then
we present the mathematical model and the problem to be solved. The challenges come from real life !

TURN IN 1,2, and 4.

1. The potential equation in semiconductor modeling has the form

−∇ · (ε∇φ) + q(p− n− C) = 0 (1)

where φ is the potential, p, n are the concentrations of holes and electrons, respectively, and ε, C are
constants of permittivity and doping. This equation is coupled to separate equations written for the
transport of p, and n, and is supplied with appropriate boundary (and, if relevant), also initial conditions.

In thermal equilibrium, with no current ∇φ = 0, one can write

p = Nveβ(φ−χ)e−βEg , n = Nce
−β(φ−χ) (2)

where Nv, Nc, Eg, χ are given. Then we solve φ the equation p− n− C = 0 so that (1) holds.
(i) Extra: Show that this is equivalent to solving for an auxiliary variable z = eβ(φ−χ), where

β = 38.7, χ = 4.05, the equation

Az − B

z
− C = 0 (3)

with a suitably chosen A,B.
(ii) Propose a suitable method for solving (3) when A,B are some positive constants. Reformulate

it so it can be solved for z with Newton’s method, fixed point, or as a quadratic equation. Test it when
A = B = C = 1. Compare with fzero, and roots, if you wish.

(iii) Now consider realistic values of A = 2.74, B = 2.82e19, and C ranges from 1e2 up to 1e19. Test
the same methods as in (ii). Pay attention to the values of z and of φ. Explain where the difficulties
are coming from and which of the methods you used seems to be most robust.

References: Markovich, The Stationary Semiconductor Device Equations. Problem courtesy of David
Foster, OSU Physics

2. Equation of state (EOS) is a relationship of type f(P, V, T ) = 0 binding the pressure P , (molar)
volume V , and temperature T of a gas or liquid. In the simplest form for ideal gas we have PV

T = R
where R is the ideal gas constant. Since most gases are not ideal, one uses more accurate relationships.
For example, van der Walls EOS for carbon dioxide is given as

P =
RT

V − b
− a

V 2
(4)

(i) In order to understand the difficulties to follow in (ii), plot this function for V ∈ [0.06, 0.6] and
T = 280[K] and T = 380[K] when the constants for CO2 in appropriate units are

R = 8.314e-2; %% [bar L/mol K]
a = 3.64; %% L^2 bar/mol^2
b = 0.04; %% L/mol

Explain where solvers may have difficulties. [Enjoy more plots for T between 280, 380. The non-
monotone behavior is actually not physical, but it shows regions of phase change between gas and liquid.
You can ask me about it if interested !]
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(ii) Now, for T = 380, given P = 100, find the corresponding V by Newton’s method. [The answer
is V ≈ 0.22]. You can compare with fzero, if you wish. Explore various initial guesses ... In general,
an initial guess can be taken from the ideal gas law. Repeat for P = 200.

(iii) More challenging, of course, is the case T = 280. Try P = 100, and P = 40. Discuss the
pitfalls and your remedies.

References: Smith, Van Ness, Abbott, “Introduction to Chemical Engineering Thermodynamics”,
Sixt Edition, McGraw-Hill, 2001, Chap.3

3. Explore: Implement Newton’s method for the problem in class where x ∈ R2, F : R2 7→ R2, and

F (x) = (x2
1 − x2 + α,−x1 + x2

2 + α)T = (0, 0)T . (5)

Test your method first for α = 0 solving with x0 = (2, 2)T and/or x0 = (1/3, 1/3)T . What about
x0 = (3, 0)T ? Keep track of your guesses on a plot.

This example (from Ortega/Rheinboldt) will be later implemented in Fortran so make sure you have
a good handle on the solution.

4. Find chemical equilibria in a chemical reaction involving water and carbon dioxide, in a coalbed fed
with gas stream contain air and steam. [In the reaction and model the oxygen component is eliminated].

C + CO2 7→ 2CO (6)
H2 + C 7→ H2 + CO (7)

In equilibrium the mole fractions of the components are given by

yH2 :=
εb

3.38 + εa + εb
, yCO :=

2εa + εb

3.38 + εa + εb
, yH2O :=

1− εb

3.38 + εa + εb
, yCO2 :=

0.5− εa

3.38 + εa + εb
, (8)

and the auxiliary variables −0.5 ≤ εa ≤ 0.5, 0 ≤ εb ≤ 1 satisfy the system

Ka = 20 (2εa+εb)
2

(0.5−εa)(3.38+εa+εb)
(9)

Kb = 20 εb(2εa+εb)
(1−εb)(3.38+εa+εb)

(10)

Given Ka,Kb, the system (9)–(10) needs to be solved for εa, εb from which one can determine the “y”
values for the components from (8).

(i) In particular, at T = 1, 400[k], we have Ka = 584.85,Kb = 268.76 and one obtains εa =
0.4739, εb = 0.9713.

(ii) Set-up fixed-point solver for this problem. Confirm the solution in (i). (A good starting point
is (0, 0.5).

(iii) Implement and test Newton (or Newton-like) and solve for εa, εb when Ka = 11.405,Kb =
11.219.(Solution is around 0.12, 0.71). Note that fixed point iteration in (ii) may have trouble converging
already for Ka = 20,Kb = 20, while the secant method with h = 1e − 4 should converge fast. How
fast ?

Adapted from Smith, Van Ness, Abbott, “Introduction to Chemical Engineering Thermodynamics”,
Sixt Edition, McGraw-Hill, 2001, Chap.13
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