
MTH 655, Winter 2013, LAB4
The goal of this assignment is twofold. We explore i) mesh (in) sensitivity and convergence of

Newton method for semilinear BVPs and semismooth Newton methods for problems under constraints
and ii) smoothing properties of relaxation methods such as (weighted) Jacobi, Gauss-Seidel, and SOR.

Advanced students turn in 3, 4iii-iv), and 5. Less advanced students can turn in three of 1,
2, 4(i-iii), and 5.

1. Consider the BVP problem

−u′′(x) = f(x), x ∈ (0, 1);u(0) = u(1) = 0. (1)

Recall that after FD (or FE) discretization, you solve the system Au = f where A is the discrete Lapla-

cian, and f is the load vector. In a FE setting, this is equivalent to minimization of
∫ 1

0

(
1
2 (u′)2 − fu

)
dx

over an appropriate space (ask me for details if you are interested). The discrete counterpart of the
minimization principle is

inf
u∈V

1

2
utAu− utf. (2)

where V = Rn.
To solve (2) under inequality constraints where, e.g., we impose

V = {u ∈ Rn : uj ≥ u∗j , ∀j} (3)

with u∗ a given vector, we use the semi-smnooth Newton method as described in class. We define a
Lagrange multiplier λ = Au− f ≥ 0, and rewrite the constraint as min(u− u∗, λ) = 0.

The provided code semicon.m is a template for solving (2) with (3), where f(x) ≡ −1, u∗(x) ≡ −0.1.
(i) Test whether the semismooth Newton method is mesh-sensitive by running it for n = 10, 20, . . .

and observing the number of iterations needed. Consider a fixed n = 100, and extract and plot the
convergence history, i.e., the magnitude of residual depending on the iteration number. Discuss.

(ii) Extend the code and implement a solution to (2) with

V = {u ∈ Rn : uj ≤ u∗j , ∀j} (4)

f(x) ≡ 1, u∗(x) = 1/4 ∗ sin(3πx). (Note that your constraint is now rewritten as min(u∗ − u,−λ) = 0,
and your u must be below the constraint, and λ ≤ 0. You must remember to modify the appropriate
parts of residual and Jacobian calculations).

2. Generalize (1) to the semilinear problem

−u′′(x) + g(u(x)) = f(x), x ∈ (0, 1);u(0) = u(1) = 0. (5)

where g(·) is a monotone increasing function with a primitive G(·). One can show that the solution

minimizes the functional
∫ 1

0
1
2

(
(u′)2 +G(u)− fu

)
dx and that the discrete formulation is Au+g(u) = f

with (g(u))j = g(uj), j = 1, . . . n corresponding to

inf
u∈V

1

2
utAu+ G(u)− utf. (6)

where (G(u))j = G(uj), j = 1, . . . n.

The provided template semilinear.m shows how to solve the problem over V with g(u) = u3.
Test the mesh (in)dependence of the Newton’s method and the convergence of iteration. Experiment

with g(u) = αg(u) for different α, also those for which g(u) is not monotone increasing.

1



3. Combine Pbms 1 and 2 (i.e., solve (5) with constraints) and experiment with various constraints
and values of α. Include the case α = 0 and the case where the constraint is not active. Discuss the
behavior of Newton’s method.

4. Recall the family of stationary iterative methods and relaxation methods discussed in class. They
exhibit particular smoothing properties in that they damp higher frequency modes of the error.

You can use the provided MATLAB code as a template to set up the iteration matrices for these
methods for the purpose of testing their properties. For “real” implementation, see problem 5.

%% set-up A for a given n

A = zeros(n,n);

for j = 1:n A(j,j)=2;end; for j = 2:n A(j,j-1)=-1;end; for j = 1:n-1 A(j,j+1)=-1;end;

%% extract D, L, U in the splitting of A

D = diag(diag(A)); L = tril(A)-D; U = triu(A)-D;

%% set-up iteration matrices and vectors for a given omega

Gj = inv(D)*(-L-U); cj = inv(D)*f;

Ggs = inv(D+L)*(-U); cgs = inv(D+L)*f;

Gsor = inv(D/omega+L)*((1/omega-1)*D-U); csor = inv(D+omega*L)*omega*f;

i) Explore the smoothing properties of those methods by applying them to solve Au = 0 for n = 64
when initial guess is a highly varying function: a multiple of one of the eigenvectors of A. You can use
the template:

h = 1/(n+1);x=(1:n)’*h;u = sin(k*pi*x)’;

for m=1:10 u= G*u; plot(x,u); end

ii) Explore how many iterations you need to for the residual (for this case, the magnitude of u) to
be less than τ = 10−2 for the modes k = 30, 15, 4. Try ω = 2/3, and experiment with other values of
ω. Compare performance of the various methods.

iii) Mix up the three modes k = 30, 15, 4, use some interesting amplitudes and compare performance
as in ii).

iv) Do ii)-iii) and find the optimal ω for the case when the differential equation is −(k(x)u′)′ = f
and k(·) is piecewise constant so that the problem has an interface. The appropriate entries of A must
change to reflect this, e.g, Ajj = k1 + k2, Aj,j−1 = −k1, Aj,j+1 = −k2.

5. Implement in FORTRAN or C: Jacobi method or SOR method to solve the problem as in
LAB3. Compare the solution obtained with the direct solver DGESV and your Jacobi solver. How
many iterations are needed to solve the problem of size n = 10, 20, 100, 1000 to get the residual r to
satisfy ‖ r ‖∞≤ τ = 10−1 ?

For SOR, use optimal parameter ω which can be found by trial and error for a given n. (There is
also theory which you can ask me about). The search for optimal ω can be implemented using

%% G is some iteration matrix dependent on omega

radius = max(abs(eig(G)));

The following code in MATLAB would execute the SOR iteration:
%% ucode starts with an initial guess, iteration continues indefinitely %% you must

implement a way to stop it

while 1

iter = iter + 1;

ucodeold = ucode;

for j=1:n

suml = 0;

for k=1:j-1

suml = suml + A(j,k)*ucode(k);

2



end

sumu = 0;

for k=j+1:n

sumu = sumu + A(j,k)*ucodeold(k);

end

ucode(j) = omega*(f(j)- sumu - suml)/A(j,j) +(1-omega)*ucodeold(j);

end

end

3


