MTH 655, Winter 2013, LAB6

The goal of this assignment is to get acquainted with non-stationary iterative methods. Turn in 1 and one of 2 or 3 (or both for extra credit).

1. Repeat class example for SD, CG, GMRES with matrix A = [2, 1; 1, 2], and $b = [-1, 1]^T$. Plot contours of the functions minimized by SD, CG, GMRES, compute (by hand) the iterates x_1 and x_2 for each of the method, and mark them on the graph. How many iterations of SD do you need to get close to the true solution within the tolerance 1e - 2?

2. Use pcg in MATLAB and explore the benefits of preconditioning. For the matrix A use gallery('wathen',12,12) (should be sparse spd). Let the true x be a vector of 'ones' of appropriate dimension; compute b = Ax accordingly.

You can use rand('seed', your_osu_id); or something like that to de-randomize your choices when exploring.

(i) Experiment with the M=diagonal preconditioner. Discuss the computational cost as well as condition number of $M^{-1}A$ as compared to A, and other factors that may be relevant. Choose different sizes, tolerances etc.; compare the quality of the solution to that obtained with the direct solver (backslash).

(ii) Next, code a function mfun to replace M. [Show me your code] (test with diagonal preconditioner first). Test performance as in (i). In mfun, test the performance of at least one preconditioner of your choice, e.g., cholinc, or a few iterations of the solvers Jacobi, SOR matrix, Richardson's iteration $G_{RICH} = I - \alpha A$ for an appropriately chosen α .

3. Do 2 with GMRES or BiCGstab instead (use a non-symmetric matrix).