Homework 3, Real Analysis Due Friday, October 16, 2015.
Assigned exercises from Chapter 1 of the text: (37, 42, 45, 46, 48).
Optional exercises from Chapter 1 of the text: (38*, 39*, 47*, 50*, 51*).
The following exercises are also assigned:

(I1) (a) Let
\[A_n = \left[-\frac{1}{n}, 1 + \frac{1}{n^4} \right]. \]
Find lim sup \(A_n \) and lim inf \(A_n \).

(b) Let
\[B_n = \left(1 + (-1)^n \frac{1}{n}, 3 + \frac{1}{n^4} \right). \]
Find lim sup \(B_n \) and lim inf \(B_n \).

(c) Let
\[C_n = \left(-n(-1)^n - n, (-1)^n n \right). \]
Find lim sup \(C_n \) and lim inf \(C_n \).

(I2) (a) Let \(\{a_k : k \geq 1\} \) be a sequence in \(\{0, 1\} \). In other words, \(a_k = 0 \) or \(a_k = 1 \) for each \(k \geq 1 \). Clearly the finite product \(\prod_{k=1}^{n} a_k \) is defined as follows:
\[\prod_{k=1}^{n} a_k = \begin{cases}
0 & \text{if } a_k = 0 \text{ for some } k = 1, \ldots, n \\
1 & \text{if } a_k = 1 \text{ for all } k = 1, \ldots, n.
\end{cases} \]
Give a reasonable definition of the infinite product \(\prod_{k=1}^{\infty} a_k \).

(b) Recall the characteristic function of a set \(A \):
\[\chi_A(\omega) = \begin{cases}
1 & \text{if } \omega \in A \\
0 & \text{if } \omega \in A^c.
\end{cases} \]
Let \(\{A_k : k \geq 1\} \) be a sequence of sets in some space \(\Omega \). Show that the following equalities hold.

\[
\chi \cap_{k=1}^{n} A_k(\omega) = \prod_{k=1}^{n} \chi_{A_k}(\omega) = \min_{1 \leq k \leq n} \chi_{A_k}(\omega)
\]

\[
\chi \cap_{k=1}^{\infty} A_k(\omega) = \prod_{k=1}^{\infty} \chi_{A_k}(\omega) = \lim_{n \to \infty} \min_{1 \leq k \leq n} \chi_{A_k}(\omega)
\]

(I.3) Prove that for an arbitrary sequence of sets \(\{A_n : n \geq 1\} \) in some space \(\Omega \),

\[
\chi_{\lim sup A_n}(\omega) = \bar{\lim}_{n} \chi_{A_n}(\omega) \quad \text{for all } \omega \in \Omega
\]

and

\[
\chi_{\lim inf A_n}(\omega) = \lim_{n} \chi_{A_n}(\omega) \quad \text{for all } \omega \in \Omega.
\]