1. Give an example of a power series with radius of convergence equal to 4.

Sol’n: Of course, there are many correct answers; \(\sum_{n=0}^{\infty} 4^{-n} z^n \) is one.

2. Find the radius of convergence of the following power series: \(\sum_{n=0}^{\infty} \frac{3^n}{(2n)!} z^n \).

Sol’n: When the ratio test is applied, one considers

\[
\lim_{n \to \infty} \frac{\frac{3^{n+1}|z|^{n+1}}{(2(n+1))!}}{\frac{3^n|z|^n}{(2n)!}} = \lim_{n \to \infty} \frac{3|z|}{(n+2)(n+1)} = 0.
\]

Since the limit is 0 regardless of the choice of \(z \) (unequal to 0, of course), we see that the series converges for every \(z \), so the radius of convergence is \(\infty \).

3. Find the power series expansion centered at \(z_0 = \pi/3 \) for \(\sin z \).

Sol’n: Set \(w = z - \pi/3 \). Then we have

\[
\sin z = \sin(w + \pi/3) = \sin \frac{\pi}{3} \cos w + \sin w \cos \frac{\pi}{3} = \frac{\sqrt{3}}{2} \cos w + \frac{1}{2} \sin w
\]

\[
= \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} (-1)^n \frac{w^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{w^{2n+1}}{(2n+1)!}
\]

\[
= \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(z - \pi/3)^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(z - \pi/3)^{2n+1}}{(2n+1)!}
\]

4. Let \(f \) be an entire function (i.e., analytic in all of \(\mathbb{C} \)). Suppose that there exist finite, positive constants \(C_0 \) and \(C_1 \) such that \(|f(z)| \leq C_0 \left(1 + |z| \right)^{C_1} \) holds for all \(z \in \mathbb{C} \). Show that \(f \) is a polynomial.

Sol’n: The Cauchy estimate applied to \(D(0, R) \) tells us that

\[
|f^{(n)}(0)| \leq C_0 \left(1 + r \right)^{C_1} \frac{n!}{r^n}.
\]

If \(n > C_1 \), then the limit of the right-hand side, as \(r \to \infty \), is 0. So we have \(f^{(n)}(0) = 0 \) for \(n > C_1 \). Letting \(N \) denote the largest integer that is less than or equal to \(C_1 \) and using the power series expansion for \(f \), we obtain

\[
f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} z^n
\]
showing that f is a polynomial.

5. Determine the type of singularity at $z = 0$. If the singularity is a pole, find the order of the pole.

$$\frac{z^2}{\cos(z) - 1 + z^2/2}.$$

Sol’n: Using the power series for $\cos z$, we see that

$$\cos(z) - 1 + z^2/2 = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} - 1 + z^2/2$$

$$= \sum_{n=2}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$= \sum_{m=0}^{\infty} (-1)^{(m+2)} \frac{z^{2m+4}}{(2m+4)!}$$

$$= z^4 \sum_{m=0}^{\infty} (-1)^m \frac{z^{2m}}{(2m)!}$$

and we observe that $\sum_{m=0}^{\infty} (-1)^m \frac{z^{2m}}{(2m)!}$ defines an entire function $h(z)$ that does not vanish at 0. Then we have

$$\frac{z^2}{\cos(z) - 1 + z^2/2} = z^2 \frac{1}{h(z)},$$

so 0 is a pole of order 2.

6. Give an example of a function with an essential singularity at $z_0 = 3$.

Sol’n: Again there are many correct solutions; one is $e^{1/(z-3)}$.

7. Suppose that $P(\cos \theta, \sin \theta)$ is a polynomial in $\cos \theta$ and $\sin \theta$. Show that if $P(\cos \theta, \sin \theta) = 0$ holds for $\theta = \pi/n$, for all positive integers n, then $P(\cos \theta, \sin \theta) = 0$ for all $0 \leq \theta \leq 2\pi$.

[Hint: An example of a polynomial in $\cos \theta$ and $\sin \theta$ is $P(\cos \theta, \sin \theta) = 1 + \cos \theta + \cos^2 \theta + 2 \cos \theta \sin \theta + 3 \sin^2 \theta$. This example does not equal 0 for all $\theta = \pi/n$; it is given here solely to illustrate the notion of a polynomial in $\cos \theta$ and $\sin \theta$.]
Sol’n: We consider the entire function
\[f(z) = P(\cos z, \sin z). \]
Since \(f(\pi/n) = 0 \) for \(n = 1, 2, \ldots \), we see that \(z = 0 \) is a non-isolated zero of \(f \). But with the sole exception the identically zero function, the zeros of an analytic function are isolated in any connected open set. Thus \(f \equiv 0 \). In particular \(f(\theta) = 0 \) for \(\theta \in [0, 2\pi] \).

8. Find the Laurent series for \(\frac{1 + 3z + 3z^2}{z^2(z + 1)} \) at 0.

Sol’n: One can write
\[\frac{1 + 3z + 3z^2}{z^2(z + 1)} = \frac{1}{z^2} + \frac{2}{z} + \frac{1}{1 + z}. \]
Using
\[\frac{1}{1 + z} = \frac{1}{1 - (-z)} = \sum_{n=0}^{\infty} (-1)^n z^n, \]
we conclude that the Laurent series is
\[\frac{1 + 3z + 3z^2}{z^2(z + 1)} = \frac{1}{z^2} + \frac{2}{z} + \sum_{n=0}^{\infty} (-1)^n z^n. \]

9. Use the residue calculus to compute \(\int_{0}^{\infty} \frac{x}{1 + x^4} \, dx. \)

[Hint: Show that the integral of \(z/(1+z^4) \) along the imaginary axis starting at 0 and going through \(i \) and continuing on to \(\infty \) equals \(-\int_{0}^{\infty} \frac{x}{1+x^4} \, dx \). Use this fact to help you choose the contour (i.e., curve) over which to integrate.]

Sol’n: First, we observe that if we parametrize the upper imaginary axis by \(z = it, \, 0 \leq t < \infty \), and call that path \(\gamma \), then we have
\[\int_{\gamma} \frac{z}{1 + z^4} \, dz = \int_{0}^{\infty} \frac{it}{1 + t^4} \, i \, dt = -\int_{0}^{\infty} \frac{t}{1 + t^4} \, dt. \]
Next, if we consider the positively oriented quarter circle \(c \) of radius \(R \) shown in the figure, we see that
\[\int_{c} \frac{z}{1 + z^4} \, dz \sim R^{-2} \]
for large R.

So the positively oriented line integral around the path a, followed by c, followed by b converges, as $R \to \infty$, to 2 times the integral we wish to evaluate.

The roots of $1 + z^4$ are

\[
\begin{align*}
 z_1 &= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
 z_2 &= -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\
 z_3 &= -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \\
 z_4 &= \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}.
\end{align*}
\]

The only pole inside the quarter circle (for $R > 1$) is at z_1 and the residue there is

\[
\text{Res} = \frac{z_1}{(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)} = 2 \frac{1 + i}{2(2 + 2i)2i} = (1/4) \frac{1}{i} = \frac{-i}{4}.
\]

We have

\[
\int_{a+c+b} \frac{z}{1 + z^4} \, dz = 2\pi i \text{Res} = \frac{\pi}{2}.
\]
We conclude that

\[\int_0^\infty \frac{x}{1 + x^4} \, dx = \frac{\pi}{2}. \]