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Uncertainty quantification in complex systems

Examples:
climate, markets, cities, emerging diseases, science and innovation
ecosystems and biodiversity, brain and cognition

Properties: 
many components, heterogeneity, uncertainty in initial conditions 
and parameters, exposed to externalities, learn and adapt

Modeling and theory in complex systems:

No models exist that give long time predictability
Few models have been proposed that give short term reliable predictions
Causality is not well understood

Uncertainty in models and predictions must be quantified for falsification
Lots of data are coming in !



Synopsis

Predicting the epidemic potential of emerging infectious diseases

with Ruy Ribeiro

Accelerating Science and Technology
with David Kaiser, OSTI DOE

How do complex networks process information?
the functional information structure of living neural networks

with Vadas Gintautas and Michael Ham



Estimating the epidemic potential
of emerging infectious diseases

“What’s the risk of a  H5N1 (bird) flu pandemic in the next 3 years?”

anonymous DHS program manager



October 1, 2004

March 23, 2005

May 19, 2005

time [days]

Outbreak of Marburg fever: Angola,  2005





Conditions in 
Uige:





“What’s the risk of a  H5N1 (bird) flu pandemic in the next 3 years?”

anonymous DHS program manager



H5N1 avian influenza

Influenza A virus, very contagious among birds: 
pandemic: Asia, Europe, Africa    51 countries

Caused over 381 human cases, with 240 deaths 63% case mortality
                    

 Presently very low transmissibility among humans:     0 < R0 << 1 

How will H5N1 influenza evolve? 

What will be the signs of sustained human transmission: 

R0<1,  R0     1? 
   

Number of new cases induced by an infectious individual: 



Typical EID time series
human cases of H5N1influenza in Vietnam

From “Situation Updates: Avian Influenza” 
Word Health Organization (WHO) 
Laboratory confirmed H5N1 cases (http://www.who.int/csr/don/en). 



vs. Seasonal flu epidemic time series
H3N2 USA isolates 2004-05

H3N2 seasonal influenza isolates 
from the Center for Disease Control (CDC) 
Surveillance Weekly Reports in the United States 
(http://www.cdc.gov/flu/weekly/fluactivity.htm) 



Requirements for model of EID

i) incorporate reservoir sources, associated with multiple introductions
ii) formulate the model in discrete probabilistic form 
iii) quantify uncertainty in epidemiological parameters and use new data to reduce it 
iv) cast state variables in terms of observable quantities, 

                                    reported from field surveillance 
v) estimation procedure should not depend on 

future unknown data, such as final case cluster size 
vi)    supply surveillance with real-time probabilistic expectations, 
         which when violated may indicate that:

- there are errors in the new data  
                  - the pathogen is evolving
             - the host population is changing 

A successful model for EID should:



Epidemic Mean Dynamics in
terms of ‘observables’



SIR model without Sources
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ΔT (t + τ ) = b(R)ΔT (t)

Consider a standard SIR model:

Total Cases:

The solution is:

Evolution of the expectation value for New Cases
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b(R) is the branching parameter: 

R0 = β/γ

RML = 1+
1
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ln ΔT (t + τ )

ΔT (t)



Epidemic time delay diagrams: R>1

R0 can be determined geometrically, 
- without complex parameter estimation.

b(R) is the
slope of the
tangent at
the origin

ΔT (t + τ ) = b(R)ΔT (t)



Model with Sources
(multiple introductions)
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Model with two classes of human infected:

Take: to give:
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Model with Sources (cont.)
(multiple introductions)

ΔT (t + τ ) = ΔB(t + τ ) + b(R0 ) ΔT (t) − ΔB(t) + τγ R0
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The progression of the expectation value for New Cases obeys:

new cases 
from sources
(birds) 

time evolution

old cases from 
human transmission

evolution of introduced
infectious cases 

New cases are treated as a stochastic variable with this average

ΔT (t + τ ) ~ P[ΔT (t + τ )← ΔT (t) | Γ] The functional form of P
is constrained by the mean



Probabilistic Epidemic Models

Real Time] Bayesian Parameter Estimation



Estimating the probability distribution of
R, γ, etc from surveillance time series

is equivalent to:

Alternative perspective: “Boundary value problem”

Previous Cases + New Cases          probability dist. of model (Γ)
     surveillance time series      P(Γ)

Usual perspective:      “Initial value problem”

Previous cases + Model (Γ)         probability dist. of New Cases



This results from  Bayes’ Theorem

• P[Γ] is the ‘prior’ [ it expresses the expected distribution of Γ] 

•                                 is a normalization factor:

P[Γ | ΔT (t + τ )← ΔT (t)] = P[ΔT (t + τ )← ΔT (t) | Γ]P[Γ]
P[ΔT (t + τ )← ΔT (t)]

� 

P[ΔT(t + τ )←ΔT(t)]

P[ΔT (t + τ )← ΔT (t)] = dΓ∫ P[ΔT (t + τ )← ΔT (t) | Γ]P[Γ]

Γ are the model parameters



Iterative estimation and uncertainty
reduction

P[Γ | ΔT (t + τ )← ΔT (t)] = P[ΔT (t + τ )← ΔT (t) | Γ]P[Γ]
P[ΔT (t + τ )← ΔT (t)]

At the next time

At this time



Simulated Outbreaks



Real time evolution of 
maximum likelihood R0 and 95% confidence interval

H5N1 avian influenza: Vietnam H3N2 seasonal influenza: USA

θ=0.6



Indonesia



The R0 of H5N1 influenza in humans

VIETNAM INDONESIA

Average fraction of cases attributable to human

contagion (θ)

1.0 0.8 0.4 0.2 1.0 0.8 0.4 0.2

R0 min 0.26 0.23 0 0 0.68 0.56 0.26 0

ML R0 0.53 0.46 0 0 0.84 0.71 0.43 0

Mean R0 0.52 0.46 0.08 0 0.83 0.70 0.42 0

R0 max 0.77 0.68 0.46 0 0.97 0.83 0.56 0

even in worst case scenario: R0<1 



Active surveillance through real time prediction and
anomaly detection

Γ, ΔT(t) ΔT (t + τ ) ~ P[ΔT (t + τ )← ΔT (t) | Γ]



anomalies

Standard p-value test at 95% significance 



Accelerating Science and technology



 a predictive “science of science”?

Can science be forecast?
-when is a field opening or closing?
-what are the signatures of new scientific discoveries?
-“Paradigm shifts”  vs. “normal science”

can they be distinguished from analysis of literature?

Prediction enables “interventions”:
How should agencies and institutions allocate resources:

Students? Meetings? Individual PIs?
How can scientific discovery be accelerated?

NSF, DOE OSTI 



The structure of scientific revolutions

“normal science”“paradigm shift”

discovery invention

crisis

“exceptional 
    science”

T. Kuhn 1961 

[puzzle solving]

[…]
time

dissolution

[discovery & invention] inconsistencies  

Are there quantitative signatures 
of where a field is ?



6+2 examples of scientific discovery

Cosmological Inflation
Cosmic Strings
String Theory

Prions
H5N1 Influenza

Quantum Computing & Computation
Carbon Nanotubes

Cold Fusion

Theoretical Physics

BioMedical

Applied Physics 
Material Science 
Engineering

“Pathological” Science



Data sources and retrieval
SearchPlus developed by the LANL’s Research Library
Library Without Walls (http://library.lanl.gov/lww/)

Searches the standard set of largest scientific databases:
BIOSIS
Engineering Index Proceedings
Inspec
ISI databases (Thomson Scientific):

ISI Proceedings
ISI SciSearch
ISI Social SciSearch
ISI Arts & Humanities

    Retrieved data (HTML)  ->  Parsed  ->  Relational Databases
                   authors, title, date, journal reference

Each field is built from a 
combination of searches and 
analyzed by a domain expert 



Ideas as ‘epidemics of knowledge’



Parallels between social dynamics and
epidemiology

Individual

Susceptible

Exposed

Infectious

Recovered

Social (population)

H
ost/pathogen  dynam

i cs

subpopulation in classes
contact rate
incubation time
infectious period

no intentionality in standard 
disease contagion



Dynamical Model
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Strategy:
- Search for the best parameters is an optimization

problem: minimizing the deviation of the model relative to the data

           - Optimization within a fixed tolerance leads to many
good solution from which we construct:

Joint probability distribution for model parameters conditional
on observed data:
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P[Γ
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]

Γ = (S(t0),I(t0),E(t0),R(t0),β,Λ,κ ,ρ,γ )
Initial State     Dynamical Parameters

Parameter Search and Optimization



Indirect estimation of               from trajectories:

Deviation (action):

where IΓ(ti) is the state given by solving the model with
initial conditions and dynamical parameters given by Γ, evaluated at
the data points            Inverse Problem

Thus we can associate a (goodness of fit) probability for the
trajectory IΓ(t) as
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Cosmological Inflation
[2005: 3410 authors, 5135 papers]

Alan Guth 1981
Andrei Linde 1982

Proposes 
Explanations
for many 
cosmological
problems:
Boosted by recent
Cosmic Microwave
Background 
Measurements
 



Cosmic Strings and Topological Defects
[2005: 2292 authors; 2443 authors]

TWB Kibble 1976
Y Zeldovich  1980

Unavoidable 
features of the 
Early Universe:
Could they have 
seeded structure?
Disfavored by 
Current CMB 
measurements



Scrapie and Prions   
[2005:14620 authors, 11074 papers] Prussiner 1982

Nobel Prize 1997

Misfolding 
Proteins that 
cause transmissible
spongiform
encephalopathies:
Scrapie, 
“mad cow disease” 
Kreuzberg-Jacob 
disease in humans



H5N1 Influenza (bird flu)
[2005:1281 authors, 604 papers]

Disease of birds

First infected
humans in 1997
in Hong Kong

280 humans
infected

~60% case
mortality



Carbon Nanotubes
[2005: 25464 authors, 30521 papers]

S. Ijima       1992

Important subfield
of  nanotech

Allotrope of Carbon

Promises to
revolutionize
Nano-engineering



Quantum Computers and Computation
[2005: 7518 authors; 8946 papers] First references 

1960s-70s
Feynman 1982
Deutsch 1985

Algorithms:
Shor, Grover 

~1995
NMR Experiments

~1996
Revolution in 
Computing &
Cryptography?



Cold Fusion
pathological science

[2005: 1637 authors; 871 papers]

Utah 
experiments



Estimated parameters
infectiousness and recruitment pull of

scientific ideas



Measures of Scientific Productivity

Marginal Returns
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ΔY (t ')
ΔX(t)

= f [ΔX(t)] ~ [ΔX(t)]β , t '≥ t
Output

Input scaling relation (?)

“Returns to Scale” in ΔY=Papers versus ΔX=Authors:
                                 citations, patents          funding, reputation

β=1 :  each unit of input produces one unit of output
β <1 : diminishing returns: each new author ->  less papers/author

β >1 : increasing returns:   each new author ->  more papers/author



Theoretical Physics

Cosmological Inflation β=1.28 Cosmic Strings β=1.13



BioMedical Fields

Prions β=0.78 H5N1 Influenza β=0.87



Technological Fields

Carbon Nanotubes β=1.32 Quantum Computation β=1 vs. 1.37



Science may be forecast

uncertainty quantification in
predictions is essential for model

building and falsification



Information processing in the nervous system

functional information modules in
complex networks

Mouse liver gene expression network from Jake Lusis Laboratory,UCLA



Functional subgraphs



Curse of dimensionality
motifs



Entropy as uncertainty
Mutual Information as uncertainty reduction

Shannon Entropy of X:
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A [discrete] calculus in information
measurement and information gain



A cluster decomposition in terms of
functional modules



Rn gives redundancy or synergy exactly to
nth order



Frontal cortex neurons
from fetal mice 
[thousands/mm2]

Grown in vitro over a 
1mm2 microelectrode array

Disassociated Culture
spontaneously form network

Image courtesy M. Ham and G. Gross

Architecture and information processing in the nervous system



Cortical neural network electrophysiological activity



Estimation in practice
Binary ‘words’ from spike time series    

                                “Spikes”
            Rieke, Warland, de Ruyter van Steveninck, Bialek

And count word frequencies over time

� 

pw = nw
N



Motif search and identification
optimization in uncertainty reduction



Approximate searches



Reverse engineering network circuits



Randomness or Structure?
Individual uncertainty is accounted for by other nodes



Uncertainty in models of
complex systems

Uncertainty quantification and management 
is essential in complex systems

no [exact] predictive models exist
many uncertainties in initial conditions and parameters
exogenous shocks

Uncertainty reduction via optimization reveals

the functional network structure of complex systems 
as information processing systems

generates robust adaptive control protocols, active learning and recovery  


