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Examples:
climate, markets, cities, emerging diseases, science and innovation
ecosystems and biodiversity, brain and cognition

Properties:
many components, heterogeneity, uncertainty in initial conditions
and parameters, exposed to externalities, learn and adapt

Modeling and theory in complex systems:
No models exist that give long time predictability
Few models have been proposed that give short term reliable predictions

Causality is not well understood

Uncertainty in models and predictions must be quantified for falsification
Lots of data are coming in !



Predicting the epidemic potential of emerging infectious diseases
with Ruy Ribeiro
Accelerating Science and Technology
with David Kaiser, OSTI DOE
How do complex networks process information?

the functional information structure of living neural networks

with Vadas Gintautas and Michael Ham



Estimating the epidemic potential
of emerging infectious diseases

“What's the risk of a H5N1 (bird) flu pandemic in the next 3 years?”

anonymous DHS program manager



Outbreak of Marburg fever: Angola, 2005
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“What's the risk of a H5N1 (bird) flu pandemic in the next 3 years?”

anonymous DHS program manager



H5NT1 avian influenza

Influenza A virus, very contagious among birds:
pandemic: Asia, Europe, Africa 51 countries

Caused over 381 human cases, with 240 deaths 63% case mortality

Presently very low transmissibility among humans: 0 < R, << 1
How will H5N1 influenza evolve?

What will be the signs of sustained human transmission:

¢
Number of new cases induced by an infectious individual: Ro<1, Ro= 1



Typical EID time series

human cases of H5N1influenza in Vietnam
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From “Situation Updates: Avian Influenza”
Word Health Organization (WHO)

Laboratory confirmed H5N1 cases (http://www.who.int/csr/don/en).



vs. Seasonal flu epidemic time series
H3N2 USA isolates 2004-05
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H3N2 seasonal influenza isolates
from the Center for Disease Control (CDC)
Surveillance Weekly Reports in the United States

(http://www.cdc.gov/flu/weekly/fluactivity.htm)



Requirements for model of EID

A successful model for EID should:

incorporate reservoir sources, associated with multiple introductions
formulate the model in discrete probabilistic form
guantify uncertainty in epidemiological parameters and use new data to reduce it
cast state variables in terms of observable quantities,
reported from field surveillance
estimation procedure should not depend on
future unknown data, such as final case cluster size
supply surveillance with real-time probabilistic expectations,
which when violated may indicate that:
- there are errors in the new data
- the pathogen is evolving

- the host population is changing



Epidemic Mean Dynamics in
terms of ‘observables’



SIR model without Sources

Consider a standard SIR model: R,=Bly
° S ° S * S
S=-B—=1, I=|B—- Total Cases: T=—1

P N [ﬁ N 4’ 'B N

The solution 1is:

I(t+7)=1(1) CXP‘:}/J.:H[RO S(Tt‘) — 1}7;'J =[(1) exp[}/t(Ro % — 1]J

Evolution of the expectation value for New Cases

(AT (1 +7))=b(R)AT ()|  bR) *"MRO;”)J'

1 In AT (t+7T)
173 AT (1)

b(R) 1s the branching parameter: R,, =1+

ML




Epidemic time delay diagrams: R>1

(AT (t + 7)) = b(R)AT (1)
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R, can be determined geometrically,
- without complex parameter estimation.



Model with Sources

(multiple introductions)

Model with two classes of human infected:

h {ﬁ&_ J] ( ) Bbh t) ch(t)a I.b :ﬁbh S(t) (1 f )K(f) )/Ib
Take: B=p,>" 5() K(t) to give:
: {ﬁSL)—V (t)+l§—ﬂb, T= ﬁS(t)Ih(t)+l.3.

Leading to the solution:

I'"(t+7)=b(R, )[1’1 0+ | TSI p é(r')dr'J =b(R))|I" (1) + f.y(1,7,B)]



Model with Sources (cont.)

(multiple introductions)

The progression of the expectation value for New Cases obeys:

(AT (t+7))=AB(t+7T)+ b(RO){AT(t) — AB(t) + TYR, %fCAB(t)}
! p A

new cases . . evolution of introduced
time evolution . .

from sources infectious cases

(birds) old cases from

human transmission

New cases are treated as a stochastic variable with this average

AT(t+7T)~ P[AT(t+71T) < AT(#)IT] The funct.ional form of P
1s constrained by the mean



Probabilistic Epidemic Models

Real Time] Bayesian Parameter Estimation



Estimating the probability distribution of
R, v, etc from surveillance time series

Usual perspective: “Initial value problem”

Previous cases + Model (I) = probability dist. of New Cases

is equivalent to:

Alternative perspective:

Previous Cases + New Cases => probability dist. of model (I')
surveillance time series P(I




This results from Bayes’ Theorem

PIT'IAT(t+7) AT (t)] =

PIAT(t+71) AT (t)|I T']P[1]

PIAT (t +7) « AT (t)]

I" are the model parameters

* P[I'] 1s the ‘prior’ [ it expresses the expected distribution of 1]

e P[AT(t+ 7)< AT(¢)] 1s a normalization factor:

P[AT(t +7) < AT (t)] = jdrP[AT(t +7T) < AT (1) TP[T]




[terative estimation and uncertainty
reduction

At the next time

X

P[AT (¢t +T) < AT(¢)| T]P[T]

PI[TIAT(t +T) < AT (t)] =

P[AT (t +7) <« AT (¢)]

-~ S

At this time
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Real time evolution of
maximum likelithood R, and 95% confidence interval

Basic reproductive number (Rp)
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Indonesia
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The R, of H5N1 influenza in humans

VIETNAM INDONESIA
Average fraction of cases attributable to human

contagion (0)

1.0 08 04 0.2 1.0 08 04 0.2
Romin 026 023 0 0 0.68 0.56 0.26 O
MLR, 053 046 0 O 0.84 0.71 043 O
Mean R, 0.52 0.46 0.08 0 0.83 0.70 042 O
Romax 0.77 0.68 0.46 0 0.97 083 0.56 O

even in worst case scenario: RO<1



Active surveillance through real time prediction and
anomaly detection

I', AT(t) == AT(+7)~P[AT(t+7) AT(t)IT]
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Number of New Cases vs. Prediction
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Accelerating Science and technology



a predictive “science of science”?
NSF, DOE OSTI
Can science be forecast?
-when is a field opening or closing?
-what are the signatures of new scientific discoveries?
-“Paradigm shifts” vs. “normal science”
can they be distinguished from analysis of literature?

Prediction enables “interventions”:

How should agencies and institutions allocate resources:
Students? Meetings? Individual PIs?
How can scientific discovery be accelerated?



The structure of scientific revolutions
T. Kuhn 19671 g

Are there quantitative signatures
of where a field 1s ?

“paradigm shift” “normal science” crisis
[discovery & invention] [puzzle solving] inconsistencies
Q& | (]
discovery invention time

e

dissolution



6+2 examples of scientific discovery

Cosmological Inflation
Cosmic Strings Theoretical Physics

String Theory

Prions

BioMedical
H5NT1 Influenza } OVIedItd

Material Science

Quantum Computing & Computation Applied Physics
Carbon Nanotubes

Engineering

Cold Fusion “Pathological” Science



Data sources and retrieval

SearchPlus developed by the LANL’s Research Library
Library Without Walls (http:/library.lanl.gov/Iww/)

Searches the standard set of largest scientific databases:
BIOSIS

Engineering Index Proceedings BHEHE sEARCHPLUS w0
Inspec
ISI databases (Thomson Scientific):

N PFQC(‘?edings Fach field is built from a
ISI SciSearch

, : combination of searches and
ISI Social SciSearch analyzed by a domain expert
[S] Arts & Humanities Y Y P

Retrieved data (HTML) -> Parsed -> Relational Databases
authors, title, date, journal reference



9

Ideas as ‘epidemics of knowledge

Essays of an Information Scientist, Vol:4, p.586-591, 1979-80  Current Contents, #35, p.5-10, September 1, 1980

The Epidemiology of Knowledge and
the Spread of Scientific Information

Number 35 September 1, 1980

article
Nature 204, 225 - 228 (17 October 1964); doi:10.1038/20422520

Generalization of Epidemic Theory: An Application to
the Transmission of Ideas
WILLIAM GOFFMAN & VAUN A. NEWILL

Center of Documentation and Communication Research, School of Library Science, Western Reserve University
School of Medicine, Western Reserve University, Cleveland, Ohio



Parallels between social dynamics and

epidemiology

Individual | Social (population)
T [
2 |
= | Susceptible : o
z I subpopulation in classes
g | Exposed : contact rate
%L Infectious I %ncubffltion time
2 | Infectious period
= v Recovered :

no intentionality in standard
disease contagion



Dynamical Model

Y

ds I

E:A_ﬁsﬁ’ asls —P JE
E _pT o \
%sz%ﬂ(E—yI, I

R,=P/yis a measure of transmissibility
Basic reproduction number



Parameter Search and Optimization

Strategy:
- Search for the best parameters is an optimization
problem: minimizing the deviation of the model relative to the data

- Optimization within a fixed tolerance leads to many
good solution from which we construct:

Joint probability distribution for model parameters conditional
on observed data:

PIT| . ]
F —_ (g(t()),l(t())aE(to)aR(t021ﬁ9A9Kap92/)

Initial State  Dynamical Parameters




Indirect estimation of P[I,,] from trajectories:

Deviation (action):
2
1 Al (Ir(fi )_Io(fi ))
AD) == —.
N 5 l

where I'(t;) is the state given by solving the model with

initial conditions and dynamical parameters given by I, evaluated at
the data points =% Inverse Problem

Thus we can associate a (goodness of fit) probability for the
trajectory I'(¢t) as

—A
wp=x-¢ "7, N =Tr[w]

w
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Cumulative Number of Authors

Cosmological Inflation Alan Guth 1981

[2005: 3410 authors, 5135 papers] Andrei Linde 1982
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Cumulative Number of Authors

Cosmic Strings and Topological Defects
[2005: 2292 authors; 2443 authors]
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Cumulative Number of Authors

Scrapie and Prions
[2005:14620 authors, 11074 papers]
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Prussiner 1982
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Misfolding

Proteins that

cause transmissible
spongiform
encephalopathies:
Scrapie,

“mad cow disease”
Kreuzberg-Jacob
disease in humans



HS5N1 Influenza (bird flu)

[2005:1281 authors, 604 papers]
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Cumulative Number of Authors

Carbon Nanotubes
[2005: 25464 authors, 30521 papers]

S.Tjima 1992

60000

Total Authors Carbon Nanotubes ®
i Estimated Total Authors :
50000 95% C.l. ------ : ;

Important sbfild
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Cumulative Number of Authors

Quantum Computers and Computation
[2005: 7518 authors; 8946 papers]
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Number of New Authors

Cold Fusion
pathological science
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Estimated parameters

infectiousness and recruitment pull of
scientific 1deas

Parameters S(t,) Eit) | Ity | Rit,) B A K Y R,
Cosmological | o0, 6 W+l | 2 | 1341028 007 0.20 0 021 64.6+1.5
Inflation

Cosmic 2

Strings 149 5 0 0 | 445¢042 | 1590227% | 0252002 0 1.7320.19 | 2.58+0.11
Prions .

i Sicriie 14262+1368 1 81 | 7+2 | 0.69+005 | 469425 0224001 | 1844124 | 037003 || 1.87+0.03
H5NI G057+200 1 0 0 1474002 | 13810 | 071001 0 062001 | 2442003
Influenza

Carbon

p 645976 | 50124 | 1 1 099005 | 0042001 | 0502003 | 0.0320.06 | 0.10£0.05 || 9.72+1.71
Nanotubes

Quantum 1162791 0 0 0 | 378£009 | 1.03£002%* | 041002 | 077£0.03 | 118002 | 320+0.11
Computing

* Indicates a linear growth term A, not AN in the equations for §.

*##% Susceptible population growth starts in 1990,




Measures of Scientific Productivity

Marginal Returns

Output —, AY (1)
— AX(7)

= fIAX(D)] ~[AX (D)), >t

scaling relation (?)

Input

“Returns to Scale” in AY=Papers versus AX=Authors:
citations, patents funding, reputation

P=1 : each unit of input produces one unit of output
B<1 : diminishing returns: each new author -> less papers/author
B >1 :increasing returns: each new author -> more papers/author



Number of New Publications

Theoretical Physics
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Number of New Publications
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Number of New Publications
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Science may be forecast

uncertainty quantification in
predictions is essential for model
building and falsification



Information processing in the nervous system

functional information modules in
complex networks

Mouse liver gene expression network from Jake Lusis Laboratory, UCLA



Functional subgraphs

Types of functional units (building blocks)

e Redundant chains 0 0 0

(Bettencourt et al., Schneidman et al.)

P
e Synergetic circuits N D ?
(Schneidman et al., Bettencourt et al., Gross et al.)
o Motifs

R AR E
s R

(Middendorf et al., Milo et al.)

(Image from Milo et al.)




Curse of dimensionality

motifs

There are too many!

(199 4-motifs, 9,364 5-motifs, 1,530,843 6-motifs, etc.)
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Entropy as uncertainty
Mutual Information as uncertainty reduction

Shannon Entropy of X: S(X) == p(x)log,p(x)

measures number of states of X; stochasticity

Shannon Entropy of {X;Y}:  S(X:Y)=S(X)+SY)+I(X:Y)

Mutual Information {X;Y}: I(X;Y)zZp(x,y)logz( PLx.y) ]
p(x)p(y)

X,y

measures correlation between states of X;Y



A [discrete] calculus in information
measurement and information gain

Define the discrete calculus of the entropy under an additional
measurement as

AS(X) _
) = stxm) —sx)
i ;’fg _ ; [s(xm) S(X)]

— S(X|Y,.7)) — S(X|¥;) — S(X|Y;) + S(X).



A cluster decomposition in terms of
functional modules

For a given set {11,...,Y,},

(X A{Y1.Ys, ... Y} ) = S(X|Y1, Vs, ... Y,) — S(X)

A%S(X) A'S(X)

:ZAS(X)+Z +...+
AY; AY,AY; T AY)...AY,

I 1>]

¢ This decomposition is analogous to a Taylor series.
e Each term isolates the pairs, triplets, etc.

e Define R,(X.Y;,.....Y; ) = ﬂ}%“ls{ﬂ, £RS(X.Y;,,....Y:)




R, gives redundancy or synergy exactly to
nth order

Independent Redundant Synergetic

Rn<0O O
R(n+1)>0

Rn<O

Rin+1)=0 Rin+1)<0

Example:

o Start with set of » nodes with R, < 0
e Add one more node
e R, gives the relationship of that node to the previous set



Architecture and information processing in the nervous system

Frontal cortex neurons
from fetal mice
[thousands/mm?!

Grown In vitro over a
1mm? microelectrode array

Disassociated Culture
spontaneously form network

Image courtesy M. Ham and G Gross



Cortical neural network electrophysiological activity
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Estimation in practice

Binary ‘words’ from spike time series
“Spikes”

Rieke, Warland, de Ruyter van Steveninck, Bialek

Neuron
A ALY
i H— T R
N A
K !I | !I | S
| | ]
- -’ - -’ tlme
Wijk=( 011) Wijkz( 001)
(111) (001)
(100) (100)

And count word frequencies over time p = %V



optimization in uncertainty reduction

Maximize the unique information gain R,, one order at a time.
Conveniently, the expansion

AS(X)
S(X|Y,.Y....Y,) —S(X) =
(‘l._..n) ()EAK
AZS(X A"S(X
+> (Xa”+ X)
< AYiAY, AY]...AY,

allows us to do so order by order!

This is analogous to other optimization strategies such as the
method of steepest descent.



Want to maximize I(X;{Y},) by choosing best set {Y},,
Computationally expensive for n > 10
Instead truncate expansion to £ < n and maximize

How does the set {Y},, found using the approximation

compare to the set found by using the exact expression?

S(XHY }e)/S(X)

1.0

0.5

0.0

ond grder
5t order

vemael

Exact

10" order

332
40 A1 48 S
5
21 49

16

|
0 5 10
Neurons measured (k)

15



Reverse engineering network circuits

Seek purely redundant and synergetic “cores” — a set of
neurons and all possible subsets that share the same functional
character




Randomness or Structure?

Individual uncertainty is accounted for by other nodes

.t
L
N

0.16

Percentage of neurons

ot
o

8.00 0.15 0.30
Final entropy

After all available neurons are measured, very little (0 —30%) of
each neuron’s initial entropy remains!



Uncertainty in models of
complex systems

Uncertainty quantification and management
is essential in complex systems

no [exact] predictive models exist
many uncertainties in initial conditions and parameters
exogenous shocks

Uncertainty reduction via optimization reveals

the functional network structure of complex systems
as information processing systems

generates robust adaptive control protocols, active learning and recovery



