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Risk/Safety Assessment:
A Multi-step Process

=

Hazard
|dentification

~

/

o

Risk/Safety
haracterizatio

J

-

-

Exposure
Assessment

)




Outline

Background on Human Risk/Safety Assessment

Exposure-to-Dose Response

— PK/PD relationship via hierarchical model

— Benchmark dose estimation (distributions)

— How uncertainty can be reduced by PK information

Dose Response-to-Risk/Safety Characterization
— Inter-species and intra-species uncertainties
— BMD conversion via hierarchical model

Summary and Conclusions

Challenges and Needs
— Model uncertainty



Uncertainty Analysis

* |ssue: There are many uncertainties in getting
from Hazard and Dose-Response Assessment
In experimental (animal) settings to Exposure
and Risk/Safety Characterization for human
settings

« Challenge: How to properly reflect these
uncertainties

e Today’s Talk: How Hierarchical Probabilistic
Models can help to characterize and manage
these uncertainties




Usual Approach to Exposure Setting:
Two-Step Process

« Human Exposure (Risk) =

Animal-Derived Benchmark Dose (Risk)
Animal—Average Human—Sensitive Human

( Exposure—>Dose-Response )
(Dose-Response—Risk/Safety Characterization)




Dose-Response Modeling for BMD
Estimation: lllustration

D n #tumors Observed Predicted

0 50 5 0.10 0.096
10 50 / 0.14 0.157
20 50 13 0.26 0.239
40 50 20 0.40 0.407

* Weibull model: P(D)= a+(1-a)[1-exp(-BD)]

« P(D)=0.096 + 0.904 [1-exp(-0.0035D1"-30)]
» Goodness-of-fit p-value = 0.61
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Exposure — Dose-Response

* Context: Dose-response analysis for
cancer

—Fit a mathematical model to D-R data:
Prob(tumor|D) = F(D)

—D is administered (external) dose

» Generally acknowledged that PK
iInformation on internal dose (d) should be
Incorporated whenever possible

—e.g., d = mean AUC in tissue or blood



PK/PD Hidden Structure

 However, most often there is no formal
attempt to separate the hidden
Pharmacokinetic (PK) and
Pharmacodynamic (PD) components of F
that might explain the transformation of an
external exposure into the development of
a tumor
—e.g., F(D), F(d): multistage, probit,

Weibull



Hierarchical Model

* The most natural way to link the PK and
PD components of a dose-response model
IS via a hierarchical model

P(tumor | D) = P, + (1 - PO).[ g (tumor|x) f (x| D)dx

0
0 |
PD PK
Background Model Model

Risk
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How to implement the model

* PK: Experiment, e.g., rats, n animals/D
— Calculate mean and s.d. of d = AUC

— Assume normal distribution for f(d|D)
« Simple PK: variability in internal dose
« Complex PK: variability + parameter uncertainty

 PD: Mechanism/Mode of Action?

— e.g., two-stage clonal growth model for cancer
— OR, multistage, probit, Weibull

* Numerical integration to fit hierarchical model
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Example

 PK analysis
—f(d|D) ~ Normal [u=(2D/(10+D), 6=0.2u]

~f(d|D)={1/[oV(2n)]}exp{-Y4[(d- n)/ o]?}

* PD model

— g(tumor|d): Weibull model
— g(tumor|d)=1-exp(-pd¥)

 Fit hierarchical model using nonlinear least
squares with numerical integration (e.g.,

SAS NLIN)
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Results
D n_#tumors proportion  PK/PD fit

0 50 5 0.10 0.098
10 50 14 0.14 0.145
20 50 13 0.26 0.256
40 50 20 0.40 0.402
* u=(2D/(10+D), 0=0.2u (from PK analysis)
* 3=0.0406, k=4.65 (from fit to tumor data)
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Benchmark Doses

« Can get BMD on scale of external

(administered) dose

— Fix the parameters at estimated values
— Let the desired BMD, e.g., BMD,,, be the

“parameter” of interest

— Set BMR (0.10) = [P(tumor|D)-P,]/[1-Py]

« Estimated BMD,, is 13.91

(SAS NLIN)

14



Uncertainty Analysis

« Can simulate a complete distribution of
BMD,yosur fOor any BMR using Monte
Carlo bootstrap re-sampling of the tumor
data.

* Similarly, can simulate a distribution of
excess risks for any D
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Reduced Uncertainty in BMDs

PK (f) PD (q) BMR BMDL(05)
Mic-Men Weibull 0.01 0.97
(mean only) 0.10 6.29
Mic-Men Weibull 0.01 0.95
(distribution) 0.10 6.86
None Weibull 0.01 0.09
0.10 4.80

* Nonlinear PK info can reduce the spread of
distributions of BMDs (reduce the data uncertainty).
But, mean internal dose seems sufficient.

17



Why the Mean Seems Sufficient

00
P(tumor | D) = Py + (1- PO)I g (tumor|x) f (x| D)dx
0

[P(tumor | D) — PO] /(1 - PO) = Ig(tumorx) f (x|D)dx
0

E ¢ [g (tumor |d)| D J=g [tumor ‘Ef (d|D)]
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Comparison of Variation from Hierarchical
Model with Ordinary Binomial Variation

D N Mean SD Bin. SD
10 100 0.1432 0.0466 0.0495
20 100 0.2450 0.0620 0.0620
40 100 0.4066 0.0659 0.0695

Model: Hierarchical model with P0=0.098, g: Weibull
(0.0406, 4.65), f: N(2D/(10+D), 0.4D/(10+D))

Mean: average of N generated tumor proportions
SD: observed std dev of N generated tumor proportions

Bin. SD: std dev calculated by [p(1-p)/50]"2, where
p=observed mean and 50 is number of animals/group
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Combining PK and PD Results
OSHA: Methylene Chloride 1997

 |Internal dose e RiIsk estimate
from PK analysis from PD model
e Mean d « MLE excess risk

UCL on excess risk

« UCLond

MLE excess risk
UCL on excess risk
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Usual Approach to Exposure Setting:
Two-Step Process

« Human Exposure =

Animal-Derived NOAEL or Benchmark Dose
Animal—Average Human—Sensitive Human

Exposure—Dose-Response )
(Dose-Response—Risk/Safety Characterization)
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Dose-Response —
Risk Characterization

* |Inter-species extrapolation:
— Animal - Human

— Location extrapolation, from SUSCGPthIlIt y of
test animal to center (mean), uy, of human

susceptibility distribution

— Uncertainty is due to a lack of knowledge
about u,, because of the variability among

chemicals in their differential effects on test
animals and humans
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Dose-Response —
Risk Characterization (cont.)

* |Intra-species extrapolation:
— Human —» Human

— Scale extrapolation, from the center, u, of the

human susceptibility distribution to an
extreme tail area

— Uncertainty is due to the inherent inter-
individual variability in human sensitivity
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BMD Conversion

Suppose we have BMD or BMDL for
animals, say, D,

Let T_ be a random variable representing
the ratio of human-to-animal sensitivity
over all chemicals

Let T,, be a random variable representing
the ratio of human-to-human sensitivity to
the tested chemical

Need to “convert” D, to D,, to D,
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Conditional Distribution of Human
Susceptibility

* Assume that T, has a shifted lognormal

distribution with pdf
_ fa(ta“vla’ Oas Ta)

« Assume that T, has a prior shifted

IocT;normaI distribution with pdf
— Tt lu,=c, oy, 1)

* Then, conditional on T_=t_, T, has a shifted

lognormal distribution
— 1, (t,[p=log(t,)+c, o4, 1))
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Unconditional Distribution of
Human Susceptibility

 Hierarchical model for pdf of Tq:
fs (s ‘Uh ThoHg 0q:Ta)=

o0
| fr (| ey =100(t, ) +€.01, .71, g (8 |12 074 70D,

“a | T

Human to Human Animal to Human
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Human Extrapolated Dose

* Lower 100p% statistical confidence limit
on human extrapolated dose:

° ll:BSt(ead ?Eﬁ /(Ta,1OOpTh,1OOP)
» Calculate by D,/T; 44,

— where T 44, is the 100p™ percentile of the
unconditional human susceptibility distribution

* In general, T_,,,, can be expected o be
smaller than T 1000* T 1000
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lllustrations
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Exposure — Dose-Response

Conclusions

 Information on internal dose though PK analysis
can reduce uncertainty in BMD estimation (both
data and model uncertainty) by improving the
estimate of the mean risk

« But, the complete distribution of internal dose
does not appear to affect the characterization of
uncertainty...the mean internal dose seems
sufficient

« The only measure of uncertainty in risk arises
from the ultimate endpoint, presence or absence
of an adverse effect
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Dose-Response —
Risk Characterization Conclusions

* Hierarchical probabilistic models can be
useful for managing the uncertainties in
the extrapolation process of converting
animal-derived exposures into human-
equivalent exposures for risk
characterization by providing vehicles for
proper quantification and propagation of
the uncertainties
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Overall Summary

Hierarchical models are useful for understanding
and quantifying uncertainties in doing:

Exposure — Dose-Response
Dose-Response) —»Risk Characterization

D'{BMR = j g(tumor |x, 3, k) f (x|D, u, o)dx}

T_l{loop - jj 1:h (th ‘ﬂh = Iog(ta) +C, thh) 1Ea (ta ‘lua’aa’ra)dtadth}
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Challenges and Needs

« Correct propagation of uncertainty
— Don’t overstate or misstate

— Hierarchical models
« PK—PD, A, ¢;20—H H —H

average average’ ' 'average sensitive

* Model uncertainty
— Don’t ignore

— Model averaging
* Which and how many?
« Confidence limits on model-averaged BMDs
« Should you average BMDLSs?
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