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OutlineOutline
• Background on Human Risk/Safety Assessment
• Exposure-to-Dose ResponseExposure-to-Dose Response

– PK/PD relationship via hierarchical model
– Benchmark dose estimation (distributions)
– How uncertainty can be reduced by PK information

• Dose Response-to-Risk/Safety Characterization
I t i d i t i t i ti– Inter-species and intra-species uncertainties

– BMD conversion via hierarchical model
• Summary and Conclusions• Summary and Conclusions
• Challenges and Needs

– Model uncertainty
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Uncertainty Analysisy y
• Issue:  There are many uncertainties in getting 

from Hazard and Dose-Response Assessment p
in experimental (animal) settings to Exposure 
and Risk/Safety Characterization for human 
settingssettings

• Challenge: How to properly reflect these• Challenge: How to properly reflect these 
uncertainties

• Today’s Talk: How Hierarchical Probabilistic 
Models can help to characterize and manage 
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Usual Approach to Exposure Setting: 
T S PTwo-Step Process

• Human Exposure (Risk) =

Animal-Derived Benchmark Dose (Risk)
Animal→Average Human→Sensitive Human

( Exposure→Dose-Response )  
(D R Ri k/S f t Ch t i ti )(Dose-Response→Risk/Safety Characterization)
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Dose-Response Modeling for BMD 
E ti ti Ill t tiEstimation: Illustration

D n #tumors Observed Predicted
0 50 5 0.10 0.096

10 50 7 0 14 0 15710 50 7 0.14 0.157
20 50 13 0.26 0.239
40 50 20 0 40 0 40740 50 20 0.40 0.407

• Weibull model: P(D)= α+(1 α)[1 exp( βDγ)]• Weibull model:  P(D)= α+(1-α)[1-exp(-βDγ)]

• P(D)=0.096 + 0.904 [1-exp(-0.0035D1.30)]
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• Goodness-of-fit p-value = 0.61
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Exposure → Dose-Response
• Context:  Dose-response analysis for 

cancer
– Fit a mathematical model to D-R data:

P b(t |D) F(D)Prob(tumor|D) = F(D)

– D is administered (external) doseD is administered (external) dose
• Generally acknowledged that PK 

information on internal dose (d) should beinformation on internal dose (d) should be 
incorporated whenever possible

d AUC i ti bl d
8

– e.g., d = mean AUC in tissue or blood 



PK/PD Hidden StructurePK/PD Hidden Structure

• However, most often there is no formalHowever, most often there is no formal 
attempt to separate the hidden 
Pharmacokinetic (PK) and ( )
Pharmacodynamic (PD) components of F 
that might explain the transformation of an 

t l i t th d l t fexternal exposure into the development of 
a tumor

F(D) F(d) lti t bit– e.g., F(D), F(d): multistage, probit, 
Weibull
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Hierarchical ModelHierarchical Model

• The most natural way to link the PK andThe most natural way to link the PK and 
PD components of a dose-response model 
is via a hierarchical modelis via a hierarchical model
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How to implement the modelHow to implement the model
• PK: Experiment, e.g., rats, n animals/D

C l l t d d f d AUC– Calculate mean and s.d. of d ≡ AUC

– Assume normal distribution for f(d|D)
• Simple PK: variability in internal dose
• Complex PK: variability + parameter uncertainty

• PD: Mechanism/Mode of Action?
– e.g., two-stage clonal growth model for cancerg g g
– OR, multistage, probit, Weibull

• Numerical integration to fit hierarchical model
11

Numerical integration to fit hierarchical model



ExampleExample
• PK analysis

– f(d|D) ~ Normal [μ=(2D/(10+D) σ=0 2μ]f(d|D)  Normal [μ (2D/(10+D), σ 0.2μ]
– f(d|D)={1/[σ√(2π)]}exp{-½[(d- μ)/ σ]2}

• PD model
– g(tumor|d): Weibull model

(t |d) 1 ( βdk)– g(tumor|d)=1-exp(-βdk)

• Fit hierarchical model using nonlinear least g
squares with numerical integration (e.g., 
SAS NLIN)
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ResultsResults
D n #tumors proportion PK/PD fit
0 50 5 0.10 0.098

10 50 7 0 14 0 14510 50 7 0.14 0.145
20 50 13 0.26 0.256
40 50 20 0 40 0 40240 50 20 0.40 0.402

(2D/(10 D) 0 2 (f PK l i )• μ=(2D/(10+D), σ=0.2μ (from PK analysis)
• β=0.0406, k=4.65 (from fit to tumor data)
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Benchmark DosesBenchmark Doses

• Can get BMD on scale of externalCan get BMD on scale of external 
(administered) dose

Fix the parameters at estimated values– Fix the parameters at estimated values
– Let the desired BMD, e.g., BMD10, be the 

“parameter” of interestparameter  of interest
– Set BMR (0.10) = [P(tumor|D)-P0]/[1-P0]

• Estimated BMD10 is 13.91 (SAS NLIN)
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Uncertainty AnalysisUncertainty Analysis

• Can simulate a complete distribution ofCan simulate a complete distribution of 
BMD100BMR for any BMR using Monte 
Carlo bootstrap re-sampling of the tumorCarlo bootstrap re sampling of the tumor 
data.

• Similarly, can simulate a distribution of 
i k f Dexcess risks for any D
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Reduced Uncertainty in BMDsReduced Uncertainty in BMDs
PK (f) PD (g) BMR     BMDL(05)
Mi M W ib ll 0 01 0 97Mic-Men Weibull 0.01 0.97
(mean only) 0.10 6.29
Mic-Men Weibull 0 01 0 95Mic-Men Weibull 0.01 0.95
(distribution) 0.10 6.86
None Weibull 0.01 0.09

0.10 4.80

• Nonlinear PK info can reduce the spread of 
distributions of BMDs (reduce the data uncertainty).  
But, mean internal dose seems sufficient.
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Why the Mean Seems SufficientWhy the Mean Seems Sufficient
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Comparison of Variation from Hierarchical 
M d l ith O di Bi i l V i tiModel with Ordinary Binomial Variation

D N  Mean SD Bin. SD
10 100 0.1432 0.0466 0.0495
20 100 0.2450 0.0620 0.0620
40 100 0 4066 0 0659 0 069540 100 0.4066 0.0659 0.0695

• Model: Hierarchical model with P0=0.098, g: Weibull 
(0.0406, 4.65), f: N(2D/(10+D), 0.4D/(10+D))( , ), ( ( ), ( ))

• Mean: average of N generated tumor proportions
• SD: observed std dev of N generated tumor proportions
• Bin. SD: std dev calculated by [p(1-p)/50]1/2, where 

p=observed mean and 50 is number of animals/group
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Combining PK and PD Results
OSHA M h l Chl id 199OSHA: Methylene Chloride 1997

I t l d Ri k ti t• Internal dose 
from PK analysis

• Risk estimate 
from PD model

• Mean d • MLE excess risk
UCL i k• UCL on excess risk

• UCL on d • MLE excess risk
• UCL on excess risk
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Usual Approach to Exposure Setting: 
T S PTwo-Step Process

• Human Exposure =

Animal-Derived NOAEL or Benchmark Dose
Animal→Average Human→Sensitive Human

( Exposure→Dose-Response          )  
(D R Ri k/S f t Ch t i ti )(Dose-Response→Risk/Safety Characterization)
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Dose-Response →
Ri k Ch i iRisk Characterization

• Inter-species extrapolation:Inter species extrapolation:
– Animal → Human

Location extrapolation from susceptibility of– Location extrapolation, from susceptibility of 
test animal to center (mean), μH, of human 
susceptibility distributionsusceptibility distribution

– Uncertainty is due to a lack of knowledge
about μH, because of the variability among 
chemicals in their differential effects on test 
animals and humans
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Dose-Response →
Ri k Ch i i ( )Risk Characterization (cont.)

• Intra-species extrapolation:
– Human → Human

S l t l ti f th t f th– Scale extrapolation, from the center, μH, of the 
human susceptibility distribution to an 

t t ilextreme tail area
– Uncertainty is due to the inherent inter-

i di id l i bilit i h iti itindividual variability in human sensitivity
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BMD ConversionBMD Conversion

• Suppose we have BMD or BMDL forSuppose we have BMD or BMDL for 
animals, say, Da

• Let Ta be a random variable representingLet Ta be a random variable representing 
the ratio of human-to-animal sensitivity 
over all chemicals

• Let Th be a random variable representing 
the ratio of human-to-human sensitivity to y
the tested chemical

• Need to “convert” Da to Dh to Ds
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Conditional Distribution of Human 
S ibiliSusceptibility

• Assume that Ta has a shifted lognormalAssume that Ta has a shifted lognormal 
distribution with pdf
– fa(ta|μa, σa, τa)

• Assume that Th has a prior shifted 
lognormal distribution with pdfg p
– fh(th|μh=c, σh, τh)

• Then, conditional on Ta=ta, Th has a shifted , a a, h
lognormal distribution
– fh(th|μh=log(ta)+c, σh, τh)
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Unconditional Distribution of 
H S ibiliHuman Susceptibility

• Hierarchical model for pdf of Ts:

=),,,,( aaahhstsf τσμτσ

∫
∞

+= adtaaaatafhhcaththf h τσμτσμ ),,(),,)log((

aτ

Human to Human Animal to Human
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Human Extrapolated DoseHuman Extrapolated Dose

• Lower 100p% statistical confidence limitLower 100p% statistical confidence limit 
on human extrapolated dose:

• Instead of D /(T T )• Instead of Da/(Ta,100pTh,100p)      [Da/(10∗10)]

C l l t b D /T• Calculate by Da/Ts,100p
– where Ts,100p is the 100pth percentile of the 

diti l h tibilit di t ib tiunconditional human susceptibility distribution
• In general, Ts,100p can be expected to be 

smaller than T ∗T
27

smaller than Ta,100p∗Th,100p



IllustrationsIllustrations
• Ta(0, 0.58, 1): T50=2, T95=10
• Th(0, 0.61, 0) T50=1, T95=10

– Ta,95∗Th,95 = 100

– Ts,95 =   34 Ts,99 = 100

• Ta(0, 0.697, 1): T50=2, T95=15
• Th(0, 0.715, 0) T50=1, T95=15

T T 225– Ta,95∗Th,95 = 225

– Ts,95 =   60 Ts,97 = 100
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Exposure → Dose-Response 
C l iConclusions

• Information on internal dose though PK analysis g y
can reduce uncertainty in BMD estimation (both 
data and model uncertainty) by improving the 
estimate of the mean riskestimate of the mean risk

• But, the complete distribution of internal dose 
does not appear to affect the characterization ofdoes not appear to affect the characterization of 
uncertainty…the mean internal dose seems 
sufficient

• The only measure of uncertainty in risk arises 
from the ultimate endpoint, presence or absence 
of an adverse effect

29

of an adverse effect



Dose-Response →
Ri k Ch i i C l iRisk Characterization Conclusions

• Hierarchical probabilistic models can be 
useful for managing the uncertainties in g g
the extrapolation process of converting 
animal-derived exposures into human-p
equivalent exposures for risk 
characterization by providing vehicles for y p g
proper quantification and propagation of 
the uncertainties
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Overall Summary
Hierarchical models are useful for understanding 
and quantifying uncertainties in doing:

Exposure → Dose-Response          .              
Dose-Response) →Risk Characterization

∞
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Challenges and NeedsChallenges and Needs
• Correct propagation of uncertainty

– Don’t overstate or misstate
– Hierarchical models

PK PD A H H H• PK→PD, Aaverage→Haverage, Haverage→Hsensitive

• Model uncertainty
D ’t i– Don’t ignore

– Model averaging
• Which and how many?• Which and how many?
• Confidence limits on model-averaged BMDs
• Should you average BMDLs?
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