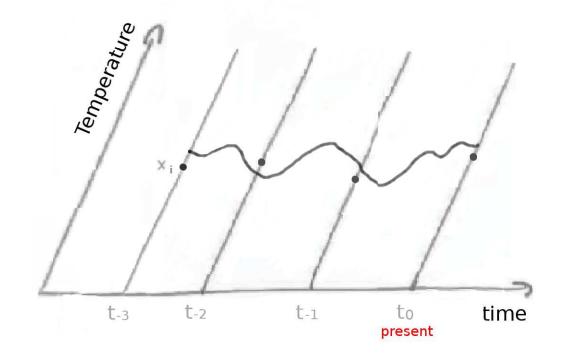
# THE DIFFUSION KERNEL FILTER

### P. KRAUSE

In collaboration with J.M. Restrepo

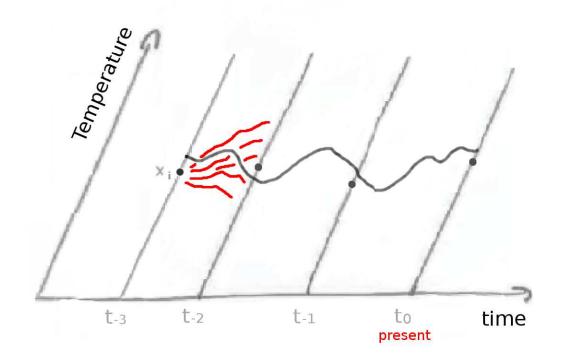
University of Arizona Mathematics

Sponsored by NSF



noisy measurements

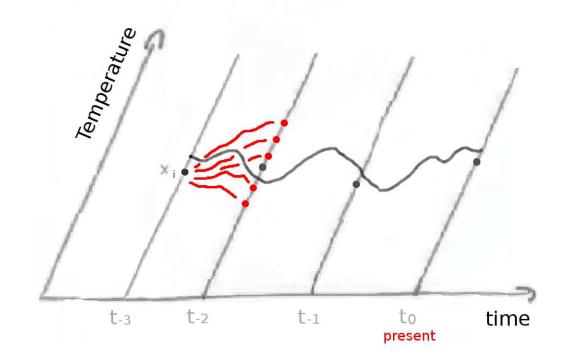
Wish to sample  $\Phi(x_i, t_0)$  corrected by past data, where  $\Phi$  is the dynamics of a model dT = f(T) dt + g(t, w) dw for temperature changes



Prediction step:

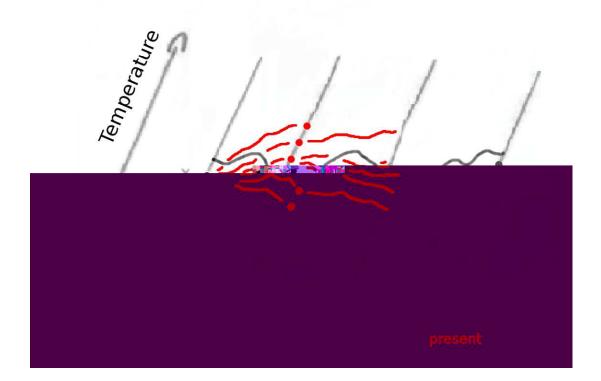
 $dT = f(T) \, dt + g(t, w) \, dw$ 

4



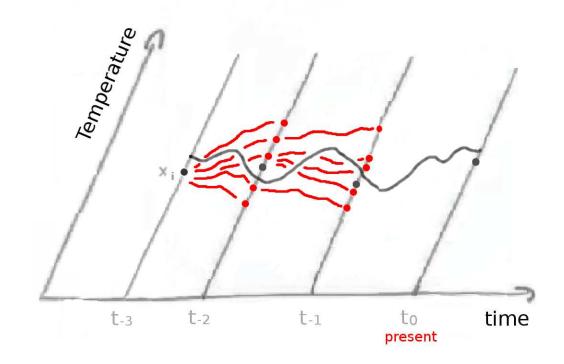
Filtering step:

weigh samples and define branching



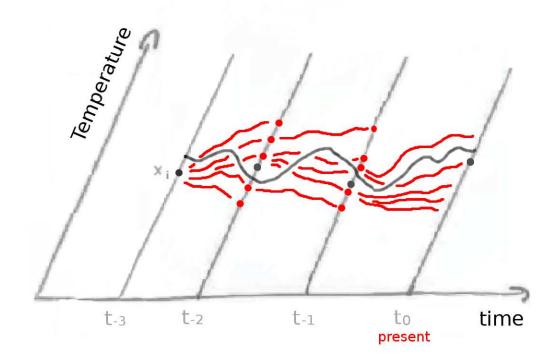
Prediction step:

 $dT = f(T) \, dt + g(t, w) \, dw$ 



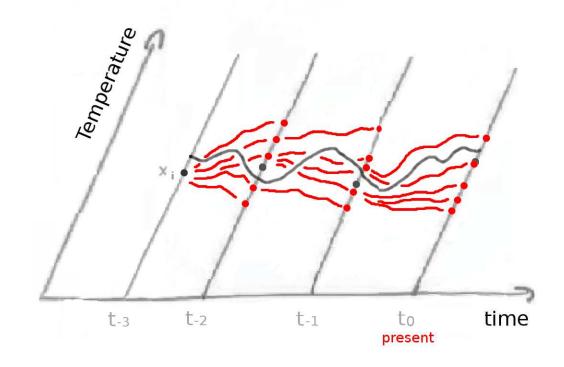
Filtering step:

weigh samples and define branching



Prediction step:

 $dT = f(T) \, dt + g(t,w) \, dw$ 



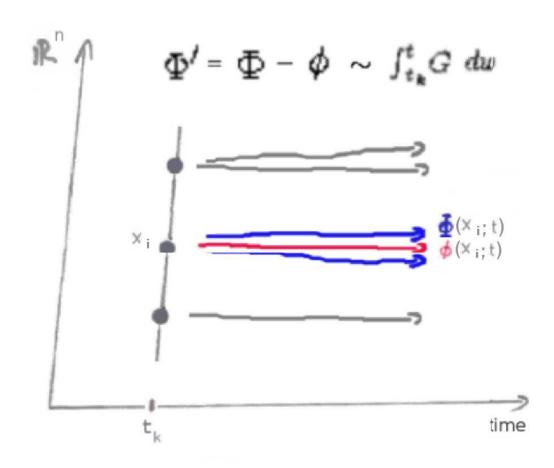
Filtering step:

weigh samples and define branching

Drawbacks:

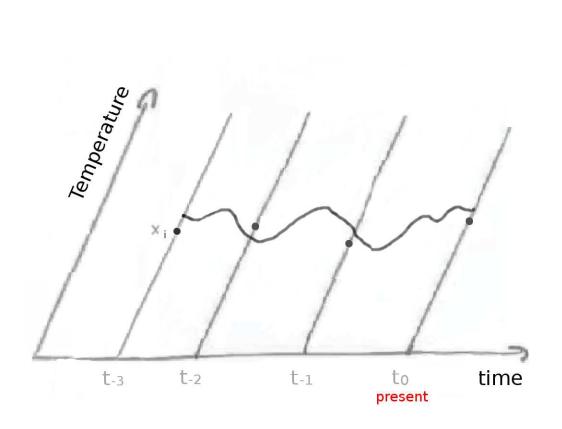
- (1) HUGE operations count: O(Id) I := sampling size d := model dimension e.g.: I = 500,000 for capturing first 3 moments of noisy-Lorenz (fast increase with # moments)
- (2) Troubles defining prediction e.g.: average estimates of  $(p, \rho, T)$ won't satisfy  $p = R\rho T$  (gas eq.)

Diffusion Kernel Filter (DKF)



Parametrization:  $\Phi'(x_i, t) = \nabla \phi(x_i, t) \int_{t_k}^t g(s, w(s - t_k)) dw(s - t_k)$ in distribution, while small,

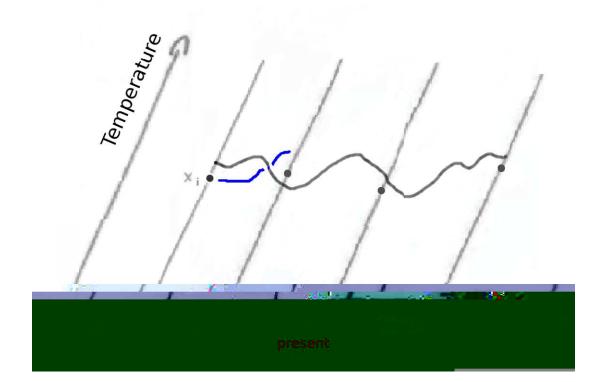
where  $\Phi' = \Phi - \phi$ ,  $\Phi$  stoch. dynamics,  $\phi$  determ. dynamics  $\nabla \phi$  determ. propagator of perturbs.,  $\int_{t_k}^t ()$  accumulated noise



noisy measurements

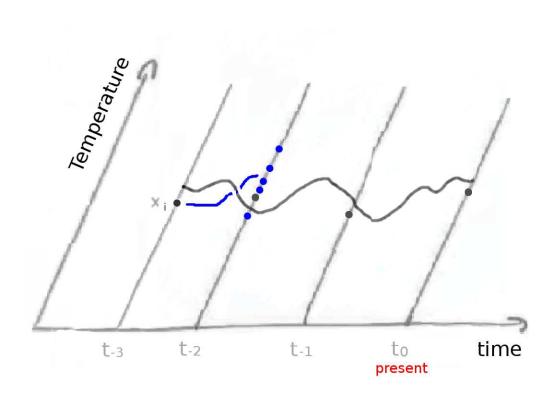
Wish to sample  $\Phi(x_i, t_0)$  corrected by past data, where  $\Phi$  is the dynamics of a model dT = f(T) dt + g(t, w) dw for temperature changes





Prediction step:

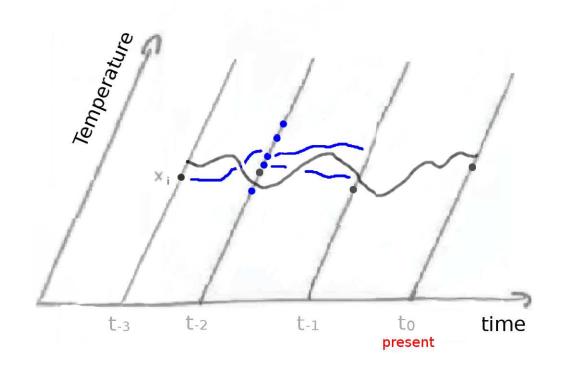
(1) 
$$\frac{d}{dt}T = f(T)$$
  
(2)  $\frac{d}{dt}\nabla T = \nabla f(T) \nabla T$ 



Filtering step:

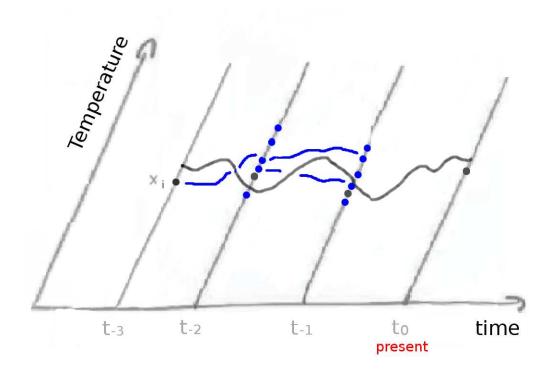
(1) draw samples from parametrization(2) weigh samples and define branching





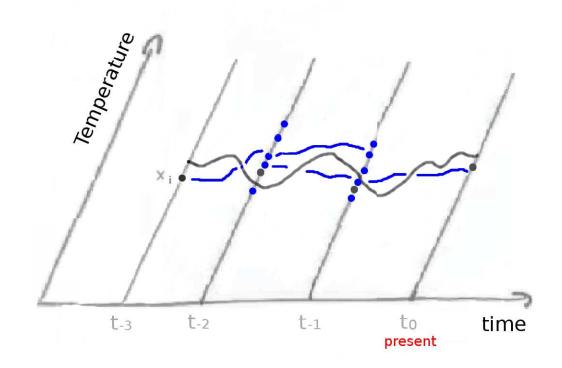
Prediction step:

(1) 
$$\frac{d}{dt}T = f(T)$$
  
(2)  $\frac{d}{dt}\nabla T = \nabla f(T) \nabla T$ 



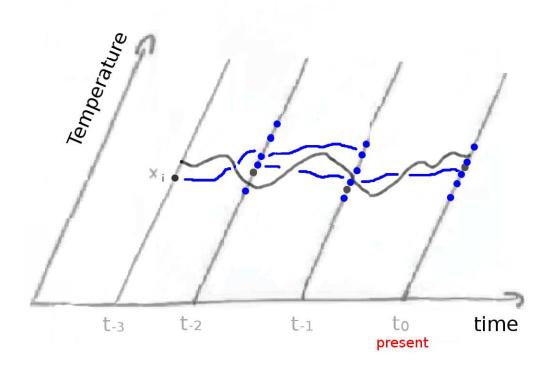
Filtering step:

(1) draw samples from parametrization(2) weigh samples and define branching



Prediction step:

(1) 
$$\frac{d}{dt}T = f(T)$$
  
(2)  $\frac{d}{dt}\nabla T = \nabla f(T) \nabla T$ 



Filtering step:

(1) draw samples from parametrization(2) weigh samples and define branching

Operations count:

$$\begin{array}{ll} O(I_k d^2) \mbox{ with } I_k \leq I \\ \mbox{ where } I_k \mbox{ is } \# \mbox{ branches at time } t_k \end{array}$$

$$\frac{\text{DKF count}}{\text{Bootstrap count}} = O(\frac{I_k d}{I})$$

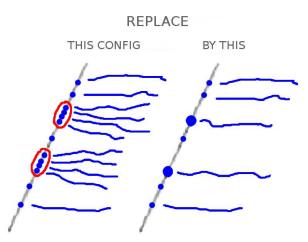
Good job! for:

 $d < const \frac{I}{I_k}$ (non-Gaussianity increases  $I_k$ )

# Clustered DKF (cDKF)

Filtering step:

- (1) draw samples from parametrization
- (2) weigh samples
- (3) stick to samples that are cluster representatives: the weights associated with them are taken to be the sum of the weights of their cluster members



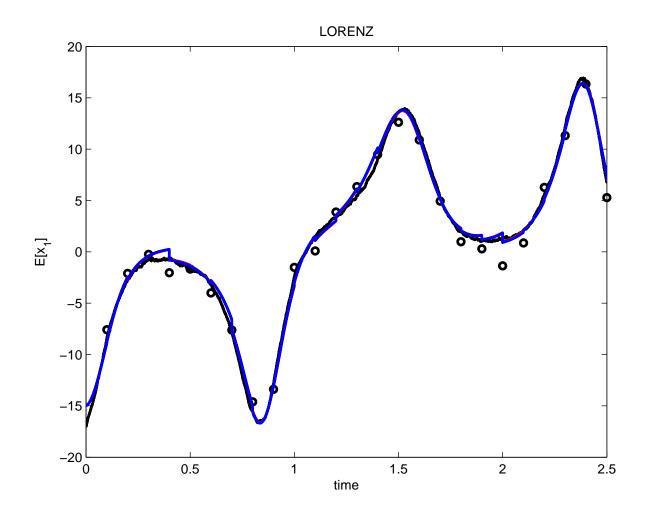
(4) define branching from the weighed cluster representatives Operations count:

$$O(I_k d^2)$$
 with  $I_k \le 10^{-r} I$   
where  $I_k$  is  $\#$  branches at time  $t_k$ 

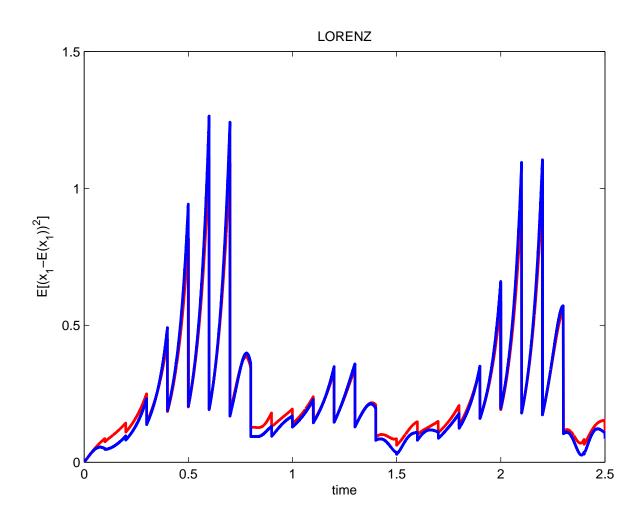
$$\frac{\text{cDKF count}}{\text{Bootstrap count}} = O(\frac{I_k d}{I}) \le O(10^{-r} d)$$

Good job! for:

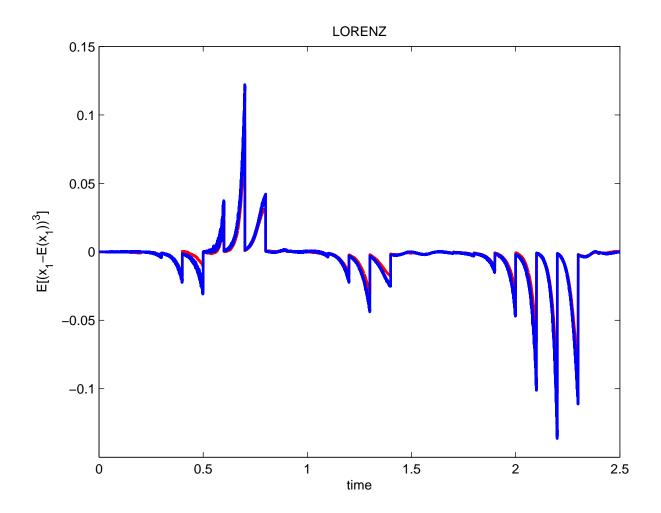
$$d < const \ 10^r$$



RED = BootstrapBLUE = DKFBLACK = real path



 $\begin{aligned} \text{RED} &= \text{Bootstrap} \\ \text{BLUE} &= \text{DKF} \end{aligned}$ 



RED = BootstrapBLUE = DKF

Average-entropy prediction

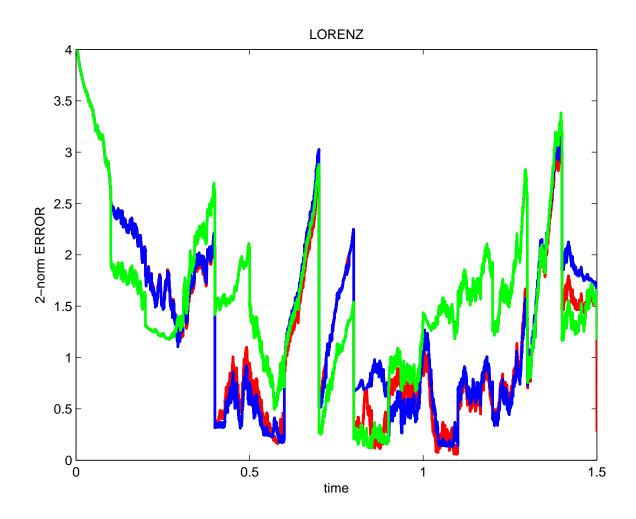
Diffusion Kernel:

 $G(x_i; t, s) := \nabla \phi(x_i, t) \ g(s, w(s - t_k))$ 

Uncertainty norm: entropy  $\sim ||\text{Cov}(\Phi'(x_i; t))||_{\infty} \leq ||G(x_i; t, \cdot)||^2$ 

Average-entropy prediction: deterministic path within the branch of prediction whose ||G|| (or entropy) at the end of the prediction time-interval is closest to the average ||G|| (or entropy) over all branches

Max-likelihood prediction: deterministic path emanating from most likely initial



RED = average estimateBLUE = average-entropy predictionGREEN = max-likelihood prediction

### Derivation

- 1) Reformulation of problem into Liouville SPDE
- 2) Use of Duhamel to project onto OPEN SODE
- 3) Closure