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Bootstrap Filter

noisy measurements

Wish to sample Φ(xi, t0) corrected by past
data, where Φ is the dynamics of a model

dT = f(T ) dt + g(t, w) dw for
temperature changes
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Bootstrap Filter

Drawbacks:

(1) HUGE operations count: O(Id)

I := sampling size

d := model dimension

e.g.: I = 500, 000 for capturing

first 3 moments of noisy-Lorenz

(fast increase with # moments)

(2) Troubles defining prediction

e.g.: average estimates of (p, ρ, T )

won’t satisfy p = RρT (gas eq.)
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Diffusion Kernel Filter (DKF)

Parametrization:

Φ′(xi, t) = ∇φ(xi, t)

∫ t

tk

g(s, w(s − tk))dw(s − tk)

in distribution, while small,

where Φ′ = Φ − φ, Φ stoch. dynamics, φ determ. dynamics

∇φ determ. propagator of perturbs.,
∫ t

tk
() accumulated noise
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noisy measurements
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DKF

Prediction step:

(1) d
dt

T = f(T )

(2) d
dt
∇T = ∇f(T ) ∇T
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DKF

Filtering step:

(1) draw samples from parametrization
(2) weigh samples and define branching
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DKF

Operations count:

O(Ikd
2) with Ik ≤ I

where Ik is # branches at time tk

DKF count

Bootstrap count
= O(

Ikd

I
)

Good job! for:

d < const I
Ik

(non-Gaussianity increases Ik)
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Clustered DKF (cDKF)

Filtering step:

(1) draw samples from parametrization

(2) weigh samples

(3) stick to samples that are cluster representatives:

the weights associated with them are taken

to be the sum of the weights of their cluster

members

(4) define branching from the weighed cluster

representatives
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cDKF

Operations count:

O(Ikd
2) with Ik ≤ 10−rI

where Ik is # branches at time tk

cDKF count

Bootstrap count
= O(

Ikd

I
) ≤ O(10−rd)

Good job! for:

d < const 10r
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Average-entropy prediction

Diffusion Kernel:

G(xi; t, s) := ∇φ(xi, t) g(s, w(s − tk))

Uncertainty norm:

entropy ∼ ||Cov(Φ′(xi; t))||∞ ≤ ||G(xi; t, · )||
2

Average-entropy prediction: deterministic
path within the branch of prediction whose
||G|| (or entropy) at the end of the predic-
tion time-interval is closest to the average
||G|| (or entropy) over all branches

Max-likelihood prediction: deterministic path
emanating from most likely initial
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Derivation

1) Reformulation of problem into Liouville
SPDE

2) Use of Duhamel to project onto OPEN
SODE

3) Closure


