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What is risk? 
 
1. A potential negative impact to an asset or characteristic of value 

that may arise from some present process or future event. 
 

Components of risk: 
• The list of potential hazards 
 
  Pr  (hazard occurs) 
 
• The list of consequences resulting from a hazard occurring  
 
  Pr  (consequence | hazard occurred) 
 
• The loss resulting from the consequence 
 
  E  (loss | consequence occurred from a hazard) 
 

 
2. Risk is the expected loss if a problem occurs. 
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3. Risk assessment is the set of tools for determining potential risks 

and the strategies for managing them. 
 

a. Prioritize the likelihood of hazards 
 
b. Perform cost benefit analysis for managing risks 
 
c. Analyze how a system was built and is operated 
 
d. Determine the probabilities (frequencies) of events leading 

to exposure of hazards 
 
e. Determine the magnitude of consequences for each 

scenario and its risk (expected loss) 
 
Comment:  The concern is not the bottom line BUT 
identifying the major components contributing to risk.  
 

f. Evaluate effective strategies to reduce risk 
i. Available analytical techniques 

ii. Knowledge of systems and its limitations 
iii. Identify conditions that can lead to problems and 

determine the potential consequences 
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iv. Express the analysis as a fault tree, which is 

 
(1) Inverted tree structure with an undesirable 

outcome as the mode event 
 
(2) Branches spread downward representing 

failure logic from the intermediate system 
event failure down to component event failure 

 
(3) Consists of two types of symbols 

(a) Events:  failure logic 
(b) Gates:  Boolean expressions 
 

(4) Cutset:  set of component failure modes, which 
if they occur together will cause the system to 
fail. 

 
(5) Minimal cutset:  necessary and sufficient 

combination of component failures which, if 
they occur together, will cause the system to 
fail. 

 
(6) Strategy: 
 

(a) Determine minimal cut sets (find smallest 
combinations of basic failure events that 
will prevent the system from performing) 

(b) Ignore insignificant cut sets 
(c) Use simulations and sensitivity studies to 

interpret the analysis 
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The study of risk 
 
1. Risk has never evolved into its own language and methodologies. 
 
2. Risk analysis is a cross-cutting topic that combines such diverse 

topics as: 
• Engineering 
• Medicine 
• Finance theory 
• Public policy 
• Marketing 
• Environmental sciences 
• Etc. 
 

3. The study of risk has developed in a variety of ways: 
 

a. Building upon statistical theory subsumed in probabilistic risk 
assessment 

b. Developing strategies that are robust against specific kinds of 
uncertainty 

c. Constructing strategies in dynamically changing action spaces 
such as in an economic environment or in a military setting 

 
4. Much of the relevant literature is scattered in professional journals 

and books.  Wiley & Sons will be publishing in July 2008 The 
Encyclopedia of Qualitative Risk Analysis and Assessment with the 
aim of drawing together varied intellectual threads so that risk 
analysts in one area can gain from the experience of researchers in 
other areas.  

 
This talk will focus on quantitative models that have played important 
roles in risk analysis. 
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Preliminary 
 
1. Axiomatic models of perceived risk (Pollatsek & Tversky) 
 

a. Risk is a property of options. 
 
b. Options can be meaningfully ordered with respect to their 

riskiness. 
 
c. Risk is related to dispersion (variance) of its outcomes. 
 
d. Comments: 
 

i. Rotar & Sholomitsky generalized the mean variance 
model of Pollatsek & Tversky. 

 
ii. Based on experimentation, some authors have 

proposed asymmetrical measures for situations when 
considering losses versus gains, i.e., people tend to 
take a higher risk position when facing a loss and 
become risk averse when facing a gain. 

 
iii. Jia, Dyer and Butler show relationships between 

financial measures of risk and psychological measures 
of risk. 
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2. Bayesian statistics is a form of statistical inference that 
combines qualitative and quantitative information.  The process 
beings with a numerical estimate of the degree of belief in a 
hypothesis and updates the belief as new information becomes 
available. 
 
Components of Bayesian statistics: 
 

a. Prior probability (subjective probability) is the degree of 
belief about a hypothesis without numerical data (Ramsey 
and de Finetti). 

 
b. Posterior probability is the updated degree of belief 

conditioned on available information. 
 
c. Markov Chain Monte Carlo algorithms are used to sample 

from posterior densities and to numerically calculate multi-
dimensional integrals.  The algorithms have allowed for 
extending the range of single-parameter sampling methods 
to multivariate situations where the parameters have 
different densities (Smith and Gelfand). 

 
d. Credibility intervals (vs. confidence internals) that cover 

the true parameter with 95% probability. 
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e. Special applications 
 

i. Allows for modeling hierarchically or spatio-
temporarily correlated effects by conditioning on 
priors. 
Friessen modeled job exposures in historical 
epidemiological studies by modeling 3 stages: 
• Stage 1:  Specify likelihood given unknown 

randomly distributed cluster effects. 
• Stage 2:  Specify the density of the population of 

cluster effects. 
• Stage 3:  State the priors on the population 

parameters 
 

ii. Exceedance analysis 
Lye proposed methods for building on a flood plain 
and Van Gelder determined the necessary size 
required for building dams. 
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3. Decision Theory is a methodology for making optimal decisions 
involving situations of uncertainty that can occur when a 
particular action is taken. 

 
a. Based on subjective and objective information 
 
b. Analytical approach involving the modeling of: 

i. Judgment of uncertainty (subjective probability) 
ii. Preferences (utility function) 

 
c. Utility function (von Neumann and Morgenstern) 

i. Basic axioms of utility: set of axioms that justify 
decision making based on expected utility 

ii. Basic steps: 
(1) Choose options whose outcomes may be 

uncertain at the time of decision making 
(2) Convert options within a project to utilities 

(e.g., monetary payoff) 
(3) Compute the expected utility for each project 
(4) Select the option with the largest expected 

utility 
iii. Problems 

(1) Assessing utility functions 
(2) Analyzing behavioral properties – individuals 

often do not follow axioms (Kahneman and 
Tversky) 

(3) Example:  individuals are risk seekers for 
losses (not want a sure loss) but risk averters 
for gains (want a sure gain) 



 10

 
 
 

d. Analysis is connected with Bayesian statistics.  Extensions 
include: 

 
i. Temporal relationship (decision tree) 

 
ii. Value of information:   
 

maximum expected utility with data 
minus 

maximum expected utility without data 
 

Some problems require inverting utility functions to obtain 
the financial value of information. 
 
Note: The literature of decision theory and risk are almost 
identical.  The major difference is: 
 

Decision Theory:  Uncertainty and value are equally 
important. 
Risk:  Greater emphasis is on the modeling of 
uncertainty. 
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Important Statistical Measures in Risk Analysis 
 
1. Extreme Value Theory is the study of events that occur with small 

probability. 
 

a. Distribution of the largest order statistic (Fisher–Tippet 
Theorem 1928) 

i. Distribution of the extreme value of observations selected 
from blocked data, i.e., joint distribution of the largest 
order statistics selected from a random sample of 
observations that have been blocked. 

ii. Peaks over Threshold (POT) is the positive difference 
between sample values and a threshold. 

(1) Preferable when estimating quantities 
(2) Can be extended to dependent data 
(3) Distribution of exceedance is the generalized Pareto 

Distribution. 
iii. Extreme value distributions have 3 parameters: location, 

scale, and shape 
Type I:  Gumbel distribution which is for data from a 
distribution whose tail falls off exponentially such as 
the normal.  The scale parameter approaches zero. 
Type II:  Frichet distribution that includes the Pareto 
family, which is for data from distributions that fall off 
as a polynomial (fat-tailed distributions) such as the t-
distribution. 
Type III:  Weibull distribution, which is for data from 
distributions with a finite tail such as the beta 
distribution. 

 
b. Extreme value distributions play a major role in ruin theory of 

finance and insurance.  It is used for determining surplus or 
reserve requirements needed for insurance portfolios and for 
borrowing money.  
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2. Value at Risk (VaR) is a measure of risk based on a confidence 
interval that covers the worst expected loss over a given time 
interval under normal marked conditions. 
 
Example: the VaR (worst loss) of a $100 million equity portfolio 
with a 15% measure of variability per annum over 10 days at the 
99% confidence level is $7 million. 
 

( )$100M 15% 10 252 2.33 $7M∗ =  
Comments 

a. There is a 1% confidence level that the portfolio will 
decrease by more than $7M per 10 days. 

 
b. The probability that this event occurs cannot be 

determined. 
 
c. VaR gives no information about the severity of a loss. 
 
d. If the distribution of the returns is unknown, VaR can be 

determined by simulating the distribution of returns and 
determining percentiles. 

 
e. Not sub-additive, i.e., it is possible to construct 2 portfolios 

A and B such that  
 

( ) ( )VaR A B VaR A VaR(B)+ > +  
 
Counterintuitive since the portfolio (diversification) should 
reduce risk.  Artzner et al. provides axioms (coherent risk 
properties) that a risk measure should possess to be coherent.  
An example of a coherent risk measure is Conditional Value 
at Risk (CVaR that is expected tail loss).   
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3. Probability that a system will perform and maintain its function 
during a specified time interval (o, t). 

 
a. Reliability (survival) function: R(t) = P(T > t) 
 

Time to failure before time t:  F(t) = 1 – R(t) 
 

i. Usually positively skewed 
 

ii. Often reflects censored observations meaning the end 
points have not been reached.  With censoring, the 
actual survival time is larger than the censored 
survival time. 

 
The probability of failure in the infinitesimal interval  

(t, t + dt):  f(t) dt 
 

Hazard function is the rate of failure among items that have 
survived to time t: 
 

( ) ( )
( )

( )f t d ln R t
h t

R t dt
−

= =  

 
Cumulative hazard rate:  ( ) ( )t

0
H t h x dx= ∫  
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b. Relationships 
 

i. R (t) = exp(-H[t]) 
 

ii. If h(t) increases with age, H(t) is the increasing failure 
rate. 

Example:  object wearing out, aging 
 

If h(t) decreases with age, H(t) is the decreasing 
failure rate. 

Example:  Infant mortality, burn-in period 
 

If h(t) is constant with age, H(t) is constant. 
Example:  Failure time does not depend on age 
 

iii. f(t) is the proportion of the initial number of items that 
fail per unit time interval. 

 
h(t) is the proportion of items in service that fail per 
unit time interval, i.e., represents the risk of failure 
that changes with age or time. 
 
 



 15

 
 
 

iv. Distributions for failure times 
 

(1) Exponential = constant hazard function 
 
(2) Lognormal = Hazard rate increases at first, 

then decreases if σ ≤ 1, or has its maximum 
value at  t=o  when σ > 1 (more useful for 
length of time to repair than for modeling 
times to failure). 

(3) Weibull has a shape parameter  m 
 

m<1 ≡ hazard rate is decreasing 
 
m>1 ≡ hazard rate is increasing 
 
m=1 ≡ hazard rate is constant 

 
(a) The Weibull is especially useful for 

failure of structural components in a 
system that fails when the weakest 
components fail. 

(b) A bathtub curve that has the 3 stages 
(Infant mortality region/Useful life 
region/Wearout region) can be described 
by defining changing the value of m over 
the regions. 



 16

 
c. Cox proportional hazard model 

 
( ) ( )0h t t exp X= λ γ + β⎡ ⎤⎣ ⎦  

 
( )0 tλ  ≡  base hazard function of unspecified shape 

 
X  ≡  vector of risk factors measured on each 
individual 
 
β  ≡  vector of parameters describing the relative 

risk associated with risk factors  
 

Example (non-parametric) 
1 high risk

X
0 low risk

⎧
= ⎨
⎩

 

 
Thus,  
( ) ( ) [ ]
( ) ( ) [ ]
( )
( ) ( )

0

0

h t x 1 t exp

h t x 0 t exp

the instantaneous relative risk h t x 1
exp    

conditioned upon survival at time th t x 0

= = λ γ +β

= = λ γ

= ⎧
= β ⎨= ⎩

 

 
Comments: 

i. ( )0 tλ   is usually unknown and cannot be 
estimated from the data. 

ii. Example:  credit risk modeling for corporate 
bonds based on interest rates and market 
conditions 
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d. Kaplan-Meier estimator of the survival function from life-

time data 
 

i. Examples 
 

(1) Measures the fraction of patients living for a 
certain amount of time after treatment. 

(2) Measures the length of time people remain 
unemployed after a job loss 

(3) Measures the time until failure of a machine 
 

ii. Advantages 
 

(1) Nonparametric (empirical distribution) 

( )
( )i

i

t t
i

ds t 1
n≤

⎛ ⎞
= ∏ −⎜ ⎟

⎝ ⎠
 

where 
( ) ( ) ( ) ( )1 2 n it t ... t     t   is the observed time of death,≤ ≤ ≤  

id  is the number of deaths at ( )it  

 
in  a stochastic process indicating the number 

of individuals at risk at time ( )it  

 
(2) Can be used with censored data 
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e. Frailty models are extensions of the Cox model (assume a 

homogeneous population) that arise in populations with a 
mixture of hazards. 

 
i. It is a random effects survival model that describes 

unexplained heterogeneity, which influences 
unobserved  risk factors. 

 
ii. Form 

( ) ( ) ( )T
0h t Zh t exp X= γ + β  

 
where Z (frailty) varies from individual to individual 
and is not observed. 
 

(1) It is univariate if the characteristic varies from 
individual to individual 

 
(2) It is multivariate if the characteristic is shared 

with individuals in a group. 
 

iii. Examples 
 

(1) Time between the first fibrillation and the first 
stroke.  The frailty variable is often modeled as 
being generated from a gamma distribution, 
compound Poisson, or log-normal. 

 
(2) Right censoring 



 19

 
 
4. Distributions for loss-modeling 
 

a. Parametric families 
 

i. Generalized beta 

( )
( )
( );

x
F x , x 0

x1

γ

γ

⎛ ⎞
θ⎜ ⎟= β τ α >

⎜ ⎟⎜ ⎟+ θ⎝ ⎠

 

 
ii. Generalized gamma 

( ) ( )( )xF x ; x 0
τ

= Γ α >θ  

 
iii. Inverse generalized gamma distribution 

( ) ( )( )F x 1 ; x 0x
τ

θ= − Γ α >  

 
b. The following tables (Panjer) show the relationships within 

the families generated by changing parameters. 
 

Models are determined by: 
 

i. experimenting by changing parameter values, 
ii. determining the best descriptor of tail distributions, 

iii. comparing hazard rate functions. 



 20

 

 
 
 
 
 
 
 
 
 
 
 

 
 



 21

c. Counting distributions for describing the, N, number of 
losses (Johnson) 

 
i. ( ) ( )k k 1(a, b, 0) class P N k p a b k p k 1,2,...−= = = + =  

ii. ( ) ( )k h 1(a, b, 1) class P N k p a b k p k 2,3,...−= = = + =  
 

Table 1:  The (a,b,0) class 
 
 
 
 
 
 
 
 

Table 2:  The (a,b,1) class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Distribution a  b  op
Poisson 0  λ  e λ−  

Binomial 1
q

q
−

−
 ( 1)

1
qm

q
+

−
 (1 )mq−  

Negative 
binomial 1

β
β+

 ( 1)
1

r β
β

−
+

 (1 ) rβ −+  

Geometric 
1
β
β+

 0  1(1 )β −+  

Distribution 0p  a  b  Parameter Space 

Poisson e λ−  0  λ  0λ >  

ZT Poisson 0  0  λ  0λ >  

ZM Poisson Arbitrary 0  λ  0λ >  

Binomial (1 )mq−  1
q
q−−  1( 1) q

qm −+  0 1q< <  

ZT binomial 0  1
q
q−−  1( 1) q

qm −+  0 1q< <  

ZM binomial Arbitrary 1
q
q−−  1( 1) q

qm −+   0 1q< <  

Negative binomial (1 ) rβ −+  1
β
β+  1( 1)r β

β+−  0, 0r β> >  

ETNB 0  1
β
β+  1( 1)r β

β+−  1, 0r β> − >  

ZM ETNB Arbitrary 1
β
β+  1( 1)r β

β+−  1, 0r β> − >  

Geometric 1(1 )β −+  1
β
β+  0  0β >  

ZT geometric 0  1
β
β+  0  0β >  

ZM geometric Arbitrary 1
β
β+  0  0β >  

Logarithmic 0  1
β
β+  1

β
β+−  0β >  

ZM logarithmic Arbitrary 1
β
β+  1

β
β+−  0β >  
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5. Multivariate distributions and copulas (Sklar) 
 

a. Copula 
 

i. Invariant transformation to combine marginal 
probability functions to form multivariate distributions 

 
ii. Measures of dependent structure to form multivariate 

distributions 
 

b. Procedure for generating multivariate distributions 
 

i. Determine the marginal distributions 
( )i iF x i 1,...,n=  

 
ii. Introduce the probability integral transformations 

( ) [ ]i i i iu F x     where u  uniform on 0,1=  
 

iii. Copula:  Is the multivariate distribution 
( ) [ ]

( )
( ) ( )( )

( )
( ) ( )( )

n

1 n

1 1 n n

1 1
1 n

1 n 1 n

1 1 n n 1 n

c u ,...,u   on 0,1

p U u ,...,U u

H F u ,...,F u

H x ,...,x the multivariate CDF of  x ,...,x .

C F x ,...,F x for all x ,...,x .

− −

= ≤ ≤

=

=

=

 
iv. Comments: 

(1) ( ) ( )1 n i iH x ,...,x is the multivariate CDF with marginals F x i 1,...,n=  

(2) ( ) ( )1 n i ic u ,...,u  is unique if all  F x  are continuous. 

(3) ( )i iIf  F x  are not continuous, the copulas are unique 
on the range of positive values for the marginal distributions.
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i. Example:  suppose X1 and X2 are statistically 
independent, then 

( ) ( )
( ) ( )( )

( )
1

1 2 1 1 2 2 1 2

1 1
1 2 2

1 2 1 1 2 2

c u ,u P U u U u u u

H F u ,F u

H x ,x F (x ) F (x ).

− −

= ≤ ≤ =

=

=

 

1 2If x and x are not statistically independent, then  
( ) ( )( )1 1 2 2c F x ,F x . 

 
b. Issue:  How to form copulas 
 

i. Generalize concept of ρ  
(1) Linear correlations often too restrictive 
(2) Only useful in the elliptical family 
(3) Kendall (τ ) and Spearman (ρ ) are used 

because moments not need to exist AND 
invariant under monotonic transformations 

ii. Listing of copulas in Nelsen 
iii. Archimedean copulas are most popular:  additive, 

continuous, decreasing convex functions 
 

e. Examples 
 

i. Extreme value theory:  asymmetrical tail dependence 
ii. Economics:  modeling correlated risks such as groups 

of individuals exposed to similar economic and 
physical environments 

iii. Finance:  modeling joint default probabilities in credit 
portfolios 

iv. Actuarial science:  modeling joint mortality patterns 
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