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Quantifying Uncertainty
What, exactly are we talking about?

� We want to estimate specific properties of
complex natural systems. Today: the ocean and
atmosphere.

� We want to have some quantitative measure of
the extent we can trust these estimates

� We want to make these estimates of uncertainty
available along with the estimates of nature

� We want some quantitative evaluation of the
reliability of our uncertainty estimates

� � � a tall order
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What We Have in Mind
Estimates of uncertainty are often based on ensemble
calculations. From a multi-model ensemble:

Globally averaged surface warming for one � sce-

nario.Heavy dots depict ensemble average. Redrawn

from figure 10.5, IPCC AR4
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Quantifying Uncertainty
Prediction is very difficult, especially about the future
–variously attributed:
Niels Bohr
Sam Goldwyn
Yogi Berra

� � � and others
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The Dimensions of Uncertainty

� These models canpotentiallycontain
� � � � �

independent degrees of freedom

� These models cannot contain faithful
representations of all relevant physics due to
inevitable resource limitations

� These models contain dozens of parameters,
many of which are, at best, empirically
determined

� These models contain significant nonlinearities

� This leads to distinct and closely interrelated
problems in design of ensembles for evaluation of
uncertainty
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Contributing Factors to Uncer-
tainty

� Uncertainty estimates must take errors into
account, but not all uncertainty stems from error:

1470

1480

1490

1500

1510

1520

0 2 4 6 8 10 12 14 16 18 20
−400

−300

−200

−100

0

de
pt

h 
 [m

]

sound speed

1470

1480

1490

1500

1510

1520

0 2 4 6 8 10 12 14 16 18 20
−400

−300

−200

−100

0

range  [km]

de
pt

h 
 [m

]

sound speed w/ internal wave deflection

δC=20.75 Z/25 * exp(−Z/25) * cos(2π R/1000m]

Figure 1: Mean and perturbed sound speed fields.
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Contributions to Uncertainty:
Error

Figure 2: Five-year mean temperature along the equa-

tor, observed (top) and modeled (bottom). From R. C.

Perez, 2006.
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Sampling Variability
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Figure 3: Eigenvalues of SST anomaly covariance,

variously sampled
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Data Assimilation, Very Briefly
Data assimilation methods are usually derived:
The model system:

�
	

 � � 
 � � � � 


�




is chosen to mimic the true system:

� � 
 � � 
 � � � � 

�


 � 


� 
 is a random process with covariance

� � 
 �
�
� � 
 �

 �.
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Data Assimilation, Continued
One way to do it:

� We have observations� 
 � � � �

� � � is the obs error with covariance

� Data assimilation makes use of data misfits, aka
innovations: � � �

� 	 �

� The forecast error covariance

	

 evolves

according to:

	

 � � 
 � �



� �

where
�

 is theanalysis error covariance
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Data Assimilation, Continued

� The analysis :

� � 
 
 �
	



� � � �
	



�

� 


� � � � � � is theKalman Gain
Matrix

� The analysis covariance:

�

 
 � �
�

� 	



� This is theKalman filter
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Posterior Tests
In a Kalman filter operating properly:

� The innovation sequence will be white

� The quantity:

� � � �
	



� � � � � � � � � � �
	



�

will be a random variable with � � distribution on
a number of degrees of freedom equal to the
number of observations
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Assimilation of Dynamic Height
Data

� Model: The GCM of Gent and Cane (1989)
applied to the tropical Pacific

� Reduced state space Kalman filter

� Dynamic height data from the TAO array

AVISO RKF44-AR

Longitude Longitude
150E 110W150E 110W

2000

2004
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The

 

Test

2000 2004.52000.5 20042003.520032002.520022001.52001

Time (years)

(R. C. Perez, 2006)
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What, Exactly, are we Model-
ing?
Data assimilation methods are usually derived:
The model system:

�
	

 � � 
 � � � � 


�




is chosen to mimic the true system:

� � 
 � � 
 � � � � 

�


 � 


� 
 is a random process.
But what do we mean bytrue?
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In Search of theTrueState

� The ocean measured by instruments doesn’t
know about physical approximations, coarse
resolution or their consequences

� It is not subject to the limitations in computing
power that restrict models to coarse resolution

� Measurements are not subject to the same
requirements for approximate physical
parameterizations

So ask: What quantity in nature is the “true” value of
the model state? Does it even exist in a meaningful
way?
No specific answers today (but see, e.g., L. Smith,
2000); Rather a suggestion for what to do while we
are waiting. Uncertainty in Models of the Ocean and Atmosphere – p.16/32



Representation Error

� Data assimilation makes use of data misfits, aka
innovations: � � �

� 	 �

� �
� 	 �

is the forecast state

� Let

! � � be the “true” ocean, as the instruments
measure it.
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Representation Error
Write the innovation:

� � �
� 	 �


 � � �
� � �

�
� � �

� �
� 	 �


 �
" � ! �
� � �

� �
� � � � � �
� � �

� �
� 	 � �

� � " 
 � � �
� � �

,theinstrument error

� � ! �
� � �

� �
� � � �

is representation error

� Estimates of its statistics must appear in the terms
reserved for instrument error

� �
� � �

� �
� 	 �

is theforecast error
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Estimating Representation Er-
ror
Our method for estimating the representation error for
SST:

1. Generate a long model run

2. Calculate EOFs of the model run, considered as a
matrix whose

� #
$

% �

element is the value of state
element

%

at time

#
3. Determine the number of meaningful degrees of

freedom

4. Project the innovations on the meaningful
singular vectors

5. Subtract the result from the innovations.

6. The difference is an estimate of the representation
error Uncertainty in Models of the Ocean and Atmosphere – p.19/32



Model and AVHRR Seasonal
Anomalies: First EOF
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Representation Error

� Project model-data misfits on multivariate EOFs.
This is the portion of the data that is compatible
with the model.

� Subtract the result from the model-data misfits.
This is an estimate of the error of representation.

� Calculate EOFs of error of representation
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EOFs of SST Representation Er-
ror
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Representation Error in Cli-
mate Forecast Models

� Climate models are often run past their forecast
horizons

� Climate models can only produce forecasts
consistent with their internal physics

� Representation errors could take on crucial
importance
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Ocean Component, NCEP CFS

� Basically global MOM/POP

� Resolution

� �

over most of the ocean, tapering to

�
&

' ' �

from

' � �

N/S to

(
&

) �

� 24 years (1982-2005), 9-month forecasts, from
the restart files
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Spectral Analysis of the CFS
Restart Records

Temperature EOFs and Time Series of Amplitudes
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Amplitude of the Lead Model
SST EOF
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Figure 4: Blue=lead PC; Red=SOI. Correlation*
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Amplitude of Lead EOF of
AVHRR SSTA
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Figure 5: Blue=lead PC; Red=SOI.
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Lead EOF of Misfits
First EOF of SST Residuals
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Amplitude of Lead EOF of Mis-
fits
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� � � This is going to be harder than we thought.
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Final Thoughts
There’s more:

� Nonlinearity

� Dealing with high dimensionality: Construction
of small ensembles for high-dimensional systems:

� Bred vectors, Singular vectors

� Single model/Multi-model ensembles

� Non-parametric tests for representativeness of
ensembles: Talagrand’s test and generalizations.
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Summary and Conclusions

� We wish to estimate uncertainty in complex high
dimensional nonlinear systems.

� We will use complex models to attempt to predict
hypthetical outcomes for the future

� Our uncertainty estimates will be based on
ensemble behavior. These ensembles will
necessarily be small compared to the potential
number of degrees of freedom in the problem
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Summary and Conclusions,
cont’d

� Factors contributing to uncertainty:

� Model error, including representation error

� Random influences, e.g. ambient noise, as in
the acoustic example

� Sampling variability

� Strong nonlinearity

� We should develop and apply objective methods
for evaluating ensemble performance

Prediction is very difficult, especially about the future
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