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What is multiscale computing? What is homogenization?

• Homogenization: Spatial averaging

• Periodic media; Random media

• Subspace projection formalism; Issue of oversampling

• Numerical computations using FreeFem++

• Subspace projection with limited oversampling captures ho-

mogenization
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Spatial averaging

Partial differential equations with rapidly oscillating coefficients,

periodic or random, may behave as if they have constant coeffi-

cients:

−∇ · (a(x)∇u(x)) = f(x) , x ∈ D ⊂ Rd , u(x) = 0 , x ∈ ∂D

If a(x) varies rapidly with respect to a typical diameter of D while

f(x) is slowly varying, then u(x) behaves like ū(x) that satisfies

−∇ · (aH∇ū(x)) = f(x) , x ∈ D ⊂ Rd , ū(x) = 0 , x ∈ ∂D

When can this approximation be done?

What is aH? How can it be computed?
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Periodic media

The origins of spatial averaging and homogenization are in the

physics of mesoscopic structures and the effective properties of

materials.

Homogenization of periodic structures in the seventies: Intro-

duce explicitly the separation of scales with a parameter ǫ > 0 so

that a(x) → a(x
ǫ
) and u(x) → uǫ(x). Prove a theorem: uǫ(x) con-

verges to ū(x) in L2 (and in other ways) and aH can be computed

by solving a periodic, ”cell”, problem which does not depend on

D or f .

Approach: use correctors: uǫ(x) = ū(x) + ǫχ(x
ǫ
) · ∇ū(x) + eǫ(x),

where the corrector χ(y) is periodic and satisfies the cell problem.

Show the error eǫ(x) is small in H1.
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Correctors and cell problem

The cell problem is:

∇y[a(y)(ei + ∇yχi(y))] = 0 , χ(y) periodic

The effective coefficients aH in the homogenized problem

−∇ · (aH∇ū(x)) = f(x) , x ∈ D ⊂ Rd , ū(x) = 0 , x ∈ ∂D

are given by aH = (aH
ij ) where

aH
ij =

〈

a(y)(ei + ∇yχi(y)) · ej

〉

=
〈

a(y)(ei + ∇yχi(y)) · (ej + ∇yχj(y))
〉
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Random media

Question in mid-seventies: Can homogenization be done with
a(x) a stationary random process?

We do not have separation of scales. Role of ǫ.

What should replace the periodic cell problem?

Represent the stationary ergodic diffusion coefficient a(x, ω) =
ã(τxω) where (Ω,F , P ) is a probability space, ω ∈ Ω.

Assume that τx , x ∈ Rd is a group of measure preserving
transformations τx : Ω → Ω, P (τxA) = P (A) for A ∈ F that acts
ergodically.

Assume that 0 < a0 ≤ ã(ω) ≤ a1 < ∞.

Random PDE:

−∇·(a(
x

ǫ
, ω)∇uǫ(x, ω)) = f(x) , x ∈ D ⊂ Rd , u(x, ω) = 0 , x ∈ ∂D
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Homogenization in random media

With no other hypotheses we have a homogenization theorem

(Papanicolaou and Varadhan 1978; S. Kozlov 1979):

There exists aH such that

lim
ǫ→0

E{
∫

D
(uǫ(x, ω) − ū(x))2dx} = 0

The constant, homogenized coefficients aH solve an abstract

”cell” problem now.

Randomness disappears in the limit. We have a new kind of

ergodic theorem for nonlinear functionals of the coefficients ã(ω),

defined by the PDE, that is, the solution uǫ(x, ω).
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Where is homogenization theory today?

For very few problems is it possible to go from periodic to random

without any hypotheses other than stationarity and ergodicity

of the coefficients. That is, without any separation of scales

hypotheses.

Such problems have special, structural properties such as: diver-

gence form equations, time-reversibility as processes, variational

characterizations, etc.

What if correctors cannot be constructed? This happens with

the stochastic Hamilton-Jacobi-Bellman equation:

ut(t, x, ω)+∆u(t, x, ω)+H(x,∇u(t, x, ω), ω) = 0 , t < T , x ∈ Rd , ω ∈ Ω

with terminal conditions u(T, x, ω) = f(x).

Cannot construct correctors. But the variational form of the

solution can used for homogenization (Varadhan, Rezakhanlou,

Kosygina, 2006). A long-standing problem (since 1982) is solved.
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Broader, computational issues arising in multiscale PDE’s

• How do we find properties of aH? Theory of bounds (G.

Milton)

• How do we compute uǫ(x, ω) numerically, without knowing

that it homogenizes? Construct adaptive finite element (or

other) schemes that capture homogenization (T. Hou)

• How do we deal with nonlinear PDE’s that generate intrin-

sically multiscale problems? Variational methods with appli-

cations to materials

• How do we compute numerically the probability law, or higher

statistics, of uǫ(x, ω)? (Multiscale sampling algorithms)
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Subspace projection formalism

Introduce H1
0(D) = XC ⊕ XF , a decomposition into coarse ele-

ment subspace and fine element subspace.

Write the solution u ∈ XC ⊕ XF as

u = uC + M(∇uC)

where uC ∈ XC and M(∇uC) ∈ XF .

They are determined by the relation

M(∇v) = µF + Mo(∇v)

and the following three equations.

10



The subspace projection formalism II

Effective coarse scale equation:

(a(I + ∇M)∇uC,∇v) = 〈 f, v 〉 ∀ v ∈ XC.

or, the equivalent symmetrized and reduced form:

(a(I + ∇Mo)∇uC, (I + ∇Mo)∇v) = 〈 f, v + Mo∇v 〉 ∀ v ∈ XC.

Fine scale equation defining the linear operator Mo:

(a∇(Mo∇w),∇v) = −(a∇w,∇v) ∀ v ∈ XF , w ∈ XC.

or, equivalently:

(a(I + ∇(Mo∇w)),∇v) = 0 ∀ v ∈ XF , w ∈ XC.

Fine scale equation defining the function µF ∈ XF :

(a∇µF ,∇v) = 〈 f, v 〉 ∀ v ∈ XF .
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Key step: limited oversampling

Most costly thing to compute: Mo(∇w) for w ∈ XC.

For each coarse finite element w ∈ XC, one needs to solve the

fine scale equation (analog of cell problem) for Mo(∇w) ∈ XF .

Restrict this (adaptively) to only a neighborhood of the finite

element w.

In homogenization we have the equivalent of ”absolute” local-

ization.

Show that, with limited oversampling, the solution u = uC +

M(∇uC) captures homogenization (Nolen-Papanicolaou-Pironneau,

SIAM MMS 2008).

Related work: T. Hughes (1995), T. Hou++ (1997, 1999, ...),

use of wavelets (Engquist++), use of harmonic coordinates, etc.
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The finite elements

Left: The support of a coarse scale element φC
k on the coarse

mesh TC.

Right: The coarse scale element within the refined mesh TR.

The space Y F
k is defined over this fine mesh. Here, one layer of

oversampling is shown.

In all the numerical calculations we use FreeFem++.
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Role of oversampling

The function M̃o(∇φC
k ) computed with no oversampling (left)

and one layer of oversampling (right).

The projection is the H1 projection.

The relative H1 error between these approximations and Mo(∇φC
k )

computed with complete oversampling is 20% and 0.7%, respec-

tively.
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More on oversampling

The function M̃o(∇φC
k ) computed with four layers of oversam-

pling (left) and complete oversampling (right).

The projection is the H1 projection.

The relative H1 error between the function shown in the left plot

and Mo(∇φC
k ) computed with complete oversampling is 0.07%
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The oscillating coefficients

Left: The periodic function a(x). Here the ratio of domain width

to period size is n = 15.

Right: The randomly generated function a(x) = 1.0 (purple) or

a(x) = 0.01 (yellow).
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Numerical results

Random coefficients with pressure gradient

Left: High resolution Galerkin solution. Right: Low resolution

Galerkin solution.

The color yellow corresponds to the lowest value; purple corre-

sponds to the highest value.

17



Numerical results II

Random coefficients with pressure gradient

Left: High resolution Galerkin solution. Right: The multiscale

solution uC with reconstruction of fine scales using no over-

sampling.

The fine scale features in the solution are reproduced somewhat,

but not as well as in the case when oversampling is used (next

figure). Note: we have subtracted off the linear part of the

solution.
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Numerical results III

Random coefficients with pressure gradient

Left: High resolution Galerkin solution. Right: The multiscale

solution uC with reconstruction of fine scales using one layer

of oversampling.

The fine scale features in the solution are reproduced well. Note:

we have subtracted off the linear part of the solution.
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Numerical results IV

Random coefficients with pressure gradient

Left: High resolution Galerkin solution. Right: The multi-

scale solution reconstructed solution without the µF correc-

tion: uC + M̃o(∇uC).

Two layers of oversampling are used. This example shows the

importance of computing the term µF in reconstructing the fine

scales of the solution.
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Summary and conclusions

• The projection formalism with adaptive oversampling cap-

tures homogenization

• The computational advantage of the projection formalism

with limited oversampling improves dramatically over direct

Galerkin as the complexity of the problem increases

• The theory and the detailed implementation of adaptive over-

sampling, including error tracking, need much further study
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