

Assessing Uncertainty in Regional Climate Experiments

Stephan R. Sain

Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO

Cari Kaufman, Doug Nychka, Linda Mearns (NCAR); Reinhard Furrer (CSM).

Supported by NSF ATM/DMS.

Uncertainty Quantification Workshop, Tucson, AZ, 4/26/08

The Movie

(jan2002.mp4)

Or click here...

Goals

- Describe the distribution of (regional) climate model output.
- Understanding sources of variation.
 - NARCCAP/PRUDENCE: GCM, RCM, GCM×RCM.
 - climateprediction.net: perturbed physics.
 - Others sources?
- Combining model output & weighting models.
- Recognizing model output represents spatial, temporal, or spatial-temporal fields ⇒ *functional ANOVA*.
 - Gaussian process ANOVA (Kaufman and Sain, 2007).

climateprediction.net

 Uses idle time on PCs to run a full-resolution AOGCM with varying input parameters.

NARCCAP

- North American Regional Climate Change Assessment Program (NARCCAP)
 - NCAR, ISU, CCCma, OURANOS, LLNL, GFDL, Hadley, Scripps, PNNL, USSC, UCDHSC, etc.
 - NSF, NOAA, DOE, etc.
 - www.narccap.ucar.edu
- Systematically investigate the uncertainties in regional scale projections of future climate.

NARCCAP Design

• 4 GCMs provide boundary conditions for 6 RCMs

		GCM			
		GFDL	CGCM3	HADCM3	CCSM
	MM5			Х	X
RCM	RegCM3	X	X		
	CRCM		X	X	
	PRECIS	X	X	X	Х
	RSM	X			Х
	WRF	X	Х		Х

A Work in Progress

- Three regional models ECPC, MRCC, and RCM3
- Boundary conditions supplied by reanalysis.
- 1980-1999 (20 years)
- Total seasonal precipitation winter (DJF) and summer (JJA)
- Common grid: $123 \times 101 = 12,423$ grid boxes

A Statistical Model

• A hierarchical construction: Data model: $Y_{ij} \sim N(\mu_i, \sigma_1^2 V(\theta_1)), i = 1, 2, 3, j = 1, ..., 20$ Process model: $\mu_i \sim N(\mu, \sigma_2^2 V(\theta_2))$

Prior model: non-informative.

• An alternative formulation:

$$egin{array}{rcl} {
m Y}_{ij} &=& \mu &+& lpha_i &+& \epsilon_{ij} \ &=& {
m Common} &+& {
m RCM} &+& {
m Error} \end{array}$$

A Statistical Model

- Spatial covariance $V(\theta) = R(\theta) \otimes C(\theta)$ where R and C are parameterized through 1-D "stationary" Markov random fields.
 - Computationally efficient: sparse precision matrices.
 - Other choices: tapering, nonstationary forms, etc.
- MCMC to estimate parameters, posterior inference, etc.

13

Inference

- for i in 1 to "a big number"...
 - sample $(\mu^*, \mu_1^*, \mu_2^*, \mu_3^*) \Rightarrow \alpha^* = (\alpha_1^*, \alpha_2^*, \alpha_3^*)$
 - construct (for each grid box):
 - * s^2_{α} (model-to-model variation)
 - * s^2 (year-to-year variation)
 - identify and record grid boxes where s_{α}^2 is larger than s^2 .
- compute $\hat{P}[s_{\pmb{\alpha}}^2>s^2]$ for each grid box

Winter Precipitation

Summer Precipitation

A PRUDENCE Example

A Two-Factor Model

and location s response model variability"

$$\mu_{ijt}(s) = \mu(s) + i\alpha(s) + j\beta(s) + ij(\alpha\beta)(s) + \gamma t,$$

= Common + RCM + GCM + Interaction + Time

- i, j = -1, 1 (contrast coding)
- Hierarchical model with Gaussian process priors used for each effect.
- MCMC used to estimate parameters, posterior inference, etc.

• Estimates of spatial effects.

Functional ANOVA

• Ratios of variances.

Final Thoughts

- Design issues become even more important as we move to a petascale computing environment...
- The posterior distribution is a good thing, but then what?
- Issues in model weighting...
 - What is the goal? Small error or span distribution?
 - What is the target? Model bias...
 - Likelihood-based weighting good, but where is the data?
 - Model correlations
 - Non-stationarity

Questions?

ssain@ucar.edu