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1. Introduction

In the mathematical literature there are now many papers devoted to homogenization of random op-
erators with coefficients being stationary random field (see, for instance, [3] and references therein) and
of operators posed in randomly perforated domain (see [2,3]). But all these results are mainly giving
the convergence of the solutions towards the solution of the limit (or homogenized) equation, without
estimate of the residual. The first successful attempt to give such an estimate is the work of Yurinski [6],
where the expectation of some norm of the residual for the divergence form second-order elliptic random
operator is estimated by a positive power of a small paramélett characterizes the microscopic length
scale. This power of depends only on the dimension of the space, the ellipticity constant and on some
characteristics of the mixing conditions; but this power is implicit and could not be computed explicitly.
Later, similar problems have been studied for symmetric elliptic systems [5]; in this case the residual is
estimated by some negative power| tifg £|, which could not, once more, be computed explicitly. The
aim of our paper is to investigate in the one-dimensional case the probabilistic property of the residual.
We assume that the coefficients of the operator is a stationary random field satisfying strong or uniform
mixing condition. The first two sections deal with the case when the corresponding mixing coefficient
decays like a negative powertx of a distance. Namely, in the first part, we supposed¢hatl, i.e., that
the random variables(x, ) anda(x + d,-) are weakly dependent for large This allows to apply the
central limit theorem. In the second part we study the case when the mixing properties of the random
field are not so good, i.e., when< 1. Finally, in the third part, using large deviation type estimates and
assuming that the mixing coefficient decays like the exponent of some power of the distance, we get more
precise bounds in probability for the fields with such “good” mixing properties. It should be noted that
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we do not state the large (or moderate) deviation principle itself; we prove, in fact, only upper bounds

of moderate deviation type, which are sufficient for our purposes. In this way we obtain estimates of the
discrepancy under much weaker conditions than those required for large or moderate deviation principle.

2. Statement of the problem

We consider the following differential equation in the interval ]0, 1[ with the source & <
L?(0,1):

d d
{ D d =1 M
wherea(w, y) is a stationary ergodic random process; 01 < a(w,y) < ¢ < oo.

It is well known (see, for instance, [3]) that under these conditiat(s) converges as — 0 in
H*(0,1) for a.ew to ug(x), a purely deterministic solution of the so-called homogenized problem

{%%ﬁmzf@, )

u?(0) =0, «°1)=1,

with a = (E{1/a(w, 0)}) "1, whereE{ } denotes the mathematical expectation. Moreover, due to the
only one dimension of the space, the solution of (1) could be computed explicitly:

where we used the notatidf(s) = [ f(z) dz. Let us denote

1 1
Aw, s/e) = @579 _E{a(w,O)}’ e >0. 4)

Our aim is now to find the limiting distribution ofif — u°). For this, we should estimate the limiting
distribution of all the terms formingc in (3). To this end, we introduce thealgebrasF; = o{a(w, t)},
F<t = o{a(w, ), z < t} and F>; = o{a(w, z), = > t} and define the following mixing conditions:
Definition of mixing conditions

Following, respectively, [6], [1] and [4] we give the following definitions:

Definition 2.1. A family of o-algebrasF;, 0 < t < oo, defined in a probability spac&)( F, P), satisfies
a uniformly strong mixing condition with coefficiegi(d) = cd—“ if the inequality

[E{en} — E{}E{n}| < w(d)E{e2}E{2}"/? (5)

holds for any random variablgsandn measurable with respect #.; and toF-; 4, respectively.
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A family F; is said to satisfy the strong mixing condition with coefficieit) = cd— if

[E{&n} — E{&E{n}| < ¢(d) (6)

for any F<;-measurable, || < 1, andF>.4-measurable), |n| < 1. A random process; is said
to satisfy the uniformly strong (respectively, strong) mixing condition if the corresponding family of
o-algebrasF; = o(X;) satisfies the (uniformly) strong mixing condition.

Remark 1. It should be noted that the above mixing conditions are sometimes defined in a slightly
different form as, for instance, in [3, Section 9.2], where:

— a uniformly strong mixing condition with coefficiegt(d) holds if the inequality
[P(AN B) — P(A)P(B)| < ¢(d)P(A) ()

is valid for anyF<;-measurable event and for anyF-,, ,-measurable everf;
— a strong mixing condition with coefficient(s) is satisfied if

[P(AN B) — P(AP(B)| < ¢(d). (6)

These conditions (band (8) are close but not equivalent to (5) and (6), respectively. However, all the
statements formulated below are valid both under (5) afd(&spectively, (6) and (P, so in what
follows we will identify these conditions. The coefficiep(d) in (5) is sometimes called “maximal
correlation coefficient”.

Moreover, it is clear that condition (6) is weaker than (5).

3. Mixing condition with a > 1

Now, under the assumption that> 1 in (5)—(6), we estimate the distribution af in (3); namely,
we investigate the distribution of the differenaé — «°. We start with the terny A(w, s/¢) ds and
obtain the first lemma.
Lemma 3.1. Let the process(w, s) satisfy either the uniformly strong mixing condition with a coefficient

p(d) = ed™®, a > 1, or the strong mixing condition with a coefficiepfd) = cd™*, o > 2, and let
A(w, s) be defined by4). Then, the distribution of the process

ME(w) = % /OIA(W, S)F(s) ds,

as an element of the spa€¢&0, 1), converges in law, as — 0, to the distribution of the Gaussian
martingale

0 = IO' S ()
MQE(w)—/O F(s) duws,
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wherew; is the standard Wiener process anmdthe variance, is defined as follows

o2 = E{ / Alw, 0)A(w, 5) ds}.
0
Proof. This statement is a direct consequence of Theorem 9.6.2 and Lemmas 9.6.2 and 9.6.3Cn [4].

Similarly, the distribution of the process

VW) = = /xA<w 5) ds
x - \/g 0 ’ €
in (3) converges in law towards the distribution of the random proeass Moreover, the joint distri-
bution of M andY; converges as — 0 to the joint distribution of\/® andow, with the same Wiener

process.
Clearly, the random variables

%/OlAQU’g)F(S)dS and %/()114(0(1,;) ds

converge in law, respectively, to/2(w) and toows.
By the definitions ofd(w, t), M: andY}, we have

ks = Hama v

Substituting these two last relations in (3) and applying Lemma 3.1, we get finally the following result:

Theorem 3.1. The normalized differencél//c)(u® — u°) converges in law inC(0, 1), ase — 0, as
folllows:

1, . 0y 4 /0 0 't {
u —u) — M, +xM 03:/ E

1
a(w, 0)

}F(s) ds w; +0</(;l F(s)ds — 1)wz. @)

Relation (7) implies that the typical deviation @f from «° is of order,/c and that for any > 0 the
inequality

1,. o 1 c
P{ 2l =)o > 5} < o —53) ®

holds for all sufficiently smalt, with the constant depending only omr.
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4. Mixing condition with small «

Now, in order to consider the case when the power (5') is less than 1 (respectiveky, < 2 in (6)),
we rescale the space argumgnt= -/ and denote byA®(x) the rescaled process®(z) = A(z/<P)
and byF7 the corresponding-algebras(.A¢(t)). Then, for the procesd®(x), the mixing conditions (5
and (8) become

[E{en} — E{QE(n}| < c=*PdE{e2} 2B}V ©)
for any F¢,-measurablg and 7%, ;-measurable), and, respectively,
[E{¢n} — E{E{n}| < ce®Pd™® (10)

for any 7<,-measurablg, (| < 1, andFs,  ;-measurable, | < 1.
Now, choosing? = 1/a — 1 + ¢ with ¢ arbitrary small positive number, we get

e—(1+8)

;E{ /01 AE(O)AE(S) ds} _ ;E{ /01 A(O)A(g%) dt} _ gﬁE{/o A(0)A(s) ds}
<& /o T ey < o0 (11)
and, hence,
e[ o (2)e)

To prove the next assertion, one can use (12) and a very simplified version of the proof of Theo-
rem 9.6.2 and Lemmas 9.6.2 and 9.6.3 in [4] (see, also, the proof of Lemma 4.2 below).

Lemma 4.1. Under either the uniform strong mixing conditi¢®) with ¢(d) = cd= %, o < 1, or the
strong mixing conditior{6’) with ¢(d) = cd~, a < 2, the family of processes

nE(w) = % A F(s)_Aa(z) ds = % I F(s)A(gl%ﬁ) ds

converges in probability in the spa¢g0, 1), ase — 0, to the process,.(w) = 0.

Remark 2. The statement of Lemma 4.1 could be read as follows: the family of meagtirganerated
in the space”'(0, 1) by the processg; (w) converges weakly, as— 0, to ad-type measure concentrated
on the functiory, = 0.

By Lemma 4.1, introducing a new small parameter 117, with 3 defined as above, in the same
way as in Lemma 3.1 we find
> c}

. 1 T s
lim P{ max| /O F(S)A(g) ds

e—0 T
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1 x s
7M(a/25><ﬁ+1)/o F(s)A(—MHﬁ)ds >C}

1 z s
/2= a—a/2)-e /0 F (5)A< Ml/aJré) ds

for anyC > 0 and any small positive numbér
Using representation (3) farf, a similar representation fa® and applying the same arguments as in
Theorem 3.1, we deduce from (13) the following convergence result.

= lim P{ max
u—0 T

= lim P{ max
u—0 x

>C}:0 (13)

Theorem 4.1. For anyC' > 0 and any small positivé, the relation

uf — uP

lim P{ maxu® — u®| > Ca“/Z*‘S} = lim P{ max| ——
T T et/e—

e—0 e—0

>c}:o (14)

holds.

Our next step is to estimate the expectation of jax(z) — u%(z)| = ||u® — u°||c(0,1) for smalle. For
this aim we prove the following lemma.

Lemma 4.2. If the uniform strong mixing conditio(®’) with ¢(d) = cd~ is satisfied, then, according
to the range ofy, we have

c(a)e  fora>1,
E{ max(u®(z) — uo(x))z} < { cellng| fora =1, (15)
v c(a)e®  fora < 1

If the strong mixing conditio6’) with ¢(d) = cd~ is satisfied, then

c(a)e fora > 2,

E{ ma(u® (@) ~ uo(x))z} < {C(a)sa/z fora -2 (16)

Proof. We consider the case when'YBolds with¢(d) = ¢d~ anda > 1. The other cases can be
studied in the same way.
First of all, let us represent the integrﬁl F(s)A(s/g) ds in the following form:

1/(27) 1/(2//2)

-1 /e
/ F(S)A<f) ds — / FEes)A@s)ds=¢ S mute > mania,
0 € 0 k=0 k=0
where
(k+1)/ve
e = / Fles)A(s) ds, (17)
k/vE

and define the processés= >"}'_on2 and&)) = 1o mokr1.
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Due to the uniform boundedness Bfs) and A(w, s) and the fact that the length of the integration
intervals in (17) is 1/, in order to obtain the first estimates in (15), it suffices to prove that

2 12 "2
E{s | max_ (€24 ¢ )} < ce. (18)

To this end we define a random variajle= E{ 772k;|f<(2k._1)/\/g}, where E{-|H} stands for the con-
ditional expectation with respect to thealgebra{, and note that in view af_ (5 _1) / /z-Mmeasurability

of x, condition (8) with d = 1/,/¢ implies the inequality

E{¢?} = E{(E{ 772k|]:<(2k—1)/\@})2} = E(E{ k2| F -1y /2})

:a@mggwﬁ%yQQDWEMiwﬁ

Therefore,

E{¢f} < wz(%)f{ni} < Pe*E{n;}. (19)

The next step is to estimate the expectatiomﬁgfandg,gz. Denote byR(s) the correlation function
E{ A(w, 0)A(w, s)} of the processA(w, s). Clearly, under condition (bor (6), R(s) < ¢|s|~*, and we

find
}

@h+1)/Vz
/ Fles)A(s) ds

(2k)/ /e

N—

) = (

= HVE 1/\/EF 2k F t 2k R(t dsdt
=R ) ) e e
/ve r1/\e c
gc/ / R(t — s)dsdt < -, (20)
0 0 NG
where the inequalityx > 1 has also been used. Hence,
E{(enan)?} < ee¥/2. (21)
Similarly,
E{(c¢))2) <ce, n=0,1,2,.., . (22)

From (19) and (21),

E{()?) < ce®32, (23)
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Summing the last inequalities over< 1/(2,/2), we obtain

{ (1/(22\/5) ° 1/(22\/5 : 2 1 3/2 1/2
E 6@) } < —E{ () } < —eT¥2 = etl/2, (24)
k=1 2\/e k=1 4e
Similarly,
] 2/e

wherec does not depend an

Now, estimating {max., .,z (> k-1 £¢)?} by the sum {Zi/:(%\/a(ZZzl £(1)?}, we deduce from
(25) the following relation:

2

E{ max (ia(k> }< ce”. (26)
k=1

n<1/(2/F)

By the definition of(, the processV,, = >"7_; e(n2x — (&) is a martingale. Thus, by the Doob inequality
for martingales [4, Section 1.9], from (22) and (26) we have

2 2

n 1/(2\/¢)
E{ max <Z5(772k - Ck)) } < 4E{< > el — Ck)) }

ngl/(Z\/E) k=1 k=1

o (5 ) (5

Finally, in view of (26), the last inequality implies

<c(e+e%).

2 2

E{ max (55%)2} < ZE{ max (is(n% — Ck)) + max (is(k> } < ce.

n<l/(2V/¢) n<l/(2v/¢) =1 n<l/(2/¢) 1
The estimate fog/ can be obtained in the same way, and then the lemma is proved.

Now, from Lemma 4.2, applying the Chebyshev inequality, we get the upper bound for the probabilities
P{max, |u®(z) — u%(z)| > 7},0 <y < 1/2:

Corollary 4.1. Under the uniform strong mixing conditiof®’) with o(d) = cd~%, depending on the
value ofa, we have

c(a)et=% if a>1, Vy <1/2,
P{ mza)qus(x) —u%(x)| > 67} <K e |Ine| ifa=1, ¥y <1/2
(@)™ ifa< 1, Vy < a/2
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Under the strong mixing conditiof®’) with ¢(d) = cd~%, depending on the value af we have

1-2v H
ey _ .0 7\« c(a)e if a>2,Vy <1/2,
P maxu®(@) — u()| > €7} < {c(a)ga/Hv if o < 2,y < a/d.

5. Exponential estimates and moderate deviation principle

The estimates of the previous sections are applicable in rather general cases, but they are not always
sharp enough, specially when the mixing coefficient decays rapidly. In that case more precise estimates
can be obtained. In order to characterize a proper class of processes, below we define the moderate
exponential mixing conditiond/” which are a slightly weakened version of the conditidfsin [1,

Section 7.7].

Definition 5.1. We say that a family of processéSsatisfies the moderate exponential mixing conditions
M* if

lim supel=2¢ In[ max E{exp{e”‘l /I & dt‘H < 0. (27)
0

e—0 O<z<1

For the reader convenience, we recall the definition of moderate deviation conditfofsee [1,
Section 7.7]).

Definition 5.2. The moderate deviation conditidri® is satisfied if there is a continuous positive function
C(s) such that for any step functiap(s) the relation

lim 22 In E{exp(a”_l /0 " (s)cE dt)} _ % /0 CC(s)0¥(s) ds 28)

e—0

holds, and if there exists a positive functiét), lim;_o6(t) = 0, andtp > 0 such that

I 12 |n|E S M ey 29
'T_‘T’éjp 52}2(() € n‘ {exp(i o) (; t)H<oo. (29)

XX+

The next lemma will be a basic tool in obtaining exponential estimates of the probabilities
P{ maxocr<1 [uf(z) — u®(x)| > ce”}.

Lemma 5.1. Let a process; satisfy the conditiod/”, 0 < k < 1/2. Then, there areg > Oandc; > 0
such that the estimate

ot
| cas
0

is valid for all sufficiently smalk.

P{ max

o<1

> coe"‘} < exp(—c1e* ) (30)
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Proof. Let us first remark that the conditiom/* implies, for all sufficiently smalk, the uniform in
z € (0, 1) inequality

E{ exp{a“‘1 /Oz & dt’} < exp(Ce? 1), (31)

Let us denot&; = fg < ds; now, by the exponential Chebyshev inequality and (31), we get

P{|&] = coe”} = P{!f—fL > 6052*6—1} _ p{ eXp(!f—teL> > exp(60625—1)}

< exp(cosz"“_l)E{eXp(!f—tgL)} < exp((C — o))

uniformly in z € (0, 1), for all sufficiently smalk. Under proper choice afy this implies the statement
of Lemma5.1. O

Applying this last lemma to each term on the right-hand side of (3), we obtain the following

Corollary 5.1. Let both A(s/e) and F(s)A(s/¢) satisfy the condition\/* for somex, 0 < xk < 1/2.
Then, there are constantg > 0 andc; > 0 such that the inequality

P{ Orgflgxl | (z) — uO(x)| = coa"‘} < exp(—cre® ) (32)

holds for all sufficiently smal.

Proof. If we setxy, = ke®, k = 1,2,...,1/e", then, in view of the uniform boundedness 4fs) and

F(s), we get
/0 " F(s)A (g) ds

/OJ: F(S)A(S) ds

By Lemma 5.1, using the evident inequality

P{ mkax‘ /03% F(S)A(S) ds| > 006”} < ; P{’ /Ozk F(S)AG) ds

we obtain the desired estimateld

max + ce”.

O<z<1

< max
k

> 606"“},

Remark 3. It should be noted that under a moderate deviation condifiénnot only the estimate

of Lemma 5.1 could be obtained, but also the exact logarithmic asymptotics for the probability that
efgf = e [§ (S ds belongs to a small neighbourhood of any absolutely continuous function. Namely,
for any absolutely continuous functig-) and anyd > 0 we have for all sufficiently smad:

Sg()) — 5>;

exp(—w> < P{ max |65 — g(t)] < 5} < exp(—

61—25 0<$<1 61—2f€
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here the rate functiof(g(-)) associated to the proces¥; is defined by the formula (see [4, Section 7.7,
Theorem 7.1])

1
S(90) = [ ¢ i) ds.

6. Exponential estimates. Examples

Most of the results of previous sections are based on assumptions that, in general, could not be easily
verified. In this section we give several sufficient conditions that provide a moderate exponential mixing
M* and we derive some consequences from Lemma 5.1.

Proposition 6.1. Suppose that the procesgwv, s) satisfies conditiorf5) or (6) and that the correspond-
ing coefficientp(d) (or ¢(d)) satisfies the estimate

o(d) < exp(—cd?) (33)

for somes > landc > 0. Then, for all, 1/(1 + s) < k < 1/2, both the processed(s/c) and
F(s)A(s/¢) satisfy the moderate mixing conditidd”.

Proof. We rewrite the integrat®—! fol F(s)A(s/¢)ds in the following form:
Em—&—l/z 5&—5—1/2

1 1/e
5’“1/ F(s)A(s/e)ds = 5”/ F(es)A(s)ds = Z ok + Z N1 =& + ¢,
0 0 k=0 k=0

where

—K

(k+1)eb—*
— / F(es)A(s) ds.
ke
DenotingN (¢) = (¢*~%~1/2), from (3) and the relation: > 1/(1 + s) we have

[E{exp(@')} — E{exp(210) }E{exp(@12 + 204 + -+ + 22n o))} |
— |E{exp(210) (exp(22 + 214 + -+ + 2ane)) — E{€XP(22 + 20 + -+ + 20an(e))}) |
< (") (E{exp(n0)}) " (E{exp(dnz + dna + - + dnax)}) 7
< Cexp(—ce®C ) exp(de" 1) < Cexp(de" 1 — ce*0=M)) < Cexp(—(c/2)e50)

for all sufficiently smalle.
Iterating this inequality, we find

N(e)

E{exp(Z')} — [ E{exp@m)}| < Cexp(—(c/2)=°C 7). (34)

k=0
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Then, taking into account the exponential decay@f), in the same way as in Lemma 4.2, we obtain
E2m} =0,  E{@m)?} <", E{@m)"} < cne™TI2 n =34, ... (35)

Thus, taking sufficiently large number of terms in the Taylor expansion

exp(2r) = 1+ 2nk + nr)2/2+ -+,

we have

In(E{exp(2,)}) < c="+2.

Summing up ovek < (°%1/2) gives

N(g)
e1"%n < H E{exp(272k)}> < VN (e)ee™ L e (36)
k=0

Similar estimate can be obtained for the odd terms. Finally, by (34), (36) and the Cauchy—Bunyakovski
inequality, we get

el InE{expg’ +¢")} < 51‘2"‘%(In E{exp(Z’)} +InE{exp(Z")}) < c.
The case of strong mixing condition can be studied in the same way and proposition is praved.

In fact, the above arguments can be used to consider the case of smallek po{@3) as well. Indeed,
after introducing a procesd®(t) = F(t)A(t/<”), one can prove the following assertion exactly in the
same way as Proposition 6.1.

Proposition 6.2. Suppose that the processés, w) satisfies conditiorf5’) or (6') and that estimaté€33)
holds for somes > 0 andc > 0. Then for any3 > (1 + s)/(2s) and for anyx, max(0, 1— s3/(1 +
s)) < k < 1/2, both processesi(s/c%) and F(s)A(s/<”) satisfy the moderate exponential mixing
condition M*.

Now, using the new small parameter= ¢/# we deduce from the last proposition the following
Proposition 6.3. Suppose that the proceasés, w) satisfies conditior{5) or (6) and that estimat€33)

holds for some > 0andc > 0. Then, for any3 > (1 + s)/(2s) and anyx, max(0, ¥3 — s/(1+ s)) <
k < 1/(20), there are positive constantg andc; such that

.t s
/ F(S)A(—) ds
0 Iz
Applying now Propositions 6.1-6.3 to each term on the right-hand side of (3), we deduce the following
assertion:

P{ max

o<1

> COM“} < exp(—cyp2 A, (37)
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Theorem 6.1. Let the process(t, w) satisfy conditior(5) or (6) with the coefficienip(d) (¢(d)) obeying
estimatg(33) for somes > Oandc > 0. If s > 1, then for anyx € (1/(s + 1), 1/2) there areco > 0 and
c1 > 0such that for all sufficiently smad|,

P{ OI’Q%X:L |u5(.%') — ’U,O(m)| > 00511} < eXp(clgl*Z’f);

and if0 < s < 1, then for each3 > (1 + s)/(2s) and eachk, max(0, ¥ — s/(1+ s)) < k < 1/(25),
there are strictly positive constantég and c; such that for any sufficiently smal

P{ Orgflgxl |u(z) — uo(m)] > coa"‘} < exp(—cngH—(l/ﬁ))_

Remark 4. If the distribution ofa(t,w) has a finite correlation length, then for anyd > L estimate
(33) trivially holds for anys > 0.
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