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Abstract. A new partial differential equation to be called the lay-
ered medium equation is introduced, and it is proved that certain
relevant initial or periodic boundary conditions give well-posed prob-
lems. Then, the homogenized limit of the layered medium equation is
studied. It is shown to be preserved in limit in the physical problem
in which the coefficients that arise from the dielectric layer are both
proportional to thickness. Otherwise, a non-local problem is obtained
as the limiting form.
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I. Introduction

From the integrated circuit and also the thin film technology there arise
a new and important class of network elements: the distributed compo-
nents. The theory of distributed networks is the natural form in which
to study the behavior of a system in which wave lengths of interest are
comparable to the physical dimensions of the system. Such networks
have many advantages; for example, their use permits fewer components
than comparable circuits using lumped elements. A distributed network is
not easily described by the classical methods of network theory, and new
techniques are being devised to treat them, either directly by methods of
partial differential equations or indirectly by approximation with “nearly
equivalent” lumped models to which traditional methods apply. See [8],
(9], [11], [13].

Multilayered structures offer many advantages in integrated circuits
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184 M.-P. BOSSE AND R. E. SHOWALTER

[11]. Here we consider a three-dimensional structure consisting of a finely
layered arrangement of alternating conductive and dielectric materials.
Such a structure is highly anisotropic and offers the opportunity for a
variety of new phenomena. For example, the electrical response of such a
structure depends not only on the component materials, the proportions
and their arrangement but also on the shape of the final structure, the lo-
cation and size of the contacts, and other geometric variables which are so
numerous, partly because of the possibilities of a three dimensional struc-
ture. There appears to be no limit to how fine the system of layers can be
constructed. However the extremely fine layering that is currently possi-
ble by intercalation [7] goes beyond our interest here, since the traditional

laws no longer are valid on this submicron level.

The objective in the following is to develop by classical continuum
methods a model of a distributed RC network in dimension 3 consisting
of a sequence or a continuum of successive layers of (mostly) resistive and
(mostly) dielectric materials. This results in a structure which is extremely
anisotropic on the macroscopic level. This layered structure has electrical
properties periodic in the vertical direction. Thus we consider successively

the following mathematical models:

(1) -Discretely-layered... a parabolic system of partial differential equa-
tions. There are as many unknowns as layers and each is a function

of the position z = (z1,72) € R? and time ¢ > 0.

(2) -Continuum limit... a single new partial differential equation of im-
plicit type which we shall call the layered medium equation. The
unknown is a function of position (z,z) = (z1,%2,2) € R? and time
t > 0. Coefficients Gx(z, z), C(z,z) describe the distributed hori-
zontal conductance and vertical capacitance of the limiting heteroge-

neous material.

(3) -Layered continuum... The case of the layered medium equation with
coefficients rapidly changing (periodic) in the z-direction. This is the
microstructure of the network, probably the best model of the real

material. However this problem has many interfaces or singularities,
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roughly the same number as there are layers. With such a large
number of irregularities, it is effectively impossible to deal with them

individually in any computational program to solve the problem.

(4) -Homogenized limit... This is a model of the structure with constant
coefficients, the effective coefficients. The partial differential equation
is obtained by studying the limit of (3). The numerical solution
of this limit equation is essentially standard and it will serve as an

approximation of the layered continuum.
II. The Layered Medium Equation.
‘We shall develop the network equations for distributed RC networks which

are multi-layered structures consisting of alternating thin-films of resistive
and dielectric materials. First we consider a structure consisting of a fi-
nite number of layers each with positive thickness. The resulting parabolic
system of partial differential equations is too singular for conventional nu-
merical treatment. Then we obtain the limiting case of a continuum of
layers. This gives an implicit partial differential equation in three spatial
variables which is used later as the fundamental equation for electrical
conductivity in layered media, the layered medium equation. Then we
show that various initial-boundary-value problems for equations of that
type are well-posed; we also discuss corresponding results for periodic
problems which intervene later. After presenting a model case which suf-
fices for our later discussion of homogenization, we develop the theory to
include many non-homogeneous terms which are useful models of input

options in the application to layered RC circuits.
Model Problems.

Consider the voltage distribution ux(z1,z2,t) in the k-th conductive layer
as a function of time ¢ > 0 and position ¢ = (z1,z;) with respect to a
planar reference region O in R?. We shall consider the interaction of this
voltage with vertical current flow into this layer. A voltage gradient (or
electric field) in the k** conductive layer induces a current J given by
Ohm’s law as J = —cG%;(2)Vuy where G%(z) is the spacially distributed

conductance of this resistive layer, c is the thickness, and the gradient
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¥V = (8%,,0s,) is taken in the horizontal direction. Similarly, a vertical
electric field resulting from a voltage difference ug41 —u across the upper
dielectric layer of thickness d > 0 gives a vertical current distribution into
the kt layer of magnitude G% (z)(uk41—ur)/d. This represents leakage
or loss through the dielectric. A similar contribution of current arises
from the lower dielectric layer and we assume ¢ < d. Finally, the voltage
differences across the dielectric layers induce on the kt* layer a charge of

magnitude
Q = C*(z)(uk — uk—1)/d + C** () (ur — urs1)/d

Let Op be a part of O. Since the sum of all currents coming into the kth
level over Op through its boundary 0, plus any outside sources of spatial
density Fi(z,t) and those as above distributed over O, must equal the rate
at which charge accumulates on the kth layer over Oy, the conservation

of charge requires that
@i [ [ Qds= [ [ 1Pt (@ —urd
00 00
+ G (ug—1 — ux)/d} dz + / cG% (z)Vuy ds
80,

Since @, is arbitrary in O we obtain from the divergence theorem
B (C*H Sugsy — CF6up) + (G Sukys — Gy éur) + V- (cG%Vu) = —cFy

as the partial differential equation for voltage distributions in the kth layer.
Here 6up = (ug —ug—1)/d is the electric field in the dielectric. If we denote
by 6*vk = (vk — vk+1)/d, the corresponding dual difference operator, this
takes the form

d%(&*ckauk) + d6*GE 6ug) — V - (G Vu) = cFi(z,t)

of a parabolic system whose unknowns u(z,t) = (ua(z, t), ua(z, 1), .,
un(z,t)) are voltage distribution at horizontal layers; we may take uo(z,t)
— 0 as the reference level at the bottom. In summary, this system is a

model of a discretely-layered medium consisting of conductive sheets of
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thickness ¢(z) and spatial conductivity G¥ (z) alternating with dielectric
sheets of thickness d(z), capacitance C¥(z), and a (small) vertical leakage
conductance G¥(z) at the position z on the k** level. This is the model

of a discretely-layered structure.

Consider now a three-dimensional structure consisting of very thin
horizontal layers of conductor within a dielectric material. We shall de-
scribe it as a continuum model obtained as a limit of the system above
of discretely-layered structures. Thus, at each level we assume the widths
d, ¢ are both scaled by the same factor h > 0, i. e. are replaced by hd
and hc, respectively. Upon dividing our system equations by h and letting
h — 0 we obtain the partial differential equation

——d(:t)%(@,C(:c, z)0,u) — d(z)(8;Gv(z,2)0,u) — V - c(2)Gr(z, z)Vu
= c(z)F(z, 2,t)
for a continuously-layered medium. This equation is a model for an ex-
tremely anisotropic medium obtained as the limit by intercalation of layers
by horizontally conducting sheets into dielectric material. The current is
assumed to flow horizontally in the conductor and vertically in the dielec-
tric. The numbers d and c give the ratio of the respective materials. We
refer to it as the layered medium equation. Note that for a dielectric mate-
rial with parameters C', Gy independent of (z, z), the corresponding terms
that occur in the layered medium equation are dC and dG, respectively,
so even if the dielectric thickness d varies with height z and position z,
the ratio of these coefficients is constant. This case will take a prominent
role in the development below. The unknown u(z;,zs,z2,t) is a voltage
in the medium measured with respect to a reference level which we take
arbitrarily along the bottom of the region of interest. The boundary con-
ditions appropriate to specify for the layered medium equation are either
the voltage level u or the current in the direction out of the sides of the
region, cGyﬁu - Uz + dGy 0;uv,, where v = (U, v,) is the unit outward
normal on the boundary of the region. The initial condition is to specify
the charge distribution d(z)Qo(z) = —0,C(z, 2)d,u(z, 2,0) throughout

the region.
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We shall show that boundary and initial conditions as those above
lead to a well posed problem for the layered medium equation. To begin,
let us recall certain notations and basic material on Sobolev spaces and
traces. Let G be a domain of RN, N > 1. At each point of the boundary
8G let v = (v1...,vn) denote the unit outward normal. Let G be
partitioned into two measurable sets 'y and I'_ such that I'_ includes all
s € OG where vy(s) < 0; i.e., T includes the “bottom” of 0G. Denote
by H!(G) the Sobolev space H'(G) = {v € L*(G): 0w e L*(G),1<5 <
N} where 9; is the distributional derivative 0/0z;. H (@) is a Hilbert
space with the norm given by |[v||%: = Y- |0jv|%2, where Oy is the
identity. The trace operator is the continuous extension of the restriction
to 8G, v : HY(G) — H'/?(8G), where the range H'/?(9G) is the indicated
fractional-order space, dense and contihuously imbedded in L?(8G). The
kernel of v is H}(G), the closure in H'(G) of C§°(G). See [14,22] for
these and related facts. Another Hilbert space that arises naturally in the
following is

HY(G) = {v € L*(G) : Oyv € L*(G)}

with the norm given by ||v||§{}v = |v[2,4|0nv|%,. The trace operator yn =
VN - v extends continuously from C*°(G) to yn : HN(G) — H-12(0G),
the dual of H/2(8G). See [29]. Finally, we mention the following in-
equality which permits us to drop the L?(G) part of the Hy(G) norm

and have an equivalent norm on the subspace
W={ve Hy(G) :ynv=0 onT_}.

Lemma (Poincaré). Let G be bounded in the z y-direction:

assume — K <zny <0 forallz=(2',2n)€G .
Then |v|L2(G) < 2K|aN'U|L2(G) 5 veW.

Proof. Integrating the derivative dy(znv?(z)) = v2 4+ 2z yvONv over G
gives
ol < [ (env)ons) + 2Klolzs Owels
T4
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and the boundary integral is non-positive since z, < 0 and vy > Oon I';.

Let W denote the space above and define V = {v € H(G): yv =0
ae. on I'_}. It follows as in [29] that V is dense in W. These spaces
will be used to specify the boundary-value problems corresponding to the

layered-medium equation.

Stationary Problems.

Let three functions C, Gy, and G, be given in L>(G) and assume C(z) >
B >0, Gi(z) > B and Gi(z) > 0, a.e. = € G, where 8 > 0. Define
continuous linear operators B: W — W' and A: V — V' by

Bu(v) = / C(z)Onudyvdz , u,v €W
G

Au(v) = / (G1(z)Vu - Vo + Go(2)dnudyv) dz | u,veV
G

where V = (8,,8,,...,0n-1) is the gradient in the first N —1 coordinates.
From the Lax-Milgram theorem and the Poincaré lemma above, it follows
that B is an isomorphism of W onto W' and that, for each \ > 0, \B+ A
is an isomorphism of V onto V'. Let F € L*G) and g € H'/%(T,) be
given and define f € W' by

flv) = /GF(:c)v(:c) dz +/r“ g(s)vn(s)v(s)ds , vEW.

This is meaningful since vy : W — H~1/2%(T'}) is continuous. Consider
the solution of the stationary problem

u€V:AB(u)+ A(u) = f .

By standard methods [22] this solution is characterized by
(i) =A0n(C(z)dnu(z)) — V- (G1(z)Vu) — On(Ga(2)dnu(z))
= F(z), a.e. t € G
(i) u|r—=0,

(i) Avn(s)C(s)Onu(s) + (G1(s)Vu(s) + Ga(s)nu(s))v(s)
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= un(s)g(s), s €T*.

The partial differential equation (i) is the stationary layered medium equa-
tion, the boundary condition (ii) means the voltage reference level is taken
at the lower part of the boundary, and (iii) is the prescribed current flux

along the remaining boundary.

Initial-value Problem.

Certain initial-boundary-value problems for the layered-medium equation

can be resolved as a special case of the following result from [22].

Theorem 1. Let W be a Hilbert space with Riesz map B : W — w'.
Let V be a Hilbert space dense and continuously embedded in W and let
A be continuous and linear from V to V'. Assume that for some A > 0

there is a ¢ > 0 such that
ABu(v) + Av(v) > c|v]|lv2 , veV.

Then for each ug € W and each Holder continuous f € C*([0, o0), W'),
0 < a < 1, there is a unique u € C((0,00), V') such that:

u € C([0,00), W) N C*((0,00), W) ,
u(0) =ug  and
Bu/(t) + Au(t) = f(t) ,t > 0.

Proof. Define D(M)={veV:Ave W'} and M = B'A: D(M) —
W. The scalar-product on W is (u,v)w = Bu(v) so it follows that M is
accretive: (Mu,u)w = Au(u) > 0. [We may assume )\ = 0 above since a
change of variable in the equation replaces A by AB+ A] Also I+ M =
B~1(B + A) maps D(M) onto W so M is m-accretive. Finally, note that
A is sectorial, so then is M, and it follows [10] that —M generates a

holomorphic semigroup of contractions on w.

We can solve the layered-medium equation subject to mixed Dirichlet-

Neumann boundary conditions as an application of Theorem 1. Let F €
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C%([0,00), L*(G)) and g € C*([0,0), H'/*(T'4.)) be given and define f €
C*([0,00), W') by

f(t,v) = /C;F(t,x)v(z) dz +/F g(t,s)un(s)v(s)ds, veWw.

There is a unique u € C°((0, ), V) such that:
(i) =8:9n(C(2)0Nnu(2)) = V- (G1(2)Vu) — On(G2(2)dNu(z))

=F(t,z),ae. € G

(i) u |p—= 0 for t € (0, 00) ,

(iii) Bewn(s)C(s)ANu(t,s) + (G1(s)Vu(t,s) + Ga(s)dnu(t,s))v(s)
=vn(s)g(t,s,t),s € T4

(iv) u(0) = uo

Periodic problems.

We shall need to resolve the layered-medium equation subject to periodic
boundary conditions. Such problems are not covered by Theorem 1 since

B gives only a semi-norm on the correspondng space.

Theorem 2. Let W be a semi-normed space whose semi-norm is obtained
from a non-negative symmetric bilinear form (u,v) — Bu(v) associated
with the linear B : W — W'. Let V be a Hilbert space dense and
continuously embedded in W and let A : V — V' be continuous, linear
and symmetric. Assume that for some )\ there is a ¢ > 0 such that
(AB + A)o(v) > cinf{|lv + ¢||lv : € € Ker(A)}?. Then for each h € W'
and each Hélder continuous f € C*([0,00),W'), 0 < a < 1, there is a
u € C°((0,00),V) which is a solution of

Bu € C°([0,00), W') N C((0, 00), W),
Bu(0)=h and
(Bu)'(t) + Au(t) = f(t),t > 0.

Proof. Note first that u is a solution if and only if v(t) = exp(—At)u(t) is a
solution of the corresponding problem with A replaced by AB+A. Thus we
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may take A = 0 above and assume Ker(A4) C Ker(B). Let K be the kernel
of B, let W/K be the corresponding quotient space, and denote by H the
completion of W/K. Regard the quotient map ¢ : W — W/K as a semi-
norm-preserving injection of W into H and denote the corresponding dual
map by ¢* : H' — W'. Note that ¢* is an isomorphism. If B: H— H'
is the Riesz map associated with the scalar-product on H inherited from

W, then we easily check that B factors according to
Bu = q*Bog(u) , ueW.

In order to simultaneously factor A we consider the subspace D = {v e
V : Av € W'} where we identify W' C V'. Then for each u € D we have

|Au(v)| £ const. (Bv(v))l/Z

If u € KN D then setting v = u above shows u € Ker(A4). Thus, KND =
Ker(A), there is a unique linear 4, : ¢(D] —» H " for which

Au = ¢*Apq(u) , u€D,

and we have D/Ker(A) = D/K = ¢|D]. Define M : ¢[D] — H by
BO"IAO; it follows that M is sectorial in H so it suffices to show that
Rg(\By + Ag) = H'. To this end, consider A\B + A : V — V', From the
“semi-coercive” estimate, it follows that AB + A induces an isomorphism
of V/ Ker(A) onto Ker(A)*, the annihilator of Ker(4) in V'. Also we note
W' C Ker(B)* C Ker(A)* C V' and ¢[D] = D/ Ker(A) C V/ Ker(A), so
this isomorphism extends ¢*(ABo + Ao ), which necessarily maps q[D] onto
W'. Since ¢* is an isomorphism, this gives the desired range condition and

finishes the proof.

Consider the special case in which G is a cylinder, G = Q x T where
Q is a smoothly bounded domain in RN~ and T = (0,1) C R!. Then
we can identify Hy(G) = H'(T, L*()), a Sobolev space of L2(Q2)-valued
functions of zy € T. Such functions are absolutely continuous so the trace

operators 7— and 74 defined by y-(v) =v |ex=0 and 74+ (v) = v |zy=1 are
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continuous from H)(G) onto L?(Q2). In order to resolve problems periodic

in z we shall use the closed subspace of H}, given by
Wy(G) = {v € HY(G) : 7-(v) = 74(v)} .

We choose W = W,(G), V = W,(G) N H'(G) and define B and A ex-
actly as above. Since AB + A is coercive over the space {v e HY(G) :
Jov(z)dz = 0} when A > 0, the desired estimate in Theorem 2 is ob-
tained. Note that Ker(B) = L?(), the functions in L?(G) indepen-
dent of zx € T, and Ker(B + A) consists of constant functions. In or-
der to characterize W,, note that dy : W, — L?(G) has closed range
Rg(0n) = L*(Q)* in L*(G) on which its surjective dual oy L*(G) —
Ker(B)! =~ W, is one-to-one. Thus, f € W, if and only if there is an
F € L*(G) (with fol F(z',zn)dzy = 0 for a.e. z' € Q if desired) for
which
f(w) =/ F(z)Onw(z)dz, weW,.
G

It follows that f = Oy F € H™(T, L*(R)), so we have Wy(G) =

H™Y(T,L*(Q)). Note that f = ¢ € L*(T, L%()) = L%(G) if and only if
—ONF = ¢ in D'(G) and fol p(z',s)ds =0 for a.e. z' € Q. A solution of
the stationary equation

uGV:/\Bu+Au=finW;,

is characterized as before by

u€ HY(G):
—ON(AC +G2)Onu -V -G1Vu = f in G,
Y-u =g
(AC + G2)0nu |xN=0= (AC + G2)ONU |zy=1 inQ,
G10u/ov =0 on 0 x T .

That is, u satisfies the layered-medium equation, the Neumann boundary
conditions on the boundary of the cylinder, and it is periodic in the vertical

direction.
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The corresponding evolution problem is resolved by Theorem 2. Thus,
suppose we are given ¥ € L*(G) with fol ¥(z',s)ds =0, a.e. z' €, and
¢ € C%((0,1),L*(@)) with fol o(z',8,t)ds = 0 for a.e. z' € Q and all
t > 0. Then there is a unique u € C°([0,1), V) satisfying:

Bu € C°([0,1),W,)n C*((0,1), W,) ,
Bu(0) =1
— (8/8t)8N(Conu(t)) — V - G1Vu(t) — On(G20Nu(t)) = ¢(-,t) in G

Y-u =Y4u
((d/dt)CONu + G20NU) |zy=0= ((d/dt)CONU + G2ONU |sy=1 in D,
G1(0u/0v)(t) =0 on dSL X T,
/u(z,t)d:z:=0 forallt>0.
G

This last constraint serves only to achieve uniqueness by picking a specific

representative from the equivalence classes modulo constants.

III. The Homogenized Equation.

Homogenization Methods.

We consider the method of homogenization developed by J. L. Lions, L.
Tartar, F. Murat, E. Sanchez-Palencia, S. Spagnolo (as in [4-6], [15-18],
[21], [23-28] and references therein). The objective of this method is to
average the partial differential equations of physics in heterogeneous mate-
rials with a periodic structure when the period goes to zero. Heuristically,
the method is based on the consideration of two length scales associated
with the microscopic and macroscopic phenomena. Here we shall apply

the method to equations of the form
0,0,CO,u + 0,G20,u + V. (G1Vu) = f

where we are considering functions of (z, z) € RN z € RN,z € R. The

slot where z is will be called the second slot for simplicity, and we will
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make the following assumptions throughout this section:

C,Gy,G, € L™(G) ,

C>2B>0,G1>2p>0,G2>8>0 ae. in G,

C,G1,G,  Z-periodic in the “second” variable , Z € Rt |

C*(z,2) = C(z, 2/¢) ,G{(x,2) = Gi(z, 2/¢) ,G(z,2) = Gy(z, z/¢) .

Asymptotic Ezpansion.

We are going to look for the formal limit of the initial-value problem.

0:0.C°0,u® + 8,G50,u* + V, GV, u® = f 1)

u®(z,2,0) =v independent of € .

We use the formal expansion of u® as a sum of powers of ¢ with pseudo-
periodic coefficient functions. We have to gear the coefficients so as to

take into account the fact that the periodicity is only in the z direction,

so we set
us(z,2,t) = u(z, 2,y,t) + eul(z, 2,9, t) + ul(z, z,y,t) + ...

with y = z/e and the u'(z, z,y, t) smooth enough and Z-periodic in y. The
differentiation 0, gives 9, + (1/¢)d, and with any function K, 8,K9,u®
is given by
e 29, Ko,u® + e o, Koyu' + 8, Kd,u’ + 0y Kd,u’}
+ 0, K8,u’ + 6,K6yu1 + ayKazul + 6yK6yu2 M TTT

Let us define the stationary operators

A1 = GyC(?t(?y + Bszay

Ay = 0,C0,0, + 0,G,0, + 3,C8,0, + 0,G,0,

A3 = azcataz + azG2az + szlvz

as in Section 2. From (1) we obtain

e 2 A’ e {Aru! + Apul} + A + Agu® + Aput +e =L (2)
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We have discussed already the solvability of the periodic problem

A®=F
®eW(0,2)={® e H'((0,2) x Ry : ®(0,t) = ®(Z,t) Vt € Ry}

at the end of Section II, and this will be used in following. For F to be
orthogonal to the kernel of A4, is a necessary and sufficient condition for
existence and unicity up to any function of time only. This orthogonality

is expressed by
/ F(y,t)dy =0 VteR; .
0

We shall consider successively the terms in (2).

Terms Factor of e72:

The first term satisfies

A1 ‘LLO =0 5
0 L (3)
u’(z, z,y,t) Z-periodicin y .
The solutions of that equation are independent of y and therefore of
e(y = z/e). It follows that u® = u%(z, z,1).
Terms Factor of e7:
The second term in (2) satisfies
Alul + A2u0 =0 (4)

Let us suppose u® known and find u! in terms of u°. Note that u'(z, z,y,0)

= 0 because the initial condition is independent of e. We need to solve

0,00,0,u* + 8,G28yu’ + 8,C8,0,u° + 8,G;0,u°
+0,00,0,u® + 8,G28,u° = 0 .

Since u? is independent of y this simplifies to

8,C0:(8yu*) + 8,G2(8yu') + (8,C)(8:0,u°) + (8,G2)(8:u’) =0 .
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*Case (G2/C) Independent of y: We multiply through by exp{(G2/C)t}
to make a change of variable.

e"(G2/9)[8,C8,8,u’ + 8,G,8,u'] + €152/ (5,C8,0,u° + 9,G20,u’] =0
8,C,[eC* /g u] + 8,00,[e'(%+/)5,u°] = 0

8,C8,8,[e"C*/ 1| 4 (8,C)8,[e(F/ 99,0 = 0
(5)

In order to represent the solution we first solve

9,Coyx + 9,C =0

x(0) =x(2) ,x € H'(0,2)
to obtain
]
x=-v+x( [ (1/0)a) +x(0)
0

To find K we use the periodic condition x(0) = x(Z) to obtain K =
2(J;’(1/C) dy)™" and therefore x(y) = —y+Z(f7(1/C) dy)~(J*(1/C) dy)
+x(0). With this expression for y we can write (5) in the form

O [et(Gz)/C’)ul] = at[et(Gz/C)uO]X(y) + k(ﬂ), Z’t) )
t
e! G/l = {("O/ D0 — u0(z, 2,0)}x(v) +/ k(z,z,5)ds ,
0
and, hence, obtain the solution of (4) in the form

i 4
ul = {u® — e=HOY/O(g, 2 0)}x(y) + e~HG2/O) / Moeseide
0

Terms Factor of €°:
Aju® + Agu 4+ Agug = f . (6)

A necessary condition is that fOZ(Azu1 + Asug — f)dy = 0, that is,
zZ
/ 8,(C8,0,u + G40,u') dy
0
z
+ / (Bz(Catayul) + Gzayul) + 8,(C0:0,u’ + G20,u°) dy
0

+_V—,(/OZG1dy)v,u°=Zf.

AA—B
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Since the first integral equals zero by periodicity, this gives

zZ
3,/ {C@tayul + Go0yu' + C0,0,u’ + G20.u’} dy
0
(7

Z
Al (/ Gy dy)vzuo =71
0
This is the homogenized equation in the general case. It is a non-local
equation.

*Case (Go/C) Independent of y:

We multiply and divide by exp({tG2/C)} to make a change of variable.

zZ
9, / [(Ce~tC2/9)g,(eHC2/Dp,ut) + CBD:u’ + G20,u’} dy
0

+V,(/OZG1dy>vIu° AV i

Z
0 / {Ce_t(G’/C)(ayx)(atet(g’/c)azuo)+(C6t61u°+G28zu0)}dy
0

— Z ——
+vl(/ G, dy)quO f
0
zZ
8 / ((8y0)(CB0.u° + Gr0.u°) + (CODu° + Gad:u®)} dy
0

— Z —
3. v,(/ Gy AV su =T
0
Now recall that

dyx = -1+ (2/C)( / o 1/cay)
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Therefore we get successively

2, /OZ{(—l + Z/C(/OZ 1/Cdy)™ +1)(CO0.u° + G0,u%)} dy
+v,(/;ZG1 dy)\WVul =27 f |
2, (/ozz(/oz 1/C dy) ™" dy)0,0.u°
+ (/OZ Gl/Cdy)Z(/OZ1/Cdy)_l(az)2uo)
A
+v,(/0 G dy)v,u" 2ZF
z(/oz 1/C dy)_la,a,a,u0 g (/Z 1/C dy) o (/OZ G;/C dy)(a,)2u°

0

+V,1/Z(/OZ G dy)vzu" =f,

and finally

z(/oz 1/Cdy)_16t(6z)2u0 1 (26y/0) (/Z 1/C dy) 7 (0.)2u0 o
g 8
+ 1/2(/02 G dy)(V,)zﬁo A

This is the homogenized equation.

Convergence Theorem.

We want to study the limit of the solutions u® to equation (1) when ¢
goes to 0; the usual hypotheses on the coefficients will be assumed. Let
us check that the sequence u® is weakly convergent. Let us take the L2



200 M.-P. BOSSE AND R. E. SHOWALTER

product of (1) and u®.
8,(8,C°0,u%, u) + (8,G50,u%,u®) + (V. G5 V,us,u) = (f,u)
8,(C°8,us, 8,u®) + (G50,u,8,u®) + (G V,u®, Vou®) = (f,u)
1d e
5 (020", 8:u)) + (G50.u%, 8,u) + (G1 Vau, V2) = (f, u®)
t
%(C’@,u‘(t),@,u‘(t)) & / (G20,u°,0,u°) ds
t o : 1 t
+/ (GiVzu®,Vous)ds = E(csazu°,a,u°) +/ (f,u)ds
0 0

1 t X
3OOl + 8 [ (1ol + [Towlln} ds
1
< 2(C*0%,0,0%) + Il 22
G bounded. Gronwall Lemma gives then

|u(t)|Low 0,151 N) < C

This then gives
|8¢uc(t)],00(0, T; Hy) < C .

Then unicity of Laplace transform gives convergence to u.

Theorem. Let us assume that (2) holds. The sequence of solutions u*
of (1) converges towards the solution u® of (19) in W>°(0, T} H1).

In conclusion, the model of this periodic layered structure leads us
to the layered medium equation which has properties different from those
of already known equations. The correct relevant physical problem is
well-posed, therefore the equation can be used effectively as a model.
The computational problem posed by the original problem is non-solvable,
therefore the methods of homogenization are useful as we can see that
a standard computational problem gives a good approximation of the
solution.

We have not shown that the discretely-layered model in I converges
to the layered medium equation; rather, we used it as an efficient intro-

duction to this continuum model. Note that another model of discrete
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layers is obtained in the layered medium equation when the coefficients
are chosen to be step functions which characterize the layers. Here the
finite-difference coupling is replaced by natural or variational flux condi-
tions on the interfaces. Of course this latter model has been shown above
*o converge to the continuum model. We have not addressed the question
of which discretely-layered model is better.
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