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A regularization procedure for nonlinear conservation equations is introduced and
demonstrated to have a stabilizing effect on the numerical solution of the associated ap-
proximate problem. Representative results for a least-squares finite-element method are
given, and the numerical performance of the stabilization procedure explored. The effect
of the regularization term is similar to a local numerical dissipation dependent on the nu-
merical itegration time step.

I. INTRODUCTION

Numerical experiments conducted on nonlinear conservation equations, such
as the inviscid Burgers’ equation and the Euler equations for compressible
flow, indicate that standard computational techniques may become nonlinearly
unstable as steep solution gradients associated with shocks develop. For ex-
ample, as the local solution gradients become large, there is frequently an oscil-
latory overshoot that grows catastrophically. This difficulty has led to the use of
artificial dissipation techniques as a means to stabilize the calculation (e.g., see
Léhner et al [1], Hughes and Mallet [2], Selmin and Quartapelle [3], and Jiang
and Carey [4]). In the present note, we consider an alternative regularization
involving a time derivative and then examine the performance of a least-squares
finite-element approximation of this regularized problem. This regularized
model problem may be related to a model problem arising in the conservation
relations for gas absorption described in Tychonov and Samarski [5], and has
been the subject of related mathematical analysis (Showalter [6]).

A. Formulation and Approximate Method
Consider the model nonlinear conservation equation
u, + {a(W)}, = 0 1)
with initial data ‘ _
u(x, 0) = g(x) @
and where a(u) is a specified relation; e.g., a(u) = Yu? for the familiar invis-

cid Burgers’ equation.
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Usually, Eq. (1) is regularized by adding an artifical viscous dissipation term
of the form eu,,. But here we introduce instead the regularization term &u,, so
that Eq. (1) becomes

u, + eu, + {a(w)}, =0 (3)

Writing u,, as (u,), and discretizing Eq. (3) with respect to time yields a
semidiscrete system to be solved in each time step Ar. Differencing Eq. (3)
from ¢, to ,,, =, + At, we obtain
n+l n n+l "
Wt -t )
At At
where u" = u(x,t,) is assumed known and 0 = © = 1. The implicit schemes
® = 1 (backward time differencing) and ® = 5 (central or Crank—Nicolson
time differencing) are of particular interest in the calculations presented later.
Next, we set {a(u)}, = a,u, = A(uw)u, and iteratively linearize within time
step At so that {AGu, ™" =~ A" ")ul™! for iterate k + 1 with u™*"° = u".
The approximation to Eq. (4), then, is :

w—um + e — u?) + AOAL™ + Al — O){aw)} =0 5)

+ @i + (1 - O{aw}l; =0 &

where we let A denote A(x"*"*) for notational convenience.

For admissible »™*', Eq. (5) defines the residual R at iterate k and in the
present approach we seek a solution that minimizes the L* norm of this resid-
ual. That is, we define on domain

1= fndex | (6)

so that 8/ = 0 implies

f (@ = u™) + e@!™ — u") + A@Au™" + A1 — O) {aw)}"]
o (N

X [v + ev, + At@Av,]dx = 0
That is

f W™ + (¢ + AOAW™ [y + (¢ + ArOA)v, ]dx
n , ®)

- f [ + sul — A1 — ®) @@y + (¢ + AtOA, ]dx
0

yields the weak form of the problem for time step Ar.

We introduce a finite-element discretization with piecewise polynomial basis
{¢;}, = 1,2,..., N; the corresponding approximation and test functions are
given by

) = Supe . vl = 6k ©
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Substituting u,,, v, for u, v in Eq. (8), we have

FEI Uﬂ[fbj + (e + AOA)D, 1[¢ + (¢ + At@A)cf)k]dx}u; o)

N

[j [¢’/ + Sd)jx ~ A1 = O){alw,)}][d; + (& +.A10A) ¢, ] dx:lu;
a

j=1

That is, in each iterate for given time step Ar we solve a system of the form

Mu™' =b (1D

where M and b depend upon known values u" and u™*"*™".

To explore briefly the effect of this regularization, denote by 9 the derivative
d/0x as an operator on an appropriate function space. Now, Eq. (3) can be
written in the form (I + ed)u, + d{a(w)} = 0 and we obtain

u, + (I + €8)'dalu) = 0 (12)

an ordinary differential equation in function space. Formally, we have (/ +
£8) =1 — &0, so Eq. (3) is close to

u, + a(w), = ealu),, (13)

a regularization of Eq. (1) obtained by the addition of a nonlinear viscosity
term. In the linear case, a(u) = u, it is known that the solution u® of Eq. (13)
converges to the solution of Eq. (1) as & —> 0; such a result is not known for
the nonlinear case. Finally, note that the norm of (I + €3)™'d is given by 1/e.
Thus, for the difference scheme (4), in the linear case, we have

W =1+ A1+ e9) 1T — Al - @) (I + &) 0" (14)

and stability will be determined by the norm of this operator— hence, by At/s.

B. Test Problem

As a test case, we consider the familiar Burgers’ equation
u,+(——u2> =0 0=x<w (15)

with a “slant step” as initial data (Figure 1) and boundary data u(0,¢) = 1. We
solve the approximate problem for 0 < ¢ < T on the truncated domain 0 <
x < 1 and for our least-squares approach also specify u(1,1) = 0,0 < <T.
[Recall that the least-squares scheme is equivalent to a Galerkin method for a
(dissipative) second-order equation (Jiang and Carey [4]).] All computations
were made using a uniform mesh of 50 linear elements. The time step Ar was
varied with & to examine their dependence and relative influence on the non-
linear stability of the calculation. Both the backward (® = 1) and central
® = V5) time difference schemes were investigated.

In Figure 1, we show an initial slant step that steepens to a shock and compare
numerical solutions at 7 = 0.4 for ¢ = 0.0 and & = 0.0075 with Ar = 0.01
and ® = 1.0. Note the oscillatory overshoot for the case ¢ = 0.0. The solution
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FIG. 1. Solution to Burgers’ equation at T = 0.4 for initial slant step shown with
® = 1 (Backward Euler), 1 = 0.02, Ar = 0.01, with (2) € = 0.0 and (b) & = 0.0075.

“blows up” in the vicinity of the shock shortly thereafter. The regularized scheme
with & = 0.0075 behaves well — there is no overshoot, and the steepening front
is approximated accurately. At & = 0.007 and for lower values, the regularized
scheme fails to stabilize the calculation.

The numerical experiment is repeated in Figure 2 for calculations with & = 0.0
and 0.0125, Ar = 0.016, and T = 0.16. Similar behavior to that in Figure 1 is
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FIG. 2. Solution to Burgers’ equation at T = 0.16 for initial slant step with ® = 0.5

(Crank—Nicolson), h = 0.02, Ar = 0.016, with (a) £ = 0.0 and (b) £ = 0.0125.

observed. Experiments indicate that the value £ = 0.0125 is approximately a
lower bound for stable calculations with Az = 0.016. If Az is increased to
0.032, then we find it necessary to increase € to 0.03 to stabilize the calculation
and yield the results in Figure 3 for ® = 0.5 and T = 0.16 and Figure 4 for

T =0.32.
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FIG. 3. Solution to Burgers’ equation for initial slant step shown with ® = 0.5,
k= 0.02, At = 0.032, with (a) ¢ = 0.0 and (b) £ = 0.03.

il. REMARKS

The regularization term eu,, appears to be effective in stabilizing the nonlinear
computations. The results for the standard model problem compare favorably
with those obtained with other dissipative “nonlinear control” terms referenced
previously. Empirically, we see that for the model problem there is a relationship
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FIG. 4. Solution to problem in Figure 3b at 7 = 0.32.

between the minimum & for stabilization and the integration step-size At. The
results suggest that for this problem &, = 0(A¢). This might be inferred from
the form of Eq. (8), where we have the coefficient ¢ + Ar®@A. Recall (Jiang and
Carey [4]) that the least-squares approach naturally leads to a higher-order local
dissipative term associated with A7®A and, hence, that this dissipation increases
with At. Including & > 0 will increase the global dissipation, but the precise re-
lation between & and At is not yet clear.

This study has been supported in part by the Office of Naval Research.
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