LOCAL REGULARITY OF SOLUTIONS OF SOBOLEV-
GALPERN PARTIAL DIFFERENTIAL EQUATIONS

R. E. SHOWALTER

Let M and L be elliptic differential operators of orders $2m$ and 2ℓ, respectively, with $m \leq \ell$. The existence and uniqueness of a solution to the abstract mixed initial and boundary value problem

$$Mu'(t) + Lu(t) = 0, \quad u(0) = u_0$$

was established for u_0 given in the domain of the infinitesimal generator of a strongly-continuous semi-group. The purpose of this paper is to show that this semi-group is holomorphic and then obtain differentiability results for the solution and convergence of this solution to the initial function u_0 as $t \downarrow 0$.

Let G be a bounded open domain of \mathbb{R}^n whose boundary ∂G is an $(n-1)$-dimensional manifold with G lying on one side of ∂G. $H^k = H^k(G)$ is the Hilbert space (of equivalence classes) of functions whose distributional derivatives through order k belong to $L^2(G)$ with the usual inner-product and norm,

$$(f, g)_k = \sum \left\{ \int_G D^\alpha f \, D^\alpha g \, dx : |\alpha| \leq k \right\}$$

and

$$\|f\|_k = \sqrt{(f, f)_k}.$$

$H_0^k = H_0^k(G)$ is the closure in H^k of $C^\infty(G)$, the space of infinitely differentiable functions with compact support in G.

We specify the problem by means of the bilinear forms

$$B_M(\phi, \psi) = \sum \{(m^\sigma D^\sigma \phi, D^\sigma \psi)_k : |\rho|, |\sigma| \leq m\}$$

and

$$B_L(\phi, \psi) = \sum \{(l^\sigma D^\sigma \phi, D^\sigma \psi)_k : |\rho|, |\sigma| \leq l\},$$

defined initially for ϕ and ψ in $C_0^\infty(G)$. Furthermore, we require the following:

P_1: The coefficients m^σ, l^σ are bounded and measurable.

P_2: $\text{Re} \; B_M(\phi, \psi) \geq k_m \|\phi\|_m^2, \; k_m > 0$

$\text{Re} \; B_L(\phi, \psi) \geq k_1 \|\phi\|_1^2, \; k_1 > 0$

for all ϕ in $C_0^\infty(G)$.

P_3: M is symmetric; that is $m^\sigma = m^{\sigma}$ for all ρ, σ, (hence $B_M(\phi, \phi)$ is real for all ϕ in C_0^∞).
From the assumptions \(P_1 \) and \(P_2 \) and the general theory of elliptic operators, \([1, 6, 7, 11, 12, 13]\), there are two operators, \(M_0 \) and \(L_0 \), which are topological isomorphisms of \(H^m_0 \) onto \(H^{-m} = (H^m_0)' \) and \(H_0' \) onto \(H^{-1} = (H_0^1)' \) (where "'" denotes the continuous linear dual), and these are determined by the respective identities

\[
B_M(\phi, \psi) = \langle M\phi, \psi \rangle
\]

and

\[
B_L(\phi, \psi) = \langle L\phi, \bar{\psi} \rangle
\]
on \(H^m_0 \) and \(H^i_0 \), respectively, where "\(\langle \cdot, \cdot \rangle " \) denotes \(\mathcal{D} - \mathcal{D}' \) duality, \(\mathcal{D}' \) being the space of distributions over \(G \).

Since \(l \geq m \) we have a topological inclusion \(H^i_0 \subset H^m_0 \), hence, by duality, \(H^{-m} \subset H^{-i} \). Thus the mapping \(L_0^{-1}M_0 \) is continuous from \(H^m_0 \) into \(H^i_0 \) and is a topological isomorphism only if \(l = m \). Letting \(D = L_0^{-1}M_0(H^m_0) = L_0^{-1}(H^{-m}) \), we have an unbounded operator \(A = M_0^{-1}L_0 \) on \(H^m_0 \) with domain \(D \) dense in \(H^i_0 \). In [16] we showed that \(A \) is the infinitesimal generator of an equicontinuous semi-group of bounded operators \([6, 9, 11]\) on \(H^m_0 \), denoted by \(\{ S(t) : t \geq 0 \} \). We shall prove that this semi-group is holomorphic.

We have already shown that the nonnegative real axis belongs to the resolvent set of \(A \) and, in fact,

\[
|R(\lambda, A)|_M = |(\lambda - A)^{-1}|_M \leq (\text{Re}(\lambda))^{-1}
\]
for all real \(\lambda \geq 0 \), where the norm \(|\cdot|_M \) defined by

\[
|\phi|_M = \sqrt{B_M(\phi, \phi)}
\]
on \(H^m_0 \) is equivalent to \(|| \cdot ||_m \) by \(P_1 \) and \(P_2 \). Actually the whole right half of the complex plane belongs to the resolvent set of \(A \), and (1) is true there. This can be shown by noting that for \(\lambda = \sigma + i\tau \) we have

\[
B_M((A - \lambda)\phi, \phi) = B_M((A - \sigma)\phi, \phi) - i\tau B_M(\phi, \phi)
\]
and hence

\[
\text{Re} B_M((A - \lambda)\phi, \phi) = \text{Re} B_M((A - \sigma)\phi, \phi)
\]
in the argument leading to (1) for \(\lambda \) real. See [16] for details.

2. Our goal is to improve the estimate (1) to show that the family \(\{ \lambda R(\lambda, A) \} \) is uniformly bounded in \(\mathcal{L}(H^m_0) \) for \(\text{Re}(\lambda) > 0 \). First let \(\phi \) be in \(D \); then

\[
B_M((\lambda - A)\phi, \phi) = (\sigma + i\tau)B_M(\phi, \phi) + B_L(\phi, \phi)
\]
Since \(M \) is symmetric it follows that \(B_M(\phi, \phi) \) is real, so we obtain
(2) \(\Re B_M(\lambda - A)\phi, \phi) = \sigma B_M(\phi, \phi) + \Re B_L(\phi, \phi) \geq k_i \|\phi\|^2 \), since \(\sigma > 0 \). Similarly, from
\[
\Im B_M(\lambda - A)\phi, \phi) = \tau B_M(\phi, \phi) + \Im B_L(\phi, \phi)
\]
we obtain the estimate
(3) \(\|\Im B_M(\lambda - A)\phi, \phi\| \geq |\tau| \|\phi\|^2 - K_i \|\phi\|^2 \).

From (2) and (3) we conclude that either
(4) \(\|\Im B_M(\lambda - A)\phi, \phi\| \geq \frac{|\tau|}{2} \|\phi\|^2 \)

or
(5) \(\|\Re B_M(\lambda - A)\phi, \phi\| \geq \frac{k_i}{2K_i} |\tau| \|\phi\|^2 \),
for if (4) is not true then by (3)
\[
|\tau| \|\phi\|^2 - K_i \|\phi\|^2 \leq \frac{|\tau|}{2} \|\phi\|^2 ,
\]

hence
\[
\frac{|\tau|}{2} \|\phi\|^2 \leq K_i \|\phi\|^2 ,
\]
which with (2) implies (5). From (4) and (5) we obtain the estimate
(6) \(\| B_M(\lambda - A)\phi, \phi\) \geq \frac{k_i}{2K_i} |\tau| \|\phi\|^2 \)

for all \(\phi \) in \(D \), and this in turn yields
(7) \(|R(\lambda, A)|_M \leq \frac{2K_i}{k_i} \frac{1}{|\tau|} \),

whenever \(\Re (\lambda) > 0 \). The calculation is as follows:
\[
\frac{k_i}{2K_i} |\tau| \|\phi\|^2 \leq | B_M(\lambda - A)\phi, \phi| \leq |(\lambda - A)\phi|_M |\phi|_M
\]

implies
\[
|(\lambda - A)\phi|_M \geq |\tau| \frac{k_i}{2K_i} |\phi|_M
\]
for all \(\phi \) in \(D \), the domain of \(A \), so (7) follows. The estimates (1) and (7) imply that
\[|\lambda R(\lambda, A)|_M \leq \frac{\tau}{\sigma} + 1 \]

when \(\sigma > 0 \) and, respectively, that
\[|\lambda R(\lambda, A)|_M \leq \frac{2K_i}{k_i} \left(\frac{\sigma}{|\tau|} + 1 \right) \]

whenever \(|\tau| \neq 0\), where \(\lambda = \sigma + i\tau \). By considering the two cases, \(|\tau| \geq \sigma \) and \(|\tau| < \sigma \), we obtain, finally,
\[(8) \]
\[|\lambda R(\lambda, A)|_M \leq \frac{4K_i}{k_i} \]

for all \(\lambda \) in the right half of the complex plane. The estimate (8) yields the following result.

Proposition [22]. The semi-group \(\{S(t): t \geq 0\} \) has a holomorphic extension into a sector of the complex plane. Furthermore, \(S(t) \) maps \(H^m_0 \) into \(D \) whenever \(t > 0 \), so \(S(t) \) is infinitely differentiable and \(S^{(p)}(t) = A^pS(t) \) for any integer \(p \geq 1 \).

The significance of this result for our problem is that, for each \(t > 0 \), \(S(t) \) maps \(H^m_0 \) into the domain of \(A^p \) for an arbitrary integer \(p \geq 1 \).

3. The differentiability of the semi-group yields differentiability of the solution to the problem being considered; the latter is obtained by means of the following.

Let \(H^k_{I_{oc}} \) denote those (equivalence classes of) functions on \(G \) which are locally in \(H^k \); that is,
\[H^k_{I_{oc}} = \{f: f \in H^k(K) \text{ for each compact subset } K \text{ of } G\} . \]

The following result on the local regularity of solutions of elliptic equations is well known.

Theorem [1, 4, 5, 7, 12, 13, 14]. Let \(p \) be an integer \(\geq -l \) for which \(l^{p\sigma} \) is \(\max \{1, |\rho| + p\} \) times continuously differentiable in \(G \) whenever \(|\rho| \) and \(|\sigma| \) are \(\leq l \). If \(u \) belongs to \(H^k_0 \), and if \(L_0u \) is in \(H^p_{I_{oc}} \), then \(u \) belongs to \(H^{2l+1+p}_{I_{oc}} \). That is, \(L_0 \) is a topological isomorphism of \(H^k_0 \cap H^{2l+1+p}_{I_{oc}} \) onto \(H^{-l} \cap H^p_{I_{oc}} \).

Let \(k \) be a nonnegative integer and assume that we have
\(P(k): m^{p\sigma} \) and \(l^{p\sigma} \) are \(\max \{1, |\rho| - m + k\} \) times continuously differentiable in \(G \).
From the above theorem it follows that \(M \) is a bijection of \(H'^{m} \cap H'_{\text{loc}}^{m+k} \) onto \(H'^{-m} \cap H'_{\text{loc}}^{-m} \). Also \(L^{-1} \) is a bijection of \(H'^{-i} \cap H'^{-m} \) onto \(H'^{i} \cap H'_{\text{loc}}^{i-m+k} \). Since \(H'^{-m} \subset H'^{-i} \), it follows that \(A^{-1} = -L^{-1}M \) maps \(H'^{m} \cap H'_{\text{loc}}^{m+k} \) into \(H'^{i} \cap H'_{\text{loc}}^{i-m+k} \).

Corollary. \(P(2(p - 1)(l - m)) \) implies that the domain of \(A^p \) is contained in \(H'^{i} \cap H'_{\text{loc}}^{i+2p(l-m)} \) for \(p \geq 1 \).

From § 2 we know that \(u(t) \) is in the domain of \(A^p \) for all \(t > 0 \) and \(p > 1 \). The corollary thus yields the following results.

Theorem. Assume \(P_1, P_2 \) and \(P_3 \) of § 2. Let the coefficients in \(M \) and \(L \) satisfy \(P(2(p - 1)(l - m)) \) for some integer \(p \geq 1 \). Then \(u(t) = S(t)u_0 \) belongs to \(H'^{i} \cap H'_{\text{loc}}^{i+2p(l-m)} \) for each \(t > 0 \), where \(u_0 \) is any element of \(H'^{m} \).

If \(p \) is sufficiently large we obtain pointwise-solutions by Sobolev’s Lemma [17]:

If \(m \) is an integer \(> (n/2) \), then \(H'^{m} \) is imbedded in \(C^{j}(G) \), \(j = m - [n/2] - 1 \), and the injection is continuous when the range space is given the topology of uniform convergence in all derivatives of order \(\leq j \) on compact of subsets of \(G \).

Corollary. Assume the hypotheses of the above theorem hold with \(m + 2p(l - m) - [n/2] - 1 = j \geq 0 \). Then, for \(t > 0 \), \(u(t) \) has \(j \) continuous derivatives in \(G \) and, for each point \(x \) in \(G \), the function \(t \to u(x, t) \) is infinitely differentiable.

Proof. Choose \(t' \) such that \(t > t' > 0 \). Since \(u(t') = S(t')u_0 \) belongs to \(D(A^p) \), the semi-group property yields

\[
\delta^{-1}[u(t + \delta) - u(t)] = A^{-p}\delta^{-1}[S(t + \delta - t') - S(t - t')]A^p u(t')
\]

for \(\delta \) sufficiently small. Since \(A^p u(t') \) belongs to \(D = D(A) \), the function to the right of \(A^{-p} \) has a limit in \(H'^{m} \) as \(\delta \to 0 \), so the function \(\delta^{-1}[u(t + \delta) - u(t)] \) has a limit in \(H'^{m+2p(l-m)}(K) \), where \(K \) is any compact subset of \(G \). By Sobolev’s Lemma, the function

\[
\delta \to \delta^{-1}[u(x, t + \delta) - u(x, t)]
\]

has a limit as \(\delta \to 0 \), so \(u(x, t) \) is differentiable. A repetition of this argument shows that \(u(x, t) \) is infinitely differentiable in \(t \) without any further assumptions on the coefficients.

All of the above results have been obtained for a solution with initial value \(u_0 \) in \(H'^{m} \). We note further that if \(u_0 \) is sufficiently
smooth then \(u(t) \rightarrow u_0 \) pointwise. (It is always true that \(u(t) \rightarrow u_0 \) in \(H^m \).)

Corollary. Assume the hypotheses of the above corollary and that \(u_0 \) belongs to the domain of \(A^p \). Then each \(u(t), t \geq 0 \) is a continuous function on \(G \), and for each point \(x \) in \(G \), \(u(x, t) \rightarrow u_0(x) = u(x, 0) \) as \(t \rightarrow 0 \).

Proof. This follows by an argument similar to the proof of the preceding corollary applied to the equation

\[
u(t) - u_0 = A^{-p}(S(t) - I)(A^p u_0) .\]

We note that a sufficient condition for \(u_0 \) to be in \(D = D(A) \) is that \(u_0 \) be in \(H^1_0 \cap H^{21-m} \). Also if the initial function and all coefficients in \(M \) and \(L \) are infinitely differentiable, then the solution is infinitely differentiable.

Bibliography

Received October 23, 1969.

The University of Texas