R E SHOWALTER

Quasi-Reversibility of First and Second Order Parabolic Evolution Equations

INTRODUCTION

We consider the (possibly) improperly posed final value problem

$$u'(t) + Au(t) = 0, \quad 0 < t < T$$

$$u(T) = f$$
(E)

where A is a maximal accretive (linear) operator in a complex Hilbert space H. When the numerical range of A lies in the sector of those complex numbers z with $|\arg(z)| \leq \pi/4$, we show there is at most one solution of the problem and we give a quasi-reversibility method which converges uniformly on compact subsets of (0,T] if and only if there exists a solution.

The plan is as follows:

I is a discussion of the relation between solutions of (E) and the semigroup generated by -A.

II introduces the QR-semigroups which describe our quasi-reversibility method.

III contains applications to certain parabolic evolution equations of second order in time.

I. THE SEMIGROUP AND SOLUTIONS

We shall assume that the linear operator A is maximal accretive and D(A) is dense in H. This is equivalent to each of the following [4,5,10]:

- (a) $Re(Ax,x) \ge 0$, $x \in D(A)$, and I + A is onto H;
- (b) $J_{\alpha} = (I + \alpha A)^{-1}$ is a contraction (defined everywhere) on H for each $\alpha > 0$;
- (c) -A generates a strongly-continuous semigroup $\{S(t): t \ge 0\}$ of contractions on H:
 - (i) $S(\cdot)x$ is continuous for each $x \in H$,

- (ii) S(t + s)=S(t)S(s), S(0)=I,
- (iii) ||S(t)|| ≤ 1,
- (iv) $D(A) = \{x: \lim_{h\to 0} h^{-1} (S(h)x-x) \text{ exists}\}, \text{ and the } h\to 0$ limit in H is -Ax.

Definition. A solution of (E) on [a,b] is a function $u \in C([a,b],H) \cap C^1((a,b),H)$ for which $u(t) \in D(A)$ and (E) holds for all $t \in (a,b)$. It follows that u is a solution of (E) on [a,b] if and only if u(t)=S(t-a)u(a), $a \le t \le b$, and $u(t) \in D(A)$, a < t < b.

<u>Definition</u>. A <u>weak solution</u> of (E) on [a,b] is a function of the form $u(t) = S(t-a)\xi$ for some $\xi \in H$.

Thus, the semigroup S generated by -A is precisely the operational representation of (weak) solutions of (E) in terms of initial values.

Remark 1. There exists a weak solution of the final value problem if and only if $f=S(T)\xi$ for some $\xi\in H$.

Eventually we shall restrict our attention to those operators ${\tt A}$ as above which also satisfy

 $Re(Ax,x) \ge |Im(Ax,x)|, x \in D(A).$

Then A is <u>m-sectorial</u> with angle $\pi/4$ [5] and the semigroup $\{S(t)\}$ is <u>holomorphic</u>. This implies that S(t)x is (infinitely) differentiable at each t>0, so every weak solution is a solution.

Remark 2. If S(') is holomorphic and if the final value problem is properly posed, then a is bounded [2]. Thus in "most" situations to which our results apply the final value problem is necessarily improperly posed.

We sketch Yosida's elegant proof of the generation theorem [10]. Define the bounded operators $A_{\alpha} = AJ_{\alpha}$, $\alpha > 0$, and note that $A_{\alpha} = \alpha^{-1}(I-J_{\alpha})$. Since J_{α} is a contraction, $||A_{\alpha}x|| \leq ||Ax||$

and $\|J_{\alpha}x-x\| \leq \alpha \|Ax\|$, $x \in D(A)$, and hence $\|A_{\alpha}x-Ax\| \leq \alpha \|A^2x\|$, $x \in D(A^2)$. These show A_{α} approximates A and J_{α} approximates A is accretive so the group $A_{\alpha}(t) \equiv \exp(-A_{\alpha}t)$ consists of contractions for $A_{\alpha}(t) \equiv \exp(-A_{\alpha}t)$ consists of contractions for $A_{\alpha}(t) \equiv 0$. These facts are used to prove the existence of the strong limit $A_{\alpha}(t) \equiv 0$, thereby defining the semigroup $A_{\alpha}(t)$.

II. QUASIREVERSIBILITY

In hopes of obtaining an approximate solution of the final value problem, we first solve the properly posed problem

$$v_{\alpha}^{\prime}(t) + \alpha A v_{\alpha}^{\prime}(t) + A v_{\alpha}(t) = 0$$

$$v_{\alpha}(T) = f$$
(E^{\alpha})

for small $\alpha>0$. Then we use $v_{\alpha}(0)$ as the initial value to determine a solution u_{α} of (E) with $u_{\alpha}(0)=v_{\alpha}(0)$. We expect to have $u_{\alpha}(T)$ close to f for sufficiently small $\alpha>0$.

Note that (E $^{\alpha}$) is equivalent to (E) with A replaced by the bounded operator A $_{\alpha}$. Thus, we have v $_{\alpha}$ (t) = S $_{\alpha}$ (t-T)f, a representation by the group S $_{\alpha}$, and our approximate solution to the final value problem is given by

$$u_{\alpha}(t) = S(t)S_{\alpha}(-T)f$$
, $0 \le t \le T$.

Our goal above is to show that $S(T)S_{\alpha}(-T)f$ is close to f. This suggests a <u>Definition</u>. For $\alpha>0$, let $E_{\alpha}(t)=S(t)S_{\alpha}(-t)$, $t\geq 0$. $\{E_{\alpha}(\cdot)\}$ is the collection of <u>QR-semigroups</u> for the operator A. The <u>QR-semigroups</u> are <u>stable</u> if they are all contractions.

Lemma 1. $E_{\alpha}(\cdot)$ is generated by $-(A-A_{\alpha})$.

Lemma 2. The following are equivalent:

- (a) $\{E_{\alpha}(\cdot)\}$ is stable;
- (b) $A-A_{\alpha}$ is accretive for every $\alpha > 0$;
- (c) A² is accretive; A a good rego because of a paired
- (d) $R_{\theta}(Ax,x) \ge |I_{m}(Ax,x)|, x \in D(A)$

Consider lim E $_{\alpha}$ (t)x for x $_{\varepsilon}$ D(A). The Fundamental Theorem Calculus gives

$$E_{\alpha}(t)x - E_{\beta}(t)x = \int_{0}^{t} \frac{d}{ds} \left\{ E_{\alpha}(s)E_{\beta}(t-s)x \right\} ds$$
$$= \int_{0}^{t} E_{\alpha}(s)E_{\beta}(t-s) \left(A_{\beta}x - A_{\alpha}x \right) ds,$$

so when $\{E_{\alpha}(\cdot)\}$ are stable we obtain for the stable we obtain

$$\mid\mid\mid \mathbb{E}_{\alpha}(\mathsf{t}) \, \mathsf{x} - \mathbb{E}_{\beta}(\mathsf{t}) \, \mathsf{x} \, \mid\mid \leq \, \mathsf{t} \, \mid\mid \mathbb{A}_{\beta} \mathsf{x} - \mathbb{A}_{\alpha} \mathsf{x} \, \mid\mid \; , \quad \mathsf{x} \; \in \; \mathbb{D}(\mathbb{A}) \, .$$

Hence we can define E(t)x as the limit of $E_{\alpha}(t)x$ for $\alpha \rightarrow 0$ for $x \in D(A)$ and extend by continuity to $x \in H$. The convergence is uniform on bounded intervals, so we can take the limit in the integral

$$\int_{0}^{t} \mathbb{E}_{\alpha}(s)(Ax-A_{\alpha}x)ds = x - \mathbb{E}_{\alpha}(x), \quad x \in D(A)$$

to obtain E(t)x=x, hence E(t)=I. The preceding remarks indicate a proof of our

Theorem 1. In the situation of Lemma 2, $E_{\alpha}(t)x\rightarrow x$ (strongly) as $\alpha \rightarrow 0$ for $x \in H$, t > 0; the convergence is uniform on bounded intervals, and

$$|| E_{\alpha}(t)x-x|| \le t || Ax-A_{\alpha}x||$$
, $x \in D(A)$.

Corollary 1 (Backward Uniqueness). There is at most one solution of the final value problem.

<u>Proof.</u> By Remark 1 and linearity, this is equivalent to showing that the kernel of S(T) is $\{\mathfrak{I}\}$. This is equivalent to showing the range of the adjoint $S^*(T)$ is dense in H. But the adjoint QR-semigroups $\{E^*_{\alpha}(t)\}$ are stable exactly when $\{E^{}_{\alpha}(t)\}$ are stable, so Theorem 1 shows $S^*(T)S^*_{\alpha}(-T)x \to x$, hence the range of $S^*(T)$ is dense, and we are done.

Suppose $f=S(\delta)\xi$. Theorem 1 shows $\xi=\lim_{\alpha\to 0}\mathbb{E}_{\alpha}(\delta)\xi=\lim_{\alpha\to 0}S_{\alpha}(-\delta)f$.

Conversely if $\xi = \lim_{\alpha \to 0} S_{\alpha}(-\delta)f$, then each $S_{\alpha}(\delta)$ being a

contraction implies $\lim_{\alpha \to 0} S_{\alpha}(\delta) S_{\alpha}(-\delta) f = S(\delta) \xi$. But this limit

is f by Theorem 1. These observations and Remark 1 give us

Corollary 2 (Existence). Let $0 \le \delta \le T$. There is a solution u of (E) on $[T-\delta,T]$ with u(T)=f if and only if $\lim_{\alpha\to 0} S_{\alpha}(-\delta)f$

exists in H. (In that case, the limit is precisely $u(T-\delta)$.) In the situation of Corollary 2, we have the representations

$$u(t) = S(t + \delta - T)\xi, \qquad t \ge T - \delta,$$

$$u_{\alpha}(t) = S(t + \delta - T)E_{\alpha}(t)\xi, \qquad t \ge T - \delta, \quad \alpha > 0$$

and hence derivatives of the difference are given by

$$u_{\alpha}^{(m)}(t)-u^{(m)}(t) = (-A)^{m}S(t+\delta-T)(E_{\alpha}^{(T)}\xi-\xi),$$

 $\alpha > 0, t > T-\delta, m \ge 0.$

Since $S(\cdot)$ is holomorphic, we obtain

Corollary 3 (Estimates). If there is a solution u of the final value problem on $[T-\delta,T]$, then

$$\|u_{\alpha}^{(m)}(t)-u^{(m)}(t)\| \le [M/(t+\delta-T)]^{m}\|E_{\alpha}^{(T)}\xi-\xi\|,$$

 $\alpha > 0, t > T-\delta, m \ge 0$

and

$$||u_{\alpha}^{(m)}(t) - u^{(m)}(t)|| \leq [M/(t+\delta-T-\varepsilon)]^{m}T_{\alpha}||A^{2}S(\varepsilon)\xi||,$$

$$\alpha > 0, 0 < \varepsilon \leq \delta, t > T-\delta + \varepsilon.$$

Remark 3. The quasi-reversibility method was introduced by Lattes and Lions [6]. They approximated (E) by the equation

$$w'(t) + Aw(t) - \alpha A^2 w(t) = 0$$

where A is self-adjoint and positive. See [7] for additional results and references.

Remark 4. When A is a realization of an elliptic partial differential operator, (E^{α}) is a pseudo-parabolic or Sobolev partial differential equation [8]. Such equations arise in various applications in which α corresponds to viscosity. This writer and Ting [9] observed that Yosida's proof shows that such equations approximate the corresponding parabolic equation (E). We may regard this approximation as a method of vanishing viscosity.

Remark 5 By considering solutions which satisfy a prescribed global bound, one can use the logarithmic convexity of solutions of (E) to stabilize the final value problem [1].

III. A SECOND ORDER EVOLUTION EQUATION

We attempt to apply our preceding results to the equation

$$v''(t) + Cv'(t) + Bv(t) = 0$$

where (for simplicity) B is self-adjoint and accretive in a Hilbert space \mathcal{H} , and C is accretive. (If -C is accretive, the final value problem is properly posed.) The change of variable $w(t) = e^{-\lambda t} \cdot v(t)$ gives the equivalent equation

$$\frac{d}{dt} \begin{pmatrix} w \\ w' \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ \lambda^{2} + \lambda C + B & 2\lambda + C \end{pmatrix} \begin{pmatrix} w \\ w' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} .$$

Setting $\bar{u}(t) = e^{-\mu t} \binom{w}{w!}$ gives us the equation (E) on the product space $H = \mathcal{H} \times \mathcal{H}$ with the operator

$$A = \begin{pmatrix} \mu & -1 \\ \lambda^2 + \lambda C + B & \mu + 2\lambda + C \end{pmatrix}$$

whose square is given by

$$A^{2} = \begin{pmatrix} \mu^{2} - \lambda^{2} - (\lambda C + B) & -(2\mu + 2\lambda + C) \\ (\lambda^{2} + \lambda C + B)(2\mu + 2\lambda + C) & (\mu + 2\lambda + C)^{2} - (\lambda^{2} + \lambda C + B) \end{pmatrix}$$

The difficulty with the preceding formalities is that it may be impossible, in general, to choose μ and λ so as to make A

and A^2 accretive. (Consider A^2 with $\mu=\lambda=0$ to appreciate the difficulty). In any event, such matrix operators almost always lead to technical difficulties.

We consider the extremely special case C=B, and take comfort in the fortunate fact that such examples do occur, e.g. in hydrodynamics and visco-elasticity [3,6]. Setting λ =-1 and μ =3 in the above gives

$$A = \begin{pmatrix} 3 & -1 \\ 1 & 1+B \end{pmatrix} \qquad A^2 = \begin{pmatrix} 8 & -(4+B) \\ 4+B & B(2+B) \end{pmatrix}$$

Then, A satisfies the hypotheses of Theorem 1 and we have our final result.

Theorem 2. Let B be self-adjoint and accretive on the Hilbert space \mathcal{H} , and f, g $\in \mathcal{H}$. There is at most one solution $v \in C^1([0,T],\mathcal{H}) \cap C^2((0,T),\mathcal{H})$ of

$$v''(t) + Bv'(t) + Bv(t) = 0,$$

with $v'(t) + v(t) \in D(B)$ for 0 < t < T and

$$v(T) = f, v'(T) = g.$$

This problem is equivalent to the final value problem for (E) with A given above, $\bar{u}(t) = e^{-2t} \begin{pmatrix} v \\ v'+v \end{pmatrix}$, and $\bar{f} = e^{-2T} \begin{pmatrix} f \\ f + g \end{pmatrix}$.

Thus, for $0 \le \delta \le T$, there exists a solution v as above on the interval $[T-\delta,T]$ if and only if $\lim_{\alpha \to 0} \bar{u}_{\alpha}(-\delta)$ exists in $\mathcal{H} \times \mathcal{H}$ where \bar{u}_{α} is the solution of the approximating system

$$(1+3\alpha)u'_1 + 3u_1 - \alpha u'_2 - u_2 = 0,$$

 $\alpha u'_1 + u_1 + [1+\alpha(1+B)]u'_2 + (1+B)u_2 = 0,$
 $u_1(T) = e^{-2T}f, u_2(T) = e^{-2T}(f+g).$

Remark 6 Similar results should hold in more general situations. The above proof technique might extend to the case where C

dominates B.

Remark 7. The above procedure approximates the equation by one of the form

$$B_1(\alpha) v''(t) + B_2(\alpha) v'(t) + B_3(\alpha) v(t) = 0$$

in which each $B_j(\alpha)$ is a polynomial in α and B of second degree in α and first degree in B. A simpler approximation is the <u>Sobolev regularization</u>.

$$(1+\alpha B)v''(t) + Cv'(t) + Bv(t) = 0$$

where we can assume without loss of generality that B dominates C. Such examples appear in fluid mechanics where $B=-\Delta$ and $\alpha>0$ corresponds to <u>inertia</u>. (S.f., Remark 4.)

Remark 8. The techniques of this section require that we not make self-adjointness assumptions in Theorem 1: our matrix operator A is never self-adjoint.

REFERENCES

- 1. R. Ewing, The approximation of certain parabolic equations backward in time by Sobolev equations.
- J. Goldstein, Some remarks on infinitesimal generators of analytic semigroups, Proc. Amer. Math. Soc., 22(1969), 91-93
- 3. J. Greenberg, R. MacCamey and V. Mizel, On the existence, uniqueness, and stability of solutions of the equation $\sigma'(u_x)u_{xx} + \lambda u_{xtx} = \rho.u_{tt}$, J. Math. Mech., 17 (1963), 707-728.
- 4. E. Hille and R. Phillips, Functional Analysis and Semigroups, Colloquium Publications, vol. 31, Amer. Math. Soc. New York, 1957.
- 5. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- 6. R. Lattes et J.-L. Lions, Methode de Quasi-Reversibility et Applications, Dunod, Paris, 1967; English transl., American Elsevier, 1969.
- 7. L. Payne, Some general remarks on improperly posed problems for partial differential equations, Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, 316, Springer-Verlag, Berlin-Heidelberg-New York, 1973, 1-30.

- 8. R. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach Space, SIAM J. Math. Anal., 3(1972), 527-543.
- 9. R. Showalter and T.W. Ting, Pseudo-parabolic parabolic partial differential equations, SIAM J. Math. Anal.,1 (1970), 1-26.
- 10. K. Yosida , Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965.

Research supported in part by National Science Foundation Grant GP-34261.

Department of Mathematics,
The University of Texas,
Austin, Texas 78712.