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Quasi-Reversibility of First and Second Order
Parabolic Evolution Equations

INTRODUCTION ]
We consider the (possibly) improperly posed final value problen

ut (£} Ralt) =0, o B ikl (E)
i T

where A is a maximal accretive (linear) operator in a complex
Hilbert space H. When the numerical range of A lies in the
sector of those complex numbers 2z with |arg(z)| < n/4, we
show there is at most one solution of the problem and we give
a quasi-reversibility method which converges uniformly on com-
pact subsets of (0,T] if and only if there exists a solution.
The plan is as follows:

I is a discussion of the relation between solutions of (E)
and the semigroup generated by -A,

II introduces the QR-semigroups which describe our quasi-
reversibility method.

ITII contains applications to certain parabolic evolution

equations of second order in time.

I, IHE SEMIGROUP AND SOLUTIONS

We shall assume that the linear operator A is maximal accretive
and D(A) is dense in H. This is equivalent to sach of the
following [4,5,10]:

(a) Re(Ax,x) >0, x ¢ D(A), and I + A is onto H;

(b) I, = (I +aAl™t 15 a contraction (defined everywhere)

on H for each o > 0;

(c) -A generates a strongly-continuous semigroup {S(t): t > 0}
of contractions on H:

(1) S(+)x is continuous for each x ¢ H,
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(11)  s(t + s)=s(t)s(s), s(o0)=I,
(111) || s(¢)|| =N
ZL(H)

(iv) D(A) = {x: 1im b~ (S(h)x-x) exists}, and the
h=0

limit in H is -Ax.

Dafinit . A solutioy of (E) on [a,b] is a function

ue 5((a,bl,H) N Cl((a,b),H) for which u(t) e D{A) and (E)
holds for all. t ¢ (a,b). It follows that u is a solution of
() on [a,b] if and only if u(t)=S(t-a)u(a), a < t < b, and
i(t) e DEAN, a et Zih

Definition. A weak solution of (E) on [a,bd is a fuaction of
the form u(t) =S(t-a)g for some € € H,

Thus, the semigroup S generated by -A is precisely the
operational representation of (weak) solutions of (E) in terms
of initial values.

Remark 1. There exists a weak solution of the final value prob-
lem if and only if £=S(T)E for some £ ¢ H.
Eventually we shall restrict our attention to those operators

4 as above which also satisfy
Re(Ax,x) > |Im(Ax,x)|, x ¢ D(4).

Then A is m-gectorial with angle m/4 [5] and the semigroup
{s(t)} is holomorphic. This implies that S(t)x is (infinitely)
differentiable at each t > 0, so every weak solution is a solu-
tion,

Ezpark 2. If S(°) is holomorphic and if the final value prob-
lem is properly posed, then a is bounded [2]. Thus in "most"
situations to whiech our results apply the final value problem
is necessarily improperly posed.

We sketch Yosida's elegant proof of the generation theorem
[10]. Define the bounded operators Aa = AJ&’ o > 0, and note
that A = a-l(I-JQ). Since J  is a contraction,llAaﬂl < ||Ad|
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and [[J_x-d| < d|ad|, x ¢ D(A), and hence ||A x-Ad| < of| 434,
x ¢ D(A2). These show Aa approximates A and Jor approximates
I for small o. Each Aa is accretive so the group

Sa{t) = exp(-Aat) consists of contractions for t > 0. These
facts are used to prove the existence of the strong limit
s(t) = %&%}Sa(t), t > 0, thereby defining the semigroup S(-).

II, QUASIREVERSIBILITY
In hopes of obtaining an approximate solution of the final

value problem, we first solve the properly posed problem
wilt) + ahv'(t) + v (t) = 0O (E?)
o o o

VQ(TJ = 7

for small o > 0. Then we use v_(0) as the initial value to
determine & solution u  of (E) with ua(O) = va(O). We expect
to have ua(T) close to f for sufficiently small o > O.

Note that (E¥) is equivalent to (E) with A replaced by the
bounded operator Aa' Thus, we have va(t) = Sa(t—T)f, a
representation by the group Sa’ and our approximate solution

to the final value problem is given by

ua(t) = 8(t)s (-T) ¢, Desits & Th

Our goal above is to show that S(T)Sa(-T)f is close to f£. This

suggests a Definition. For « > 0, let Ea(t) = S(t)Su(—t),

. S0 [EQ(')} is the collection of QR-semigroups for the
operator A, The QR-gemigroups are stable if they are all con-
tractions.

Lemma ]. Ea(') is generated by -(A—AQ)_

Lemma 2, The following are equivalent:

(a) {Ea(')} is stable;
(b) A-A is accretive for every o > 0;
(e) % is accretive;

(d) Re(Ax,x) > |Im(Ax,x)|, x e D(A4)
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Consider 1lim Ea (t)x for x ¢ D{(A). The Fundamental Theorem
a—0

calculus gives

-

t
B, (8)x - Ej(t)x = [5 4§ B (s)E (t-s)x fds

t Y
= ] B (a)E (t-a) (Ax-n x) as,
so when {Ea(-)} are stable we obtain
Il Ea(t)x-EB(t)x]|5 t||ABx-AQx“ ;v oy DERYS

Hence we can define E(t)x as the limit of E (t)x for o=0 for
x ¢ D(A) and extend by continuity to x ¢ H. The convergence
is uniform on bounded intervals, so we can take the 1limit in

the integral

t

FOEq(s)(Ax—Aax)ds % Ea(x), x ¢ D(A)

to obtain E(t)x=x, hence E{t) = I. The preceding remarks

indicate a proof of our

Theorem 1. In the situation of Lemma 2, Ea(t)x¢x (strongly)
asa *» 0 for x ¢ H, t > 0; the convergence is uniform on
bounded intervals, and

I Ea(t)x-x]|5 t| Ax—Aax” y <% s Dl

Corollary 1 (Backward Uniqueness). There is at most one solu-
tion of the final wvalue problem.

Proof. By Remark 1 and linearity, this is equivalent to showing
that the kernel of S(T) is {0}. This is equivalent to showing
the range of the adjoint S*(T) is dense in H. But the adjoint
QR-semigroups [E;(t)] are stable exactly when {Ea(t)} are
stable, so Theorem 1 shows S*(T)S;(—T)x - x, hence the range

of S*(T) is dense, and we are done.

Suppose £=S(6)E. Theorem 1 shows § = lim Ea(6)§=1im Sq(—é)f.
o0 a0

Conversely if € = 1lim Sa(-é)f, then each sa(a) being a
a -0

79



contraction implies 1lim 8 (6)5 (-8)f = S(§)g. But this limit
a-0

is f by Theorem 1. These observations and Remark 1 give us

Corollary 2 (Existence). Let 0 < 6§ < T. There is a solution
u of (E) on [T-6,T] with u(T) = £ if and only if lim s (-8)f
a—0

exists in H. (In that case, the limit is precisely u(T-5).)
In the situation of Corollary 2, we have the representations

u(t) = s(t + &-T)g, t>T - 6,

ua(t)= S(t + 6-T)Ea(t)§, t 5 T = eisg

and hence derivatives of the difference are given by

ua(m)(t)-u(m)(t) = (—A)ms(t+6-T)(Ea(T)§-§),
> 0, b 5 P w0
Since S(+) is holomorphic, we obtain

Corollary 3 (Estimates). If there is a solution u of the final
value problem on [T-§,T], then

“ua(m)(t)_u(m)(t) “ < [M/(t+8-T) 1" ”EQ(T)g‘g ”:

a >0y ti> T-bg g0

and
lhag ™ 6) -ul™) (e) || < /(s+6-T-0) 1 [A%sCe)e |1,

o >0, 0w e s s, b > T-8. %0

Remark 3. The quasi-reversibility method was introduced by
Lattes and Lions [6]. They approximated (E) by the equation

w'(t) + Awle) = aAzu(t) =0

where A is self-adjoint and positive. See [7] for additional

results and references.
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Remark 4. When A is a realization of an elliptic partial
differential operator, (E%¥) is a pseudo-parabolic or Sobolev
partial differential equation [8]. Such squations arise in
various applications in which o corresponds to viscosity.
This writer and Ting [9] observed that Yosida's proof shows
that such equations approximate the corresponding parabolic
equation (E). We may regard this approximation as a method
of vanishing viscosity.

femark 5 By considering solutions which satisfy a prescribed
global bound, one can use the logarithmic convexity of solu-
tions of (E) to stabilize the final value problem [1].

III,A_SECOND ORDER EVOLUTION EQUATION
We attempt to apply our preceding results to the equation

v" (t) + Cv'(t) + Bv(t) =0

where (for simplicity) B is self-adjoint and accretive in
a Hilbert spaceaf, and C is accretive. (If -C is accretive,
the final value problem is properly posed.) The change of

variable w(t) = e A-v(t) gives the equivalent equation

4 (u) ) ( 0 -1 \[u) - (0}
\ ' B {
dt A A2 GEBET 93 fel\Y o e

W
Setting uft) = i (wJ gives us ths equation (E) on the prod-
uct space H = }fx}fa with the operator

A = I-h -1
A2+AC+B u+2A+C

“hose square is given by

" pe-r*=({ic+B) -(2u+224C)

2

(A“+AC+B) (2u+22+C) (p+2x+c)2-(A2+xc+By

The difficulty with the preceding formalities is that it may

be impossible, in gemeral, to choose u and A so as to make A
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and A? accretive. (Consider A% with b = A = 0 to appreciate
the difficulty). In any event, such matrix operators almost
always lead to technical difficulties.

We consider the extremely special case C=B, and take com-
fort in the fortunate fact that such sxamples do occur, e.g.
in hydrodynamics and visco-elasticity [3,6]. Setting A=-1 and
=3 in the above gives

/3 o \ 2 / 8 -(4+B) \

l \
A= | J L gy
Wt ~11+B } L+B B(2+B))

Then, A satisfies the hypotheses of Theorem 1 and we have our
final result.

Thsorem 2. Let B be self-adjoint and accretive on the Hilbert
space 3{, and £, g e?f. There is at most one solution

¥ ¥ BECL6, 20,40 ) 0 620, 1) WP ot
v" (t) + Bv'(t) + Bv(t) = 0,

with v'(t) + v(t) ¢ D(B) for 0 < t < T and
w(1) = £, ¥'AT) = g.

This problem is eguivalent to the final value problem for (E)

: ; - o =R BN o Rt B\
with A given above, ul(t) = e {v'+v)’ and-f = e G.+ gj.
Thus, for 0 < 6§ < T, there exists a solution v as above on
the interval [T-6,T] if and only if lim ﬁa(-a) exists in }kaf

2 a=0
where ua is the solution of the approximating system

1 1 nE | S =
(1+3r.v)u1 T'3a, qu} - u, 0,
oul + u, + [1+a(1+B)]ué + (1+B)u2 =0
ul(T) = e'sz, uz(T) = e-zT(f+g).

Remark 6 Similar results should hold in more general situations.

The above proof technique might extend to the case where C
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dominatas B,

iengzk 7. The above procedurs approximatas the equation by one
of the form

|
o

Bl(a)v" (td + Bzia)v'(t) + BB(G)V(t)

iz which each Bj(a) is a polynomial in & ani B of sescond
degree in o and first degree in B, A simpler approximation

is the Sobolev regularization.
(1+eB)v" (t) + Cv'(t) + Bv(t) = 0

7shere we can assume without loss of generality that B dominates
Such examples appear in fluid mechanics where B = -3 and

2 > 0 corresponds to inertia. (C.f., Remark 4.)

Rzmark 8. The techniques of this section require that we not

nake self-adjointness assumptions in Thzorem 1l: our matrix

sperator A is never self-adjoint.
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