We consider the (possibly) improperly posed final value problem

\[u'(t) + Au(t) = 0, \quad 0 < t < T \tag{E} \]

\[u(T) = f, \]

where \(A \) is a maximal accretive (linear) operator in a complex Hilbert space \(H \). When the numerical range of \(A \) lies in the sector of those complex numbers \(z \) with \(|\arg(z)| \leq \pi/4 \), we show there is at most one solution of the problem and we give a quasi-reversibility method which converges uniformly on compact subsets of \((0,T]\) if and only if there exists a solution.

The plan is as follows:

I is a discussion of the relation between solutions of (E) and the semigroup generated by \(-A\).

II introduces the QR-semigroups which describe our quasi-reversibility method.

III contains applications to certain parabolic evolution equations of second order in time.

I. THE SEMIGROUP AND SOLUTIONS

We shall assume that the linear operator \(A \) is maximal accretive and \(D(A) \) is dense in \(H \). This is equivalent to each of the following [4,5,10]:

(a) \(\text{Re}(Ax,x) \geq 0, \quad x \in D(A), \text{ and } I + A \text{ is onto } H; \)

(b) \(J_\alpha = (I + \alpha A)^{-1} \) is a contraction (defined everywhere) on \(H \) for each \(\alpha > 0; \)

(c) \(-A \) generates a strongly-continuous semigroup \(\{S(t): t \geq 0\} \) of contractions on \(H; \)

(i) \(S(\cdot)x \) is continuous for each \(x \in H, \)

76
(ii) \(S(t + s) = S(t)S(s), \) \(S(0) = I, \)

(iii) \(\| S(t) \| \leq 1, \)

\(\| \xi(H) \| \)

(iv) \(D(A) = \{ x : \lim_{h \to 0} h^{-1} (S(h)x - x) \text{ exists} \}, \) and the limit in \(H \) is \(-Ax. \)

Definition. A solution of \((E) \) on \([a, b]\) is a function \(u \in C([a, b], H) \cap C^1((a, b), H) \) for which \(u(t) \in D(A) \) and \((E) \) holds for all \(t \in (a, b). \) It follows that \(u \) is a solution of \((E) \) on \([a, b]\) if and only if \(u(t) = S(t-a)u(a), \) \(a \leq t \leq b, \) and \(u(t) \in D(A), \) \(a < t < b. \)

Definition. A weak solution of \((E) \) on \([a, b]\) is a function of the form \(u(t) = S(t-a)\xi \) for some \(\xi \in H. \)

Thus, the semigroup \(S \) generated by \(-A\) is precisely the operational representation of (weak) solutions of \((E) \) in terms of initial values.

Remark 1. There exists a weak solution of the final value problem if and only if \(f = S(T)\xi \) for some \(\xi \in H. \)

Eventually we shall restrict our attention to those operators \(A \) as above which also satisfy

\[\text{Re}(Ax, x) \geq |\text{Im}(Ax, x)|, \quad x \in D(A). \]

Then \(A \) is \(m \)-sectorial with angle \(\pi/4 \) [5] and the semigroup \(\{S(t)\} \) is holomorphic. This implies that \(S(t)x \) is (infinitely) differentiable at each \(t > 0, \) so every weak solution is a solution.

Remark 2. If \(S(\cdot) \) is holomorphic and if the final value problem is properly posed, then \(a \) is bounded [2]. Thus in "most" situations to which our results apply the final value problem is necessarily improperly posed.

We sketch Yosida's elegant proof of the generation theorem [10]. Define the bounded operators \(A_\alpha = AJ_\alpha, \) \(\alpha > 0, \) and note that \(A_\alpha = \alpha^{-1}(I-J_\alpha). \) Since \(J_\alpha \) is a contraction, \(\|A_\alpha x\| \leq \|Ax\| \)
and \(\| J_{\alpha} x - x \| \leq \alpha \| A x \|, \) \(x \in D(A) \), and hence \(\| A_{\alpha} x - A x \| \leq \alpha \| A^2 x \|, \) \(x \in D(A^2) \). These show \(A_{\alpha} \) approximates \(A \) and \(J_{\alpha} \) approximates \(I \) for small \(\alpha \). Each \(A_{\alpha} \) is accretive so the group \(S_{\alpha}(t) = \exp(-A_{\alpha} t) \) consists of contractions for \(t \geq 0 \). These facts are used to prove the existence of the strong limit \(S(t) = \lim_{\alpha \to 0} S_{\alpha}(t), t \geq 0 \), thereby defining the semigroup \(S(\cdot) \).

II. QUASIREVERSIBILITY

In hopes of obtaining an approximate solution of the final value problem, we first solve the properly posed problem

\[
\begin{align*}
&v_{\alpha}'(t) + \alpha A v_{\alpha}'(t) + A v_{\alpha}(t) = 0 \quad (\text{E}_\alpha) \\
v_{\alpha}(T) = f
\end{align*}
\]

for small \(\alpha > 0 \). Then we use \(v_{\alpha}(0) \) as the initial value to determine a solution \(u_{\alpha} \) of \((\text{E})\) with \(u_{\alpha}(0) = v_{\alpha}(0) \). We expect to have \(u_{\alpha}(T) \) close to \(f \) for sufficiently small \(\alpha > 0 \).

Note that \((\text{E}_\alpha)\) is equivalent to \((\text{E})\) with \(A \) replaced by the bounded operator \(A_{\alpha} \). Thus, we have \(v_{\alpha}(t) = S_{\alpha}(t-T)f \), a representation by the group \(S_{\alpha} \), and our approximate solution to the final value problem is given by

\[
u_{\alpha}(t) = S(t)S_{\alpha}(-T)f, \quad 0 \leq t \leq T.
\]

Our goal above is to show that \(S(T)S_{\alpha}(-T)f \) is close to \(f \). This suggests a Definition. For \(\alpha > 0 \), let \(E_{\alpha}(\cdot) = S(t)S_{\alpha}(-t), t \geq 0 \). \{\(E_{\alpha}(\cdot)\}\) is the collection of QR-semigroups for the operator \(A \). The QR-semigroups are stable if they are all contractions.

Lemma 1. \(E_{\alpha}(\cdot) \) is generated by \(- (A - A_{\alpha})\).

Lemma 2. The following are equivalent:

(a) \{\(E_{\alpha}(\cdot)\}\) is stable;

(b) \(A - A_{\alpha} \) is accretive for every \(\alpha > 0 \);

(c) \(A^2 \) is accretive;

(d) \(\text{Re}(A x, x) \geq |\text{Im}(A x, x)|, \) \(x \in D(A) \)
Consider \(\lim_{\alpha \to 0} E_{\alpha}(t)x \) for \(x \in D(A) \). The Fundamental Theorem of Calculus gives

\[
E_{\alpha}(t)x - E_{\beta}(t)x = \int_0^t \frac{d}{ds} \left\{ E_{\alpha}(s) E_{\beta}(t-s)x \right\} ds
= \int_0^t E_{\alpha}(s) E_{\beta}(t-s) (A_{\beta} x - A_{\alpha} x) \, ds,
\]

so when \(\{E_{\alpha}(\cdot)\} \) are stable we obtain

\[
\| E_{\alpha}(t)x - E_{\beta}(t)x \| \leq t \| A_{\beta} x - A_{\alpha} x \|, \quad x \in D(A).
\]

Hence we can define \(E(t)x \) as the limit of \(E_{\alpha}(t)x \) for \(\alpha \to 0 \) for \(x \in D(A) \) and extend by continuity to \(x \in H \). The convergence is uniform on bounded intervals, so we can take the limit in the integral

\[
\int_0^t E_{\alpha}(s)(Ax - A_{\alpha} x) ds = x - E_{\alpha}(x), \quad x \in D(A)
\]

to obtain \(E(t)x = x \), hence \(E(t) = I \). The preceding remarks indicate a proof of our

Theorem 1. In the situation of Lemma 2, \(E_{\alpha}(t)x \rightarrow x \) (strongly) as \(\alpha \to 0 \) for \(x \in H, t > 0 \); the convergence is uniform on bounded intervals, and

\[
\| E_{\alpha}(t)x - x \| \leq t \| Ax - A_{\alpha} x \|, \quad x \in D(A).
\]

Corollary 1 (Backward Uniqueness). There is at most one solution of the final value problem.

Proof. By Remark 1 and linearity, this is equivalent to showing that the kernel of \(S(T) \) is \(\{0\} \). This is equivalent to showing the range of the adjoint \(S^*(T) \) is dense in \(H \). But the adjoint QR-semigroups \(\{E_{\alpha}^*(t)\} \) are stable exactly when \(\{E_{\alpha}(t)\} \) are stable, so Theorem 1 shows \(S^*(T)S_{\alpha}^*(-T)x = x \), hence the range of \(S^*(T) \) is dense, and we are done.

Suppose \(f = S(\delta)\xi \). Theorem 1 shows \(\xi = \lim_{\alpha \to 0} E_{\alpha}(\delta)\xi = \lim_{\alpha \to 0} S_{\alpha}(-\delta)f \).

Conversely if \(\xi = \lim_{\alpha \to 0} S_{\alpha}(-\delta)f \), then each \(S_{\alpha}(\delta) \) being a
contraction implies \(\lim_{\alpha \to 0} S_\alpha(\delta) S_\alpha(-\delta) f = S(\delta) \xi \). But this limit is \(f \) by Theorem 1. These observations and Remark 1 give us

Corollary 2 (Existence). Let \(0 \leq \delta \leq T \). There is a solution \(u \) of (E) on \([T-\delta, T]\) with \(u(T) = f \) if and only if \(\lim_{\alpha \to 0} S_\alpha(-\delta) f \)

exists in \(H \). (In that case, the limit is precisely \(u(T-\delta) \).

In the situation of Corollary 2, we have the representations

\[
\begin{align*}
 u(t) & = S(t + \delta - T) \xi, \quad t \geq T - \delta, \\
 u_\alpha(t) & = S(t + \delta - T) E_\alpha(t) \xi, \quad t \geq T - \delta, \alpha > 0
\end{align*}
\]

and hence derivatives of the difference are given by

\[
 u_\alpha^{(m)}(t) - u^{(m)}(t) = (-A)^m S(t+\delta-T)(E_\alpha(T) \xi - \xi),
\]

\[\alpha > 0, \ t > T - \delta, \ m \geq 0. \]

Since \(S(\cdot) \) is holomorphic, we obtain

Corollary 3 (Estimates). If there is a solution \(u \) of the final value problem on \([T-\delta, T]\), then

\[
 \| u_\alpha^{(m)}(t) - u^{(m)}(t) \| \leq |M/(t+\delta-T)|^m \| E_\alpha(T) \xi - \xi \|,
\]

\[\alpha > 0, \ t > T - \delta, \ m \geq 0 \]

and

\[
 \| u_\alpha^{(m)}(t) - u^{(m)}(t) \| \leq |M/(t+\delta-T-\epsilon)|^m T \alpha \| A^2 S(\epsilon) \xi \|,
\]

\[\alpha > 0, \ 0 < \epsilon \leq \delta, \ t > T - \delta + \epsilon. \]

Remark 3. The quasi-reversibility method was introduced by Lattes and Lions [6]. They approximated (E) by the equation

\[
 w'(t) + Aw(t) - \alpha A^2 w(t) = 0
\]

where \(A \) is self-adjoint and positive. See [7] for additional results and references.
Remark 4. When A is a realization of an elliptic partial differential operator, (E^α) is a pseudo-parabolic or Sobolev partial differential equation [8]. Such equations arise in various applications in which α corresponds to viscosity. This writer and Ting [9] observed that Yosida's proof shows that such equations approximate the corresponding parabolic equation (E). We may regard this approximation as a method of vanishing viscosity.

Remark 5 By considering solutions which satisfy a prescribed global bound, one can use the logarithmic convexity of solutions of (E) to stabilize the final value problem [1].

III. A SECOND ORDER EVOLUTION EQUATION

We attempt to apply our preceding results to the equation

$$v''(t) + C v'(t) + B v(t) = 0$$

where (for simplicity) B is self-adjoint and accretive in a Hilbert space H, and C is accretive. (If $-C$ is accretive, the final value problem is properly posed.) The change of variable $w(t) = e^{-\lambda t} v(t)$ gives the equivalent equation

$$\frac{d}{dt} \begin{pmatrix} w \\ w' \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ \lambda^2 + \lambda C + B & 2 \lambda + C \end{pmatrix} \begin{pmatrix} w \\ w' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Setting $\bar{w}(t) = e^{-\mu t} \begin{pmatrix} w \\ w' \end{pmatrix}$ gives us the equation (E) on the product space $H = H \times H$ with the operator

$$A = \begin{pmatrix} \mu & -1 \\ \lambda^2 + \lambda C + B & \mu + 2 \lambda + C \end{pmatrix}$$

whose square is given by

$$A^2 = \begin{pmatrix} \mu^2 - \lambda^2 - (\lambda C + B) & -(2 \mu + 2 \lambda + C) \\ (\lambda^2 + \lambda C + B)(2 \mu + 2 \lambda + C) & (\mu + 2 \lambda + C)^2 - (\lambda^2 + \lambda C + B) \end{pmatrix}$$

The difficulty with the preceding formalities is that it may be impossible, in general, to choose μ and λ so as to make A
and A^2 accretive. (Consider A^2 with $\mu = \lambda = 0$ to appreciate the difficulty). In any event, such matrix operators almost always lead to technical difficulties.

We consider the extremely special case $C=B$, and take comfort in the fortunate fact that such examples do occur, e.g. in hydrodynamics and visco-elasticity [3,6]. Setting $\lambda=-1$ and $\mu=3$ in the above gives

$$A = \begin{pmatrix} 3 & -1 \\ 1 & 1+B \end{pmatrix}, \quad A^2 = \begin{pmatrix} 8 & -(4+B) \\ 4+B & B(2+B) \end{pmatrix}.$$

Then, A satisfies the hypotheses of Theorem 1 and we have our final result.

Theorem 2. Let B be self-adjoint and accretive on the Hilbert space \mathcal{H}, and $f, g \in \mathcal{H}$. There is at most one solution $v \in C^1([0,T],\mathcal{H}) \cap C^2((0,T),\mathcal{H})$ of

$$v''(t) + Bv'(t) + Bv(t) = 0,$$

with $v'(t) + v(t) \in D(B)$ for $0 < t < T$ and

$$v(T) = f, \quad v'(T) = g.$$

This problem is equivalent to the final value problem for (E) with A given above, $\tilde{u}(t) = e^{-2t} \begin{pmatrix} v \\ v' + v \end{pmatrix}$, and $\tilde{f} = e^{-2T} \begin{pmatrix} f \\ f + g \end{pmatrix}$.

Thus, for $0 \leq \delta \leq T$, there exists a solution v as above on the interval $[T-\delta, T]$ if and only if $\lim_{\alpha \to 0} \tilde{u}_\alpha^\ast(-\delta)$ exists in $\mathcal{H} \times \mathcal{H}$ where \tilde{u}_α^\ast is the solution of the approximating system

$$(1+3\alpha)u_1' + 3u_1 - \alpha u_2' - u_2 = 0,$$

$$\alpha u_1' + u_1 + [1+\alpha(1+B)]u_2' + (1+B)u_2 = 0,$$

$$u_1(T) = e^{-2T}f, \quad u_2(T) = e^{-2T}(f+g).$$

Remark 6 Similar results should hold in more general situations. The above proof technique might extend to the case where C
Remark 7. The above procedure approximates the equation by one of the form

\[B_1(\alpha)v''(t) + B_2(\alpha)v'(t) + B_3(\alpha)v(t) = 0 \]

in which each \(B_j(\alpha) \) is a polynomial in \(\alpha \) and \(B \) of second degree in \(\alpha \) and first degree in \(B \). A simpler approximation is the Sobolev regularization.

\[(1+\alpha B)v''(t) + C v'(t) + Bv(t) = 0\]

where we can assume without loss of generality that \(B \) dominates \(C \). Such examples appear in fluid mechanics where \(B = -\Delta \) and \(\alpha > 0 \) corresponds to inertia. (C.f., Remark 4.)

Remark 8. The techniques of this section require that we not make self-adjointness assumptions in Theorem 1: our matrix operator \(A \) is never self-adjoint.

References

3. J. Greenberg, R. MacCamy and V. Mizel, On the existence, uniqueness, and stability of solutions of the equation \(\sigma'(u_x)u_{xx} + \lambda u_{xt} = \rho u_{tt} \), J. Math. Mech., 17 (1963), 707-728.

Research supported in part by National Science Foundation Grant GP-34261.

Department of Mathematics,
The University of Texas,
Austin, Texas 78712.