Initial and Final-Value Problems for
Degenerate Parabolic Evolution Systems

R. E. SHOWALTER

1. Introduction. We begin by showing that a Cauchy problem for the linear
implicit evolution equation

(1.1 g’; (Mu(t)) + Lu(®) = f(0), t>0

is continuously solvable. By this we mean that for appropriate data there exists
a (not necessarily unique) solution which depends continuously on the data with
respect to certain seminorms. The non-negative and Hermitian operator M may
be degenerate (i.e., may vanish on non-zero vectors) and L is required to satis-
fy a sector condition. In Section 2 we show that this Cauchy problem is re-
solved by an analytic semigroup. Analogous results are obtained in Section 4
for a second-order system which is equivalent to the equation

1.2) % (% Cu(r) + Bu(t)) + Ault) = f(1), >0

when C and A are non-negative and Hermitian and B satisfies a sector condi-
tion. These results on continuous solvability of Cauchy problems for (1.1) and
(1.2) are extensions of certain related results in [1]. Although we do obtain new
applications to initial-boundary value problems for degenerate partial dif-
ferential equations, the primary objective of the above presentation is to pro-
vide the background material for our treatment below of the corresponding
final-value problems.

The method of quasi-reversibility (QR) will be used to approximate the solu-
tions of final-value problems for (1.1) and (1.2) in the situation described above.
The equations are parabolic, in the sense that they are resolved by analytic
semigroups, so the final-value problems are necessarily ill-posed. In a QR-
method one begins with final data at time ¢t = T > 0 and solves an approximating
equation backward in time to obtain corresponding initial data at time ¢ = 0.
Then the original equation is solved forward starting from the initial data. The
general QR-method was introduced by Lattes and Lions [5]. We shall imple-
ment the QR-method in Section 3 where we approximate (1.1) by
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(1.3) 5’7 (M + eLyo(t) + Lot) = 0
and in Section 5 where we approximate (1.2) by (essentially)

(1.4) % (gt_ (C + eB + €*A)vt) + (B + ZeA)ve(t)) + Av(t) = 0
with € > 0. (We set f(f) = 0 with no loss of generality.) Both the initial and the
final value problems are continuously solvable for (1.3) and (1.4). The success
of a general QR-method depends on how well the solution so obtained approxi-
mates the final data. Our method always converges to the final data and, more-
over, converges on the entire interval [0, T] if and only if there actually exists a
solution of the final value problem!

The results on final-value problems are obtained from [7]. If M is the identity
operator our Theorem 2 coincides with the results of [7] for the standard evolu-
tion equation. Similarly, if C is the identity and B = A, we recover the special
results in [8] and in Chapter 2 of [5]. Our hypotheses permit the choice of A = 0
in which case (1.1) and (1.2) are equivalent, and we may obtain corresponding
results by setting C = 0. The final-value problem for (1.1) was studied in [4]
where M was replaced by I + M,, M, being m-accretive. Such hypotheses do
not allow nonuniqueness. We refer to Chapter 3 of [1] for a variety of examples
of boundary value problems for partial differential equations to which our ab-
stract results immediately apply.

We indicate some of the notation that will be used below. The algebraic dual
of conjugate-linear functionals on the complex linear space V is denoted by V*;
when V is a topological vector space we indicate by V' its topological dual of
continuous conjugate-linear functionals. For the linear operator L of V into V*
we denote by Ker(L) and Rg(L) the kernel and range, respectively. Such an
operator is called 6-sectorial if its numerical range {Lx(x): x € V}is contained in
the sector S(0) of all complex numbers z whose arguments satisfy larg(z)l < 6.
Thus (7 /2)-sectorial means monotone: ReLx(x) = 0 for all x € V. (The real and
imaginary parts of the complex z are denoted by Re(z) and Im(z), respectively.)
A monotone operator L is called strictly monotone if Re Lx(x) = 0 only if x = 0.
Suppose V is a Banach space and 0 < T. Then for 0 < a = 1, C%(V) is the space
of functions F: [0, T] — V which are Holder-continuous with exponent «:

@) = f)lly = K@t — s)~, O=ss=¢t=T,

for some K > 0, and we set C*(V) = N {C%(V): T > 0}. The space of functions f:
[0, 7] — V which are continuous on [0, 7] and (strongly) differentiable in (0, T)
is denoted by Dy(V), and we set D(V) = N {Dx(V): T > 0}.

2. First-order equations. We shall prove that an appropriate initial-value
problem for the first-order implicit evolution equation is continuously solvable.

Theorem 1. Let the linear operators L and M map the vector space V into
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its dual V*. Assume M is Hermitian and monotone; denote by V,, the space V
with the seminorm |xl,, = Mx(x)'? and by V,, the corresponding dual space.
Thus, V, is a Hilbert space contained in V*. Assume that for some real \yand 0
with 0 = 0 < w/2, \oM + Lis 6-sectorial and Rg(\M + L) D V,, for all A > \,.
Then for each h € V,, and f € C*(V,) there exists a function u: (0, ©) — V such
that Mu € D(V,), Mu(0) = h,

(2.1) ad; Mu(t) + Lu(t) = f(1), t>0.

Any such solution satisfies the estimate
¢

2.2) (Dl = Il + J N9 NIf(s)lly ds, £ =0,
0

If vis another solution then u(t) — v(tf) € Ker(M) N Ker(L) for all t > 0.

Remarks. The continuous solvability of the Cauchy problem for (2.1) fol-
lows from the asserted existence of solutions and the a priori estimate (2.2). If
the operator L + AM is strictly monotone, then uniqueness follows and the
Cauchy problem is well-posed.

The proof of Theorem 1 will show that Rg(AM + L) D V,, forall A > A, if it is
true for some A > \,.

Proof of Theorem 1. Since u is a solution of (2.1) if and only if the function
v(f) = e Mu(r), N > \,, is a solution of the equation with L replaced by A\M + L,
we may assume with no loss of generality that Rg(L) D V,, and that

(2.3) Re Lx(x) = (A — No)Mx(x), x€eV.

Let V,,/Ker(M) be the indicated quotient space with the inner product inher-
ited from V,,, and denote its completion by H. The quotient map q: V,, —
V../Ker(M) is a strict homomorphism of V,, into H and its (continuous) dual g*:
H' — V, is an isomorphism. (To see that g* is a surjection, note that each f €
V,» which vanishes on Ker(M) can be factored into f = g o g for some g €
(Va/Ker(M))'. Since V,,/Ker(M) is dense in H, g € H' and we have f = g*(g).)
Furthermore we have

(qx), gO)u = Mx(y), x,y €V
so the Riesz map M,: H — H' satisfies
q*Myg(x) = M(x), x€ V.

The operator L will be factored similarly. Set D = {x € V: Lx € V,;} and D, =
q[D], the image in V,,/Ker(M) of D under the map q. From the lemma below we
obtain Ker(M) N D C Ker(L); since g* is an isomorphism of H' onto V,, it
follows that there is a function L,: D, — H' for which

q*Loq(x) = L(x), x € D.
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We shall show that the negative of the operator A: D, — H defined by A =
MG 'L, is the generator of an analytic semigroup of contractions on H. Since M,
is the Riesz map for H we obtain

(Ax, Y)g = MoAx(y) = Lyx(y), x€ Do,y EH,

and setting x = y = g(v) gives

2.4 (Ax, x)y = Lv(v), v € D, x = q(v) € D,.
Also we have the identity
2.5) qg*My(I + A)g(v) = (M + L)(v), v € D.

From (2.4), (2.5) and our hypotheses on L and M, it follows that A is m-secto-
rial on H, hence, —A generates an analytic semigroup [3, pages 490-493]. Thus
there is a unique solution x(-) € D(H) of the Cauchy problem

X'(f) + Ax(t) = (*My)'f(1), >0,
x(0) = (g*M,)h.
From (2.3) and (2.4) we obtain
Re(Ax, x)g = (A — M)lIxllZ, x €D,

(2.6)

so the semigroup representation of x(-) gives
't

QT (@l = e=® MHix(0)lly + J e~ =1 = 9|(g* M)~ (s)llds.
0

The desired results will be obtained from the correspondence between solu-
tions of the Cauchy problem for (2.1) and that of (2.6). First, if x(-) is the solu-
tion of (2.6) then for each ¢t > 0, x(¢t) € D,, so there exists a u(¢) € D with q(u(?))
= x(t). Since g*M,: H— V,, is an isomorphism, it follows that Mu = (qg*My)x €
D(V,), and from (2.6) we obtain Mu(0) = h and (2.1). This establishes the exis-
tence of a solution of our problem. Conversely, if u is a solution of the Cauchy
problem for (2.1), then the function defined by x(f) = g(e™u(t)), t > 0, is the
solution of (2.6). But g*M, being an isomorphism and the estimate (2.7) imply
the desired estimate (2.2). Note finally that if # = 0 and f(¢) = 0, then for any
solution u of the Cauchy problem it follows from (2.2) that Mu(f) = 0, hence,
from (2.1) that Lu(¢) = 0. The uniqueness criterion now follows by linearity.

It remains only to establish the following.

Lemma. Ker(M) N D = Ker(L).

Proof. From (2.3) and the Cauchy-Schwartz inequality for Mx(y) we obtain
Ker(L) C Ker(M) N D. For the reverse inclusion, note first that for each x € D
we have

ILx(y)l = (const.) My(y)'2, yEYV.
Setting x = y thus gives Lx(x) = 0 for all x € Ker(M) N D. But L is #-sectorial so
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we have [3, p. 311]
[Lx(y)l = (1 + tan 8) Re Lx(x)'*Re Ly(y)'2, x,VEYV,
so it follows from Lx(x) = 0 that Lx = 0 for all x € Ker(M) N D.

Remark. The preceding lemma guarantees that a (single-valued) function L,
is obtained when we factor L through the quotient map g. This is in contrast to
the more general situations c.f. [1, pages 216-218] where L, is multi-valued.

3. Final-value problem I. Consider now the following final-value problem:
given F € V,, and T > 0, find u: (0, T) — V for which Mu € Dy(V,,), Mu(T) = F,
and

3.1 57 Mu(t) + Lu(t) = 0, 0<t<T.

All results below extend immediately to the non-homogeneous (2.1); it is neces-
sary only to require f € CV},) and apply the usual linearity arguments. We can
give examples to show that the final-value problem for (3.1) is ill-posed. More
generally, in the situation of Theorem 1, if the final-value problem were contin-
uously solvable, the corresponding problem of finding x € Dy(H) with x(T) =
(g*M,y)~'F and

(3.2) x'(t) + Ax(t) = 0, 0<t<T,

would be well-posed. Thus, the semigroup S(f) = exp(—At), t = 0, would have
an extension to a group S(¢), — < t < +, Since S(-) is analytic, A - S(¢) is
bounded on H for each ¢ > 0, and this would imply that A = (A - S(¢)) - S(—1¢) is
bounded on H. Hence, in the situation of Theorem 1, the final-value problem is
continuously solvable if and only if L is continuous from V,, to V,,, i.e., L is
dominated by M.

Our results on the final-value problem for (3.1) in the situation of Theorem 1
will be obtained from corresponding results for the final-value problem for
(3.2). We shall assume for the moment that A, = 0; then A is accretive and the
generated semigroup consists of contractions on H. Thus, the QR-method of [7]
applies to (3.2) with x(T) = (¢*M,)"'F and we describe it as follows. For each
€ >0, A(I + eA)!is bounded on H so there is a unique solution y, of

3.3) % I + eA)yt) + Ay(t) =0, 0=t=T,

ydT) = (g*M,)"'F.
Having obtained y(0) € H from (3.3), we define x. to be that solution of (3.2) for
which x.(0) = y.(0). Then one expects (at least) that x.(7T) approximates x(7) in

some sense as € — 0. The following results were proved in [7] under the addi-
tional assumption that A is (7/4)-sectorial:
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There is at most one solution x € D(H) of (3.2) satisfying the condition x(7)
= (¢*My)'F.
The preceding QR-method is stable and convergent at the final time:

Ix(Dlly = I(g*My)~*Fllyg, € > 0, and
lim0 x{(T) = (g*My)"'F  in H.
€ >

There exists a solution x € Dy(H) of (3.2) with x(T) = (qg*M,)~'F if and only if
limo x.(0) exists in H, and then we obtain the estimates

lx™(t) — x™(Ollg < ole)/t", €e>0,0<t=T
X)) = xP(@W)lly = Cp - €/(t = 8)",  €>0,0<8<t=T.

The preceding results extend easily to the situation where A, + A is (7/4)-
sectorial for some real \,; this more general situation will arise in Section 5 so it
is appropriate to include it here. The point is to observe that x is a solution of
(3.2) if and only if xo(f) = e *‘x(¢) is a solution of the same equation with the
operator A\, + A. Since A\, + A is (w/4)-sectorial, the reversible approximation
(3.3) is replaced by

%(1 Toeo + A + (o + Aydf) =0, 0=t=<T
G.4)
ye(T) = e ™" (qg*M,)~'F.

The approximate solution of the final-value problem for (3.2) is then obtained as
that solution x, of (3.2) with initial-value x.(0) = y.(0).

In order to extend the preceding results to the situation of Theorem 1, we
recall how the equation (3.2) arose in the proof and investigate the correspon-
dence between solutions of (3.2) and (3.4) with those of (3.1) and an appropriate
approximation. The remarks following (2.7) show that « is a solution of (3.1)
with Mu(T) = F if and only if x(#) = q(u(?)) is the solution of (3.2) with x(T) =
(g*M,)~'F. Similarly, v, is a solution of

d

3.5 U

M + e(AM + L))o () + A\eM + L)v(t) = 0, 0<t=<T
Mv(T) = e 'F

if and only if y.(¢) = q(v(?)) is the solution of (3.4). Finally, we note that g is a
strict homomorphism and from (2.4) that A, + A is (w/4)-sectorial precisely
when A\yM + L is (7/4)-sectorial. These observations lead to the following re-
sult.

Theorem 2. Let the spaces V, V,, and operators L, M be given as in Theo-
rem 1. Let F € V,} and assume further that A\oM + L is (w/4)-sectorial. If u, and
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u, are solutions of the final-value problem (3.1) with Mu(T) = F, then u,(t) —
uy(t) € Ker(M) N Ker(L) for all t,0 < t = T. For each € > 0let v, be a solution
of (3.5) and let u. be any solution of (3.1) with Mu,(0) = Mv(0). Then lu(T)l,, =
IIFly; and eli_rbn0 Mu(T) = Fin V,,. There exists a solution uof (3.1) with Mu(T) =

F if and only if limo Mv(0) exists in V,, and then we have the estimate
€ e d

=o(e)/t", €>0,0<t=T,
Vi

(3.6) H(%)”(Muem - Mu(?)

= Cy€/(t—d)", €e>0,0<8<t=<T.

Vi

Remark. The filter {Mv(0)}c- , is convergent in V}, if and only if {v(0)}c> o
is Cauchy in V,,.

3.7) H(%)"(Mue(r) — Mu()

4. Second-order equations. We shall use Theorem 1 to show that an initial-
value problem for a parabolic system is continuously solvable. This system
contains the second-order equation (1.2) as well as the first-order (1.1).

Theorem 3. Let the linear operators, A, B and C map the vector space U
into its dual U*. Assume A and C are Hermitian and monotone; denote by U,
and U, the space U with the respective seminorms x|, = Ax(x)'? and x|, =
Cx(x)'2, Assume that for some Ay >0, K =0,and O with0 =0 <w/2,\,C + B
is 0-sectorial and Rg(\*C + AB + A) D U + Ul for A > X,

4.1) Xl =K+ Re(B + A\C)x(x), xe U,

and that Rg(A) = U,. Then for h, € U, h, € U, f, € CYU}) and f, €
C*(Uy) there exists a pair of functions u,, uy: (0, ©) — U such that Au, € D(U}),
Cu, € D(U}), Au,(0) = h,, Cuy(0) = h,, and

(4.2.0) £ Aut) - Aw() = £i)
(4.2.b) % Cuy(t) + Auy(t) + Buy(t) = (1), t>0.

Any such solution pair satisfies the estimate
(luy (D + lus(0)12)'? = e (llhglIF + llhlIg)*?
4.3) ¢
+ [ RO + IAGI™ ds, =0,
0

If vy, vy is another solution pair then u,(t) — v,(t) € Ker(A) and uy(t) — vy(t) €
Ker(4) N Ker(B) N Ker(C) for all t > 0.

Proof. Define V=U X U and M: V— V* by M[x;, x,] = [Ax;, Cx,] for
[x,, x,] € V; it follows that V,, = U, X U,. Set L[x;, xo] = [—Ax,, Ax, + Bx,] for
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[x1, xo] € V. We first verify the sector condition in Theorem 1. From the identi-
ties

Re(\M + L)x(x) = Nlxslz + Re(B + AC)xa(xs),
Im(AM + L)x(x) = 2 Im Ax,(x,) + Im Bx,(x,), x=[x,x]EV,

the estimate
2IIm Ax(x,)l = %lelg + 8lx,I2, €>0,

and the hypotheses above, we obtain
4.4) Im(AM + L)x(x) = max{(A;8)~!, 8K + tan 6} X
Re(A;M + L)x(x), xevV.

This shows AM + L is s-sectorial for some 85, 0 < 65 < 7/2. Next we verify
the range condition. Let g, € U, and g, € U.. Our hypotheses show there is a
u, € U with (\2C + AB + A)u, = g, — g; and a u; € U satisfying NAu;, = Au, +
g:. Thus for A > A\, and [g;, g.] € V., there is a pair [u;, u,] € V for which

AAul - Au2 = gla Aul + (B + Ac)uz = gg.

That is, Rg(AM + L) D V,,. All hypotheses of Theorem 1 are met, so Theorem 3
follows directly.

We remark that the condition that Rg(A) = U, is equivalent to having Rg(A)
closed, and this is equivalent to having the seminorm space U, complete. The
estimate (4.1) means that B + A,C dominates A. The range condition in Theo-
rem 3 can be shown to follow from (4.1) in certain rather general situations.
Specifically, let U, ;. denote U with the seminorm induced by A + C and
assume B is continuous from U, , . into its dual U . .. Then the estimate (4.1)
shows that for A\ sufficiently large, A2C + AB + A is coercive over U, ;.. If
U, + . is complete, it follows that Rg(A2C + AB + A) = U, . ., hence, contains
U, + U, C U .. It follows as above that Rg(AM + L) D V,, for some A > A,
hence, for all A > \,.

The system (4.2) is equivalent to a single second-order evolution equation
in the situation of Theorem 3. If we set u(f) = u,(t) then we easily show that
u: (0, ©) — U satisfies

Cu € D(UY), ad? Cu + Bu — f, € D(UY),
d
Cu(0) = h,, (EE Cu + Bu — fz)(O) = —h,,
and

4.5) % g; Cult) + Buls) — fz(t)} +Aul) = ~f(5),  t>0.
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Conversely, if u is given as above, we can set u, = u and define u, by (4.2.b) to
obtain a solution i, u, of the initial-value problem in Theorem 3.

Finally, we remark that Theorem 3 contains Theorem 1 as a special case. If
we set A = 0, then U; = {0} so necessarily f; = 0, and (4.2.a) is trivially true.
But then (4.2.b) is precisely (2.1) where we identify M with C, L with A, u with
u,, and f with f,. Thus, this case of Theorem 3 is just Theorem 1 with the
additional assumption that A\, > 0. But the change-of-variable remark at the
beginning of Theorem 1 shows that Theorem 1 is true for some A, only if it is
true for all real Ay, so Theorem 1 and Theorem 3 are equivalent.

5. Final-value problem, II. We consider here a final-value problem for the
parabolic system (4.2). Since the equation (3.1) is contained as a special case of
(4.2) it follows from our remarks at the beginning of Section 3 that the final-
value problem for (4.2) will not be continuously solvable in general. Specifical-
ly, these remarks imply this problem is continuously solvable only if C domi-
nates both A and B; this follows in the situation of Theorem 3 whenever L is
continuous from V,, to V. By the usual linearity arguments and Theorem 3, it
suffices to consider homogeneous systems. Thus we have the following prob-
lem in the situation of Theorem 3: given 7> 0, F, € U, and F, € U, find a pair
of functions uy, us: (0, T1— U such that Au, € D(U,), Cu, € Dy(U.), Auy(T) =
F,, Cuy(T) = F,, and

(5.1.a) % Au,(t) — Auy(t) = 0, 0<t<T,
(5.1.b) g; Cuy(t) + Auy(t) + Buy(t) = 0.

Theorem 4. Let the spaces U, U,, U.and operators A, B, C be given as in
Theorem 3. Let F, € U, F, € U, and assume further that the angle 0 of \,C +
B satisfies 0 < 0 < /4 and \ is sufficiently large. For each € > 0, let v, v§ be a
solution of the system

(5.2.2) g; {(1 + eN)AVi(r) — eAvs(D)} + NAV§(r) — Avs(r) = 0, 0==t=T,

(5.2.b) % {eAvs(?) + (C + e(AC + B))vs(1))} + Avi(f) + NC + B)vs(t) = 0

with Av{(T) = e F,and Cvy(T) = e MF,. Let u§, u§ be any solution of (5.1) with
Aus(0) = Av§(0) and Cus(0) = Cvs(0). Then

(D) + lu§(D)Z2 < IIFIE + IF,IE, €e>0,
lim Au§(T) = Fyin Uy, and lim0 Cus(T) = Fyin U.. There exists a solution uy, u,
€—>0 € —>
of (5.1) satisfying Auy(T) = F,and Cuy(T) = F,if and only if lim Av{(0) exists in
€—>0

U, and lim0 Cv§(0) exists in U,. If wy, wyis a second solution of the final-value
€—
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problem of (5.1) with Aw(T) = F,and Cwy(T) = F,, then u,(t) — w,(f) € Ker(A)
and u,(t) — wy(t) € Ker(A) N Ker(B) N Ker(C) for 0 <t = T.

Proof. The proof of Theorem 3 shows that the desired results follow from
the conclusions of Theorem 2 with A, replaced by \; (5.2) is the reversible
approximation which corresponds to (3.5). Thus, it suffices to show that the
hypotheses of Theorem 2 are true for some \ sufficiently large. Specifically, we
need only to demonstrate that AM + L is (7 /4)-sectorial for some A sufficiently
large. From (4.4) we obtain for each 8 > 0 and A = ),

Im(AM + L)x(x)l = max{(A8)~!, 8K + tan 6}Re(AM + L)x(x), xEV.

Note that K and 0 are determined with A, and all hypotheses hold for A = A, and
the same K and 0. Since tan § < 1, we can choose 8 > 0 so that 8K + tan 6 < 1.
Then choose A so large that (A§)~! = 1. The preceding estimate then shows
AM + L is 6)-sectorial for some 0, = m/4, so the proof is complete.

One can also write down estimates on the rate of convergence in the limits
above; these follow directly from the analogous estimates (3.6) and (3.7). Also,
we note that {Av§(0)} and {Cv5(0)} converge in U, and U, if and only if {v{(0)} and
{v5(0)} are Cauchy in U, and U,, respectively.

We observed in Section 4 that the second component u, of a solution of (5.1)
can be characterized as a solution of the second-order equation
(5.3) dld Cu(t) + Bu(t)} + Au(t) = 0, 0<t<T.

dt | dt
One naturally inquires whether the second component of the solution of (5.2) is
characterized likewise. The correspondence is inexact in the rather general
case considered here. One can show that the system (5.2) is in some sense
equivalent to the system

% [C + (B + 20C) + €2(\2C + AB + A)Jvs + Avt

+ [(B + AC) + €(A\2C + AB + A)Jv§ = 0,

% [—Avf + WC + e(\2C + AB + A))vs] + \2C + AB + A)vs = 0.

The second component is then a generalized solution of the equation

% % [C + (B + 20C) + €(\2C + AB + A)us(1)

5.4
+ [(B + 2\C) + 2e(A*C + AB + A)]v;(t)} + (A\2C + AB + A)vs(r) = 0.

Thus, (5.4) may be viewed as the reversible approximation of (5.3). Although
(5.4) is more complex than the approximation used in [5], it applies to a much
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more general situation and the Theorem 4 is considerably stronger than its ana-
logue in [5].
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