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Abstract. Totally fissured media in which the individual cells are isolated by the fissure system
are effectively described by double porosity models with microstructure. Such models contain
the geometry of the individual cells in the medium and the flux across their interface with the
fissure system which surrounds them. We extend these results to a dual-permeability model which
accounts for the secondary flux arising from direct cell-to-cell diffusion within the solid matrix.
Homogenization techniques are used to construct a new macroscopic model for the flow of a single
phase compressible fluid through a partially fissured medium from an exact but highly singular
microscopic model, and it is shown that this macroscopic model is mathematically well posed.
Preliminary numerical experiments illustrate differences in the behaviour of solutions to the partially
fissured from that of the totally fissured case.
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1. Introduction

The £ bulk characteristics of laminar flow through porous media are determined in
the homogeneous case by two essential parameteptbsityand thepermeability

of the medium [10]. A more detailed description of flow in naturally fractured porous
media was initiated by necessity in the petroleum industry during the 1940’s, where
the high rate of recovery in the initial stages of reservoir production in fractured
media often led to substantial overestimates of well production and capacity. In fact,
the storage capacity of naturally fractured reservoirs varies extensively and depends
largely on the degree of fracturing and the consequential range and distribution of
the values of porosity and permeability. An extensive list of references on flow in
fractured rocks is available in [34]. Any theory of flow through fractured media must
account for this range of size in the pores and interstitial openings. The primary pores
are the smallest, but they account for about 30 percent of the volume, while the rela-
tively widely spaced and highly permeable fractures constitute only about 2 percent
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of the volume. This leads to the basic characteristics of fractured media, namely, that
most storage can occur in the pore system while the fractures are responsible for
most transport. The wide range in values of porosity and permeability in these two
regions together with their volume distribution and geometric arrangement greatly
complicate the development of models for flow in naturally fractured media. The
objective is to accurately characterize the pressure changes and depletion history
of the medium, and much effort over decades has been devoted to reproducing the
transient response of the fluid exchange between fractures and matrix blocks.

Any attempt to exactly model the flow through such highly inhomogeneous media
leads to very singular problems of partial differential equations with rapidly oscillat-
ing coefficients. As an alternative, many methods of averaging have been developed,
and these lead to various modelsdofal-porosityanddual-permeabilitytypes. The
development of such dual models began with [8] where the fractured medium is
represented by two independent overlapping flow fields, one representing the porous
matrix and the other representing the system of fissures. These are coupled togeth-
er to form a system of two (possibly degenerate) parabolic equations over the flow
domain, one for the density field in each component of the medium, and these can
be specialized further to reflect the assumptions incorporated in the corresponding
model. The two components are treated symmetrically in the resulting system of two
parabolic partial differential equations; such models are thus said to jperalfel
flow type. In particular, this type of dual-porosity model for the idealized case of a
totally fissured mediuns developed in [8]: there is no flow in the porous matrix but
only through the system of fissures, because the matrix is assumed to be composed
of individual blocks which are isolated from each other by the very well developed
system of fissures. In the more general dual-permeability case for which the fissure
system is less developed and there is some flow permitted within the porous matrix,
we call this goartially fissured mediunThis more general model should prove useful
in describing the variety of features which occur in naturally fractured media. These
parallel flow models of dual-porosity or dual-permeability type have been developed
substantially for a variety of problems; see [1, 7,14, 16, 21, 28, 33].

Essential limitations of the parallel flow models include the suppression of the
geometry of the small matrix blocks and their corresponding interfaces on which
the coupling occurs as well as the lack of any distinction between the space and
time scales of the two components of the medium. These deficiencies motivated
the class of models dlistributed microstructuréype. Such models are known in
many cases to be the limit (by homogenization) as the scale of the inhomogeneity
tends to zero, and they provide a means not only to justify rigorously the model but
also to represent it as a continuous distribution of blocks with prescribed geometry.
Here we shall develop a distributed microstructure model for the flow of a single
phase, slightly compressible fluid inpartially fissured mediumrhereafter denoted
by PFM. This is defined to be a porous mediunRiicomposed of two interwoven
and connected components, the first being a matrix of porous blocks and the second
being a system of fissures, so it exhibits both dual-porosity and dual-permeability
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characteristics. Note that it is impossible to satisfy these geometric constraints in
R2. Limiting cases of the geometry arise when one of the two components of the
medium becomes disconnected. In the special case of disjoint porous blocks which
are separated by the system of fissures, it is calleatadly fissured mediurand
denoted hereafter by TFM. Single phase flow, as well as more complicated flows, in
a TFM have been investigated by several authors; see [2, 5, 6,11, 20, 31]. The recent
book [19] contains a survey of these and other results on distributed microstructure
models. Below, we develop such a model of single phase flow in the general case
of a PFM which in the limit (as the ratio of the volume of space occupied by the
connecting portion of the matrix to the bulk volume of the matrix tends to zero)
reduces to the corresponding model for a TFM.

The common characteristics of fissured media are that the matrix of porous blocks
occupies a much larger volume than the fissures and that it is relatively much more
resistant to fluid flow than is the fissure system. As a consequence, most of the
flow passes through the system of fissures, while bulk storage of fluid takes place
primarily inside the porous matrix formed by the blocks. In a TFM the flow in the
blocks is induced only by the exchange of fluid which takes place on the block-fissure
interfaces, and any interaction between the blocks is possible only via the neighboring
system of fissures, which separate the blocks. The proper description of flow in a
fissured medium requires both global and local characteristics; it is not possible to
capture the duality between macro- and micro-structure by means of standard models
for flow in porous media (see [11]).

In partially fissured media, blocks are connected to neighboring blocks, so that
some part of the flow passes through the block interconnections. While the primary
flow will continue to be that from blocks into fissures followed by flow within the
fissures, the flow in the porous matrix has more than only a local character, as in
the case of a TFM. In a PFM, it is possible that the behavior in nearby blocks
can influence directly the behavior in each, not just indirectly via the system of
fissures. In many situations this effect is less promiment than the bulk flow in the
fractures, but in others where the matrix has a moderately higher permeability and
the interconnections between the blocks are sufficiently large it can have a noticeable
effect.

Exact microscopic models of flow in a fissured medium customarily treat the fis-
sures and the matrix systems as two Darcy media with different physical parameters.
The discontinuities in the parameter values across the matrix-fissure interfaces are
severe, with the ratios of their values in the fissures and blocks usually being of some
orders of magnitude; moreover, the characteristic width of the fissures will be very
small in comparison with the size of the blocks. Consequently, the exact microscop-
ic model, written as a classical interface problem, is numerically and analytically
intractable. The common technique used to overcome this difficulty is to construct
models which describe the flow on two scales, macroscopic and microscopic (see
[2,5,6,11, 20, 31]). At the macroscopic scale of the reservoir the whole domain of
flow is seen as occupied by a pseudo-porous medium with the ‘impermeable’ solid
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part being replaced by the matrix of permeable blocks and the pores representing
the fissures. In these models, the microscopic scale appears through the necessity to
define the flow on matrix blocks. The flow in the two scales is related through inter-
face conditions on the faces of the blocks that conserve mass and momentum (and, in
the case of some more complicated fluids, additional quantities); these interface con-
ditions present themselves as boundary conditions on the blocks and as distributed
source terms in the macroscopic equations.

Derivations of these two-scale models of distributed microstructure type have
been carried out for the case of totally fissured media, and they are based on an
averaging over the exact geometry of the region (see [2, 3]) or by the construction
of a continuous distribution of blocks over the region as in [31] or by assuming
some periodic structure for the domain that permits the use of the homogenization
technique (see [20] or [23] for a review). The general modeling framework has also
been applied to derive models for multiphase, multicomponent, and nonisothermal
flows in a TFM, for which some analytical as well as numerical results exist (see
[4,11,109, 24, 25]).

In this paper we shall construct by means of homogenization a model for the
simplest type of flow, that of a single phase, compressible fluid, in a partially fissured
medium. We shall apply general ideas of homogenization (see [9, 29] and the specific
framework introduced in [5]) for modeling of flows in fissured media. The plan is
as follows. In Section 2 we review the construction of a model for single phase
flow in a TFM. In Section 3 we develop an exaetnodel for diffusion in a PFM
which provides the basis for the homogenization construction; Section 4 contains
technical calculations which lead to the limiting model composed of macroscopic and
microscopic equations. In Section 5 we summarize the limiting model and comment
on its well-posedness. The concluding Section 6 consists of some remarks on the
observed relative behavior of the various models in some preliminary numerical
experiments. These indicate that the qualitative differences in behavior of solutions of
the PFM model from those of the TFM are sufficiently large to be observable. Realistic
numerical models constructed from typical data will be developed elsewhere.

2. A Homogenized Model for Single Phase Flow in a TFM

Here we review the derivation by homogenization of a model for single phase flow
in totally fissured media following [6, 11]. The notation below closely follows that
of these papers as well.

We begin with the microscopic model of single phase flow in a fissured damain
a bounded open subset Bf, over the time interval = (0, T), T > 0. The fissure
and matrix components of the domain are denote@ pands<2,,, respectively. Their
boundaries are denoted B2y ando<2,,. The fissure-matrix interface is given by
Itm = 02 N 0Ry,. The domain is assumed to have a periodic structure, with the
cell of the period being taken to Be = (0, 1)3 for simplicity (see [11, 12, 13] for
different choices in the shape of the period); heiszepnsists of a lattice of copies
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Figure 1L Fissured media.

of Y. The cellY retains the double component structure of the fissured domain and
Y =Yy UY,,, with Yy andY,, denoting the fissure and matrix parts of the cell. Let
', be the part off¢,, contained inY, and letl's; andT',,,, denote the respective
intersections obY with 2y and,,. We note that, in the totally fissured case, the
block interconnectio,,,;,, is is empty (see Figure 1). By,, we denote the normal
unit vector tol",, which points in the direction out df,, and byny its counterpart

out of Yy.

In addition to the assumption of periodicity of the geometry, we assume that the
physical parameters of the problem hai#periodic character, which implies that the
solutions to the differential problem also exhibit certain periodic behavior. They have,
however, also some macroscopic (nonperiodic) behavior which is seen on the scale
of the whole reservoir. We are interested in capturing and possibly decoupling both of
these solution modes, the ‘global’ (macroscopic) mode and the ‘local’ (microscopic-
periodic) mode; this will be achieved by the technique of homogenization. To this
aim, we shall investigate the asymptotics of solutions-as 0 to a family of properly
scaled problems posed on doméitisformed by unions of copies of cel¥”. Below,
we uses as a superscript or subscript on coefficients or variables to denote objects
periodic with respect teY; we omit this notation when = 1.

In order to define the-model, we first recall the model of flow of a slightly
compressible, viscous fluid of density viscosity u, and compressibility: in an
ordinary porous medium of porosity and permeabilitk. The equation of state
relating the pressure to the density is given by

dpo =cpdp. (2.1)

Conservation of momentum is expressed by Darcy’s Law, which together with
the continuity equation (conservation of mass) leads to the equation (see [10, 11])

¢% — V- (AVp) =0, (2.2)
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in which the mobilityx is defined by

A= (2.3)
uc

Let the system of fissures and matrix blocksif be denoted by} and <2,
respectively. The-model onQ? consists of differential equations on each of the
subdomains2; andg2;, for the density, which will be denoted By, on Q% and by
Ye ON Q27 , respectively, plus two interface conditions Df]m to insure conservation
of mass and momentum acrds§, . An exterior boundary condition and an initial
condition must also be specified, but they do not enter into the derivation of the limit
model. In the totally fissured case, it has been shown that, to preserve the magnitude
of the flux crossing the interfaces contained within a fixed volume of the medium as
e — 0, it is necessary to scale the mobility in the blocks by the factdsee [5]).

Thus, thes-model of diffusion in a TFM has the form

apf,s

©F 5 V-(AfVpre) =0, xe€ ij, tel, (2.4)

W v 62 =0 QF 25
wmﬁ— ~(&"AmVye) =0, xe€ m» tel, ( ' )
AV pre = e m Ve - m, X € Tiye tel (2.6)
Ye = Pfe, X € F;m’ tel. (27)

If pr,. andy, are expanded in powers ofnd the formal analysis of these expansions
is carried out (see [5]), it can be seen that the leading terms for the densities in the
fractures and matrix blocks satisfy the following system of equations

¥r19pr.0
i e 000 = Ve (A Vapso) = ans (),
xeR, tel, (2.8)
gmf(x, 1) = —m - ImVyvo-nudll, xeQ, tel, (2.9)
fm

%)
QDm?(X, v, 1) = Vy - (A Vyyo) = 0,
yeYnlx), xe, tel, (2.10)

Yo=pro. Y€IW,(x), xeQ, tel, (2.12)
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where|Y | and|Yy| denote the volumes of the reference seandYy, respectively.
The effective mobility tenson  is given by

1 dw;
A ~~=7/A 8i ilYr| + — | dy, 2.12
( f)l_] Y| v, f ( l,]| _)‘| 3)’]’) y ( )
with the auxiliary functionseg, k = 1, 2, 3, beingY -periodic solutions (modulo a
constant) of

Viop =0, yeYy, (2.13)
Vywi -np = —eg-ng, Yy €Ly, (2.14)

wheree;, is the unit vector in the direction of the-axis.

Equation (2.8) is to be solved @ for the macroscopic densityy, . The right-
hand side of this equation contains the distributed source tgymwhich evaluates
the flux across the boundary of the blogk(x) topologically attached to the point
x € Q in the two-sheeted covering @&t. Blocks over different points ir2 are
disconnected; thus, no flow can take place directly from one such block to another.
It is this feature that identifies this distributed microstructure or two-scale model as
being a dual porosity model for flow in a totally fissured medium.

If the scaling of the permeability in the blocks had been omitted, then the limit
process would have led to a single porosity macroscopic system that fails to represent
the delay that is inherent in the flux entering the fractures from the blocks. It is
precisely this delay that led three decades ago to the introduction by Barenblatt,
Zheltov, and Kochina [8] and Warren and Root [33] of simpler parallel flow models,
which were limited by the computational capacities then available, in order to match
observed reservoir behavior better. For further discussion, see [5,11, 14,17, 18] and
the references therein.

3. Single Phase Flow in a PFM: The&-Model

In this section we develop artmodel for single phase flow in a partially fissured
medium. In the next section we apply homogenization toctiheodel to derive the
limiting, macroscopic model for this type of flow.

Let us first discuss what would happen if we were to change only the geometry
of the TFM. This seems to provide a possible model for a PFM, since we did not
explicitly use the assumption that the matrix blocks be disconnected in the construc-
tion of thee-model, nor did it seem to be used when passing formally to the limit
ase — 0. However, the scaling of the permeability in the blocks and the form of
the interface conditions implicitly contain the assumption of local disconnectivity;
nowhere was there a provision for global flow to take place totally within the matrix.
This lack is clearly apparent in the auxiliary problems (2.13)—(2.14) whose solutions
are used to close the homogenization process and to evaluate the permeability tensor
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in the macroscopic treatment of the fractures. Hence, ho macroscopic model can
result from the TFMe-model that can successfully model flow having two global
parts, as is intuitively inherent in the case of a PFM. Thus, it is necessary to redesign
thes-model to account for the connectivity of the blocks, while still accounting for
the local interaction between the fracture and block structures. In particular, it is
necessary to provide for the existence of a globally defined density in the matrix,
in addition to the local description of the density in a block; i.e., both the rapidly
varying and the slowly varying components of the density in the matrix must enter
into the model. Thus, we are led heuristically to introduce two scalings of the perme-
ability in the matrix, but only one in the fractures. (The porosity, the viscosity, and
the compressibility do not scale.)

As in thee-model for diffusion in a TFM, we usgy . to describe the density in
the fissures; but, in order to describe the density in the matrix, instead of one variable
we use two variables. The firss,, ., leads to the global description of the density
in the matrix, while the secongl,, will provide the required information about the
local behavior of the density as restricted to a single cell. We specify two coefficients,
a andg, which determine the ‘proportion’ between the slow and rapid (global and
local) phases of the ‘total’ density in the matrix as measured on the interface
Notethatw + 8 =1,8 > 0, =0.

Thee-model is as follows

3 .
f% — V(O Vpp) =0 Q% x 1, (3.1)
alom,é‘ B &
om= g =V OmVpme) =0 I x 1, (3.2)
0ye 2 ; e
@mﬁ—v-(é‘ AnVye) =0 in Uy, xI, (3.3)
BrsVpse - nf +%Am Ve - m =0 onT%, x I, (3.4)
arfVpre - nf+AnVome m =0 OnFjim x I, (3.5)
Pfe = UPm,e + Bye on F;m x I, (3.6)
Ve =Kpme ONLo X1, (3.7)
AV e N + K€ AmVye - =0 onTE, X 1. (3.8)

The first three equations describe ‘fast’, ‘moderate’, and ‘very slow’ flow, which are
defined in the fissures, the matrix, and individual blocks, respectively. In order to
stress the difference between the definitiong,pf andy,, note the different spatial
domains on which Equations (3.2) and (3.3) are to be solved. The Equation (3.3) is to
be solved in the set of interiors of what are now artificially disconnected individual
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blocks, while (3.2) is to be solved in the whole @f,, which includes all of the
blocks and the interfaces between adjacent blocks to form a globally connected set.
The conditions (3.4) and (3.5) conserve mass across the inteffacdsetween the
density in fissures and the ‘total’ density in the matrix, with prescribed proportions
between the two components of the total density in the matrix; (3.5) is an ordinary
interface condition, while (3.4) is typical for a fissured medium interface condition
with the permeability coefficient scaled to preserve the magnitude of the flux across
the union of all interfaces contained in a fixed volume as 0. As a consequence

of those two relations, the fluxes described by the two density variables in the matrix
satisfy the equation

o
AN Pme - N = Bgzkmvys “Mm ON F;fm- (3.9)

The condition (3.6) expresses conservation of momentum between the fissures and
the matrix, with prescribed proportions between the two phases (global and local) in
the matrix. We note that the condition (3.6) is, in a mathematical sense, dual to the
conditions (3.4) and (3.5) (see below notes on the well-posedness of the problem).
The system is complemented by a pair of conservation Equations (3.7) and (3.8)
(momentum and mass) on (the artificial interfaCg,),,. The constant appearing

in these (pairwise dual) equations gives the option of imposing another proportion
between global and local phases of the density in the matrix to hold;gn We
require that &« <1.

The combination of the three constants8, and« determines the proportions
between the different components of the total density in the matrix on the boundary
of the blocksy},. The relevant values in a particular application can be established
by an experimental or numerical study. Some choices of the values of the parameters
{«, B, k} have special interpretations, as discussed below. For example, the case of
a =0, B = 1lis interpreted as follows: the interfaﬂ?m is ‘impervious’ for the
‘global flow’ in the matrix (described by the varialpg ) or, in other words, that the
changes i, . arise only by interaction withy®, which, in turn is ‘fed’ by the flow
in the fissures acrodsy,,. On the other hand, the choicesof= 1 for conditions on
I's .. leads to the interpretation that the fluxes associated with the ‘local’ and ‘global’
variable are mutually ‘reflected’ from the (artificial) boundary. One might also see
then (3.7) and (3.8) as a pair of ‘standard interface conditions’ modified to indicate
that both variables are considered on the same sidi§, of rather than on opposite
sides asitis the case of classical interface conditions. Finally=f0, 8 = 1, x = 1,
andI'; ,, = ¢ (formally), then the model reduces to thenodel for the TFM case.

The model derived in the limiting process from this choice is equivalent to the model
for TFM, as shown later. Other choices@fp, and« lead to different patterns of
splitting between the two pseudo-phases.
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Independent of the choice of 8, andk, one can prove that the system (3.1)—
(3.8) is well-posed, when complemented by the appropriate initial and boundary
conditions

pf.e(x,0) = pginit. X € 2, (3.10)
Pm.e (X, 0) = P init(x),  x € Qp, (3.11)
y(x,0) = yinit(x),  x € 2, (3.12)
AVpre-no=0, xe€dQnN 852;, (3.13)
AmVome N =0, x€dQNI;,, (3.14)
e2amVye 1o =0, xedQno,. (3.15)

It is a system of linear parabolic equations coupled by interface conditions. The

coupling on interfaces is the crucial element in the system, and it is the main source
of difficulty in its analysis and approximation. One can see that the dynamics of

the problem is governed by an analytic semigroup, in the general setting of the fol-
lowing well-known result (see e.g. [30]).

THEOREM 1.Assume thav and H are Hilbert spaces, withy dense and con-
tinuously imbedded ir+. Leta(-, -) be a continuous bilinear form defined oh
such that the forna(-, -) + (-, -)5 is V-coercive; i.e., for some positive constant
a(u, u) + (u, u)y = cllul|3. Then, whenevef e CV([0, 00), H),0 < v <1, and
ug € H, there exists a unique € C ([0, 00), H) N CL((0, 00), H) such that(r) € V
fort > 0and

W' (1), V)3 +a(®),v) = (f,v)n, YveV,
u(0) = uo. (3.16)
To apply the theorem in order to prove well-posedness of (3.1)—(3.15) (or its more

general form, with an external source tefiras admitted by the theorem) we need
to define an appropriate abstract setting for the problem. Let

H = L3(Q%) x L2(Qf,) x LA(Q).

Note thatZ?(Q2¢,) = L?(UYZ). The scalar product it is defined as

(u,v)y = /;28 ¢rugvy dx + /;25 Om (u2v2 + uzvz) dx.
f m
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Next, set
V={ue HY(QS) x H'(Q,) x H(Q,)
up =aup + puz oNLgy, kup =uz ONLyy}

and define the bilinear form
a(u,v) = / (AfVuy - Vuy)dx +
2

+/ OmVuz - Voo + €20, Vus - Vug) dx.
Q,

Under appropriate assumptions on the data of the problem (specified in Corollary 2
below), the required hypotheses of the theorem hold’pH, a(-, -). Hence, the
Cauchy problem (3.16) has a unique solution.

Now we demonstrate that this problem is a variational form of our differential
problem (3.1)—(3.15) by the following calculation. Let= (v1, vo, v3) € V, multi-
ply (3.1), (3.2), and (3.3) by the corresponding components ahd integrate the
resulting equations over, 2, and<2,,. Integration oveK2; means integration
over individual blocks, followed by summation over all of the blocks. Application
of Green’s Theorem and the boundary condition® @rleads to the relations

Jo (o

f

a
gj;’s v1+AfV - pf,ng;L) dx = /; AV pfe - nfv1 dr,
fm

0
/ ((,bm Pm.e V2 + A Vome - Vv2> dx
U a1

= L AmV Pm,e * N2 dr + / AmV Pm,e * N2 dr,
fm

mm

J

= . szkmvys-nmvdenL/F %A Ve - 3 dr,
fm mm

0
<¢may:v3 + szkayg . Vv3> dx

&
m

where the integrals ovéty,, andI",,,, should be understood as a sum over all blocks
of integrals on the interfaces restricted to the individual blocks. The flux conservation
conditions (3.4) and (3.5) give

AVpre- dar = 1 23 m Ve - dr
f pf,é‘ nfvl - & m yg T]Vl’lvl 9
Crm ﬂ Crm
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o 2
)\mvlom,s *NMm V2 dr = - EAm Ve - Nmv2 dr,
Crm ,B Crm
while it follows from (3.8) that

/ AmV Pm,e - M2 dl’ = —K/ &2 hm Ve - vz dr.
Add the equations above, apply the relations= av, + vz onI's, andvs = kv;
onTly,m, and set = (pr,e, pm,e, ¥). Together with (3.13)—(3.15) we then obtain

W', v)y +au,v) =0. (3.17)

Conversely, these calculations can be reversed to show that a solution of (3.17) is
a generalized solution of (3.1)—(3.8) and (3.13)—(3.15). This leads to the following
corollary.

COROLLARY 2. Let Ay and A, be symmetric, positive-definite tensors, and let
¢r andg,, be positive. Then, the syst&B11)—(3.15) with square-integrable initial
values as specified if8.13)—(3.15) is a well-posed Cauchy problem

4. Single Phase Flow in a PFM: The Macroscopic Model

We shall apply the method of matched asymptotic expansions totiedel of the
previous section when the functions are expressed in terms of two spatial variables,
the ‘slow’ variablex and the ‘fast’ variabley = x/e, which represents the local
behavior on the scale of the celt, ase — 0. The time variable will always belong
to the intervall; it will not be necessary to repeat this below.

We assume the following formal asymptotic expansions (see [9, 29, 32] for the
general multiple scale expansion method and [5, 19], for applications to flows in
fissured media)

pr.e(x) = pro(x, y) +epra(x, ¥) +e2pra(x, y) + -, 4.1)
e (%) = Pm, 00, Y) + Eom 1(x, ¥) + £%0m 2(X, Y) + -+, (4.2)
Ye(x) = yo(x, ) + ey1(x, y) + e2ya(x, y) + -+, (4.3)
V=V.+e v, (4.4)

in addition, we assume that the functigng;, i =0, are periodic in the-variable
with periodY.

Now, insert (4.1)—(4.4) into (3.1)—(3.8) and compare like powees B (3., k),
we shall mean the equation foth-order terms irz in Equation(3.i). Thus, the pair
(3.1,-2) and (3.4,-1) (which is satisfied for<08 < 1) give the equations
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ArVypro-ng =0, yelyf,, xe. (4.6)
Equations (4.5) and (4.6), together with periodicityop onT' 77, imply that

P£,0 = pr,0(x) 4.7)

is independent of the fast variableas it should be so that; o can indicate just the
smoothed, global behavior pfin the fissures.

Similarly, (3.2,-2) and (3.9,-1) (as a consequence of (3.4,-1) and (3.5,-1)), together
with (3.8,-1) imply that

Pm,0 = /Om,O(x)’ (48)

so thatp,, o also describes global behavior, now in the matrix. Then, it is immediate
from (3.6,0) and (3.7,0) that

P£,0(x) = apm,0(x) + Bro(x, y), ¥ € I'fys

Yo(x, ¥) = kpm,0(x), ¥y € Ty (4.9)
Next, (3.1,-1) gives the relation

Vy - ()”fvypf,O) + vy : ()‘vax,of,O) + vy : ()\fvypf,l) =0,

x e, ye Yf,
from (4.7), we see that

Vy-(AfVypr1) =0, yeYy. (4.10)
Then, (3.4,0) implies that

(fVypr1) - np = —ArVapro) -np, Y €Tgy,. (4.11)

As in the derivation of the model for a TFM, we let;;, k = 1,2, 3, denote
Y-periodic solutions (up to a constant) of

V)%a)f,k =0 in Yy, (4.12)
Vywrk-nf = —er-ng ONLyy, (4.13)

where, as beforey is the unit vector in the direction of theaxis; the mobilityx ¢
has been assumed to be a diagonal tensor in (4.13), though it is a simple extension
to allow it to have a more general form. Then,1 can be represented in the form

3
;f’o(x) +e(), xeQ. yevs (4.14)
X

3
pra(x,y) =Y w5 ()
Jj=1
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Next, the equation generated by (3.1,0) reads as follows

9pf,0
<PfT]; = Vi (AfVipr0) — Vy - (A Vipr1)—

—Va - (A Vypr1) = Vy - (AfVypr2) =0
xeQ, yeYy. (4.15)

Integrate (4.15) oveky, use (4.14) for the fourth term, use (4.7), and divide the result
by |Y|

1Yyl dps.0 1 /
- —V,- AV dy | —
@f Y| ot Y| X v, £ Vxpf,00y

1
- /Y Vy - G (Vepr1+ Vypr2) dy —
f

dwy,i (y) 9pf,0
- v, dy | =0. 4.16
o (zf | ) (4.16)

dyi  Ox;

Let

1 dwy,
A~:—/A Yr|8ii = ) dy, 4.17
( f)l] Y| v, f(l f19ij 8)’]’) y ( )
wheres;; is the Kronecker symbol, and set
1
qrm(x,t) = 7'/. AmVyY0 - i dr. (4.18)
|Y| Ffm
It follows from (3.4,1) that

1
— 2 Vy Y0 - - (4.19)

Ar(Vxpr1+ Vypr2) -nf = 5

Now, observe that

/ p-nde:/ p.nfdf'-i-/ p-npdl
Yy Trr Lgm

=/ p-nde=—/ p-nmdr,
Crm Crm

for anyY-periodicp.
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Sincepyr,1 and py» areY-periodic, it follows from the divergence theorem, the
observation above, (4.19), and (4.18) that

1

7/ Vy - (A (Vxpr1+ Vypr2) dy

|Y| Yy
_ 1/ A f(Veprit Vipra) - dr
= |Y| o7, fFAVxPf1 yPf,2) - Nf

1
= |Y|/r Ar(Vypr1+ Vypg2) - npdl
fm

1 1
=7 - AmVyyo -y dI = —qum(x, 1. (4.20)
fm

Thus, using (4.17) and (4.20), we can rewrite (4.16) in the form

01,0
at

1

where it is convenient, here and below, to set
Op = or|Yr|/IY] and @, = @pl|Yiml/IY].

A similar construction can be given in order to determine the equation satisfied
by pm.0. Define auxiliary functions,, x, k = 1, 2, 3, by replacing the subscrigt
everywhere it appears in (4.12) and (4.13) by the subserigtnalogously, define
an effective mobility tenson,, by replacingf by m in (4.17). The argument above
can be repeated to derive the following macroscopic equatiop,f@r

8:Om,O
ot

o
D, — Vx - (Amvxpm,O) = Eq‘fm(x’ ) — KCme(x» 1), (422)
with
1
(e, = | V0

The difference in the right-hand side comes from the fact that, in calculations over
022, we do not have to change the outer normal frgio 7, and that

/ p-nmdF=/ p-nmdl + p - N, dl,
Ym me 1_‘fm

where the integral over,,,,, need not vanish for nonperiodic
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Physically, the total flux ofq calculated on the cel is comprised by;s,, and
gmm, the latter being a source in the matrix equation whjlg splits to be a source
in the fissure equation and a sink in the matrix equation.

The local problem for the density on the block at the peingsults from (3.3,0),
(3.7,0) (together with the consequence of (3.6,0) derived above)

9y0
gama—); — Yy GmVyy0) =0,y € Y, (4.23)
VO(X» )’) = K,Om,O(x)a y € me’ (424)
1 o
Yy, y) = —pr(x) — —pm(x), y€Tlfm. (4.25)

B B

5. The Limit Model

In this section we summarize the limit two-scale PFM-model and complement it with
suitable conditions on the external boundagy of @ for r € I, as well as initial
conditions forx € @ and:r = 0. Then, we discuss the model, including its relation
to the TFM-model, and address its well-posedness.

We shall rewrite the equations derived in the previous sectiop f@r o0, Yo
(and drop the subscript zero). In summary, the model consists of the following system
of equations, holding far € Q andr € 1

ap 1
fa—tf—v'(AfV,Of):—EQfm, (51)
00m o
cDmW =V (AnVom) = qum — K4mm, (5.2)
1
qfm(x, 1) = 7/ AmVyY - Nm dr, (5.3)
Y1 Jrs,
1
Gmm (x, 1) = m - AmVyY - N dr, (5.4)
dy
@mg = Vy - mVyy) =0, ye€Yulx), (5.5)
y(x,y,t) =kpm(x,1), y €Ty, (56)
1 o
y(x,y,t)= E,Of(x, t) — E,om(x, 1), yeTlyn, (5.7)

pr(x,0) = prinit(x), =0, (5.8)
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Pm(x, 0) = pp init(x), =0, (5.9)
(AfVepr(x, 1)) -ng =0, x €0, (5.10)
(AmVipm(x, 1) -ng =0, x€dx, (5.11)
Y(x, .0 = yinit(x, y), ¥ € Y (x). (5.12)

Note that the variables; andp,, depend on the global space variabland the time

t, but not on the local space variablgand the coefficient® ¢, ®,,, 9, A, Ay, and

A are functions of, while y depends on all three variables; consequenfly,and

gmm depend onx andr. The initial valuesoy (-, 0) andp,, (-, 0) also must depend on

x alone; if the simulation begins from an undisturbed state, the valuegiory, 0)

should be consistent with the initial values fgrandp,; i.e., (5.6) and (5.7) should

be satisfied at the initial time, as well as later. Except under unusual circumstances,
the boundary values fqr; andp,, should be equal.

The PFM-model (5.1)—(5.12) can be characterized as a two-sheeted model, as was
the model for a TFM discussed in[2, 6, 11]. Here, we shall call the sheet on which the
global equations are defined tiicrosheeton it reside the Equations (5.1) and (5.2)
and the associated boundary and initial conditions (5.8)—(5.11) for the two globally
defined densities. The topology on this sheet is the standard Euclidean topology on
R3. Since in the TFM-model there was only one global function, the density in the
fissures or fractures, the macrosheet was called the fracture sheet in that model. The
second sheet, which we call the microsheet in this model and was called the block
sheetin the TFM-model, is more complicated. It consists of the product Spadég
with the discrete topology aof? and the usual Euclidean toplogy &ni.e., the blocks
are topologically disconnected. Equation (5.5) defines the local density fungtion,
subject to the boundary conditions (5.6) and (5.7), which impose consistency in the
momentum between the macrosheet and the microsheet, and the initial condition
(5.12). Consistency (conservation) in the mass both on the macrosheet and between
the two sheets is expressed by the flux conditions (5.3)—(5.4).

For the particular choice = 0, 8 = 1, and« = 1, the source in the fissure
equation is equal te-gy,,, the term which represents the interaction of the fissure
system with the blocks. The source in the matrix equation equa)s,, which
accounts for the balance of the two components of the ‘total density’ in the matrix.
Further, ifT",,, — @, theng,,,, — 0, so that the equation (5.2) is decoupled from
the system, and its solution remains constant in time. Then, the total flux of the
“local variable” goes through's,,,, and the system is reduced to the TFM-model, as
expected.

The system (5.1)—(5.12) can be considered as a pair of parabolic equations coupled
through an integro—differential relation dependent upon the solution of an infinite
system of parabolic equations in diagonal form. The esssential feature distinguishing
flow in fissured reservoirs from flow in unfissured media, that of the delay caused
by the slower flow in the matrix blocks, is indicated by the integral terms in the
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equations (5.1)—(5.2). In the case of TFM obtained from the above system upon
settinge = 0,8 = 1, andl',,,, = ¥, those integral terms can be represented as
convolution integrals with kernels describing the fading memory effects, as discussed
in [2, 20, 23, 24]. The integro-differential system for the TFM-model reduces to the
single equation

opf ops

f—— =V -(AfVpp)=—1% —, xeQ,tel, (5.13)

ot ot
with a positive, monotone decreasing kerngbkingular at the origin. The discrete
equivalent of TFM-model was first shown to be mathematically well-posed by Arbo-
gast [2]. Later, Hornung and Showalter [20] and Péskwn [23, 26], using techniques
related to strongly positive kernels (see [15, 22], offered other analyses as well as
numerical techniques (see 27]) for TFM by studying the integro—differential Equa-
tion (5.13).

To our knowledge, there exist no analytical nor numerical results for systems
analogous to the PFM-model, described by (5.1)—(5.12). Below we show that the
system is well-posed. A numerical method, so as to be generalizable to more complex
flows in a PFM, will be developed elsewhere.

THEOREM 3.Let the assumptions of the Corolla2from Sectior8 hold. Then, the
system5.1)—(5.12) is well-posed.

Proof. This is a consequence of the general result recalled in Theorem 1. We
define appropriate spaces

H = L%(Q) x L3%(Q) x LA(Q x Yp),
with the scalar product

1

(u, v)y =/ <d>fu1v1+<1>mu2v2+/ ¢mu3v3dy> dx
Q\ - Y1 Jy,

and
V = (v = (v1,v2,v3) € HY(Q) x HY(Q) x L%, H}(Y)),
vi =avz+ Bvz OonNly,,v3=xv2 ONTyy).
Note thaty andH satisfy the assumptions of Theorem 1. Next, we define the form

a(u, v)
1
:f <AfVu1-Vv1+AmVu2-Vv2+|Y| )\mVyug-Vyvgdy> dx
Q Y

and then verify that the sum(-, -) + (-, -)3 IS V-coercive. This involves showing that
the ‘macroscopic’ permeability tensorsy and A,, are positive definite. This has
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beendone, forexample, in[6] fora TFM. Then, using a calculation to be shown below,
we conclude that the variational form of the Cauchy problem (5.1)—(5.12) is (3.16)
with u = (pf, pm, y) andug = (py,init, om,init» ¥init)- HeNce, the well-posedness of
the problem follows.

It remains to check that (3.16) is our variational problem. First, take-
(v1, v2, v3) € V, multiply (5.5) byvs, integrate the equation ovéf,, and 2, and
apply Green’s Theorem to get

/Q /Y (my'v3 + V7 Vyv3) dy dr

:fg(/r AmVyy.nmvng+/F AmVyy-nmvng> dx

1 o
= / */ AmVyy - Nmvdl — */ AmVyy - Nmv2 dI'+
e\ B Jrs, B JIrim

+K/ AmVyy 'nmUZdI> dx,

where we have noted thag = (vy — av2)/B onT' s, andvz = kv onTyy,,. Since
v1 andvz are independent of, (5.3) and (5.4) imply that the right-hand side of the
last identity is equal to

‘m v v KV mm ) Ox.
B 1 B 2 2

Now, multiply (5.1) and (5.2) by andvy, respectively, integrate ovér, sum the
two equations, and apply the result above, scaled by the fa¢tot, to get

/ (q)fp}vl + AfVps - Vi + @pp,,v2 + AV om - Voot
Q

1
+ |Y|/Y (¢m)’lv3+)¥vy)"vyv3dy))

1 o
= /Q (_,qumvl + BCIfmUZ - KQmmUZ> dx+

<| | (v15 —v2-) Y| )
Y|grm(v1 v2—) + vak |Y |qmm | Ox.
qdfm ,3 ﬂ q

Since the terms on the right-hand side cancel, the last equation is the desired relation
(5.14).

_{_7
Y| Ja
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6. Concluding Remarks

The essential objective above was the derivation by means of the homogenization
method of the indicated PFM model with dual-permeability. In the geological setting
of rocks and fissures in which the diffusion parameters of the two media are so
extremely different, the additional global flow through the matrix can frequently be
ignored; that is, the dual-porosity model of TFM is sufficient. In the more general
situation of porous media with two components, the other extreme would consist of
a pair of component media whose parameters are of similar order in magnitude; then
the flow in each of the components is a substantial contribution. The model of PFM
with dual-permeability as developed here contains both of these extreme cases.

Preliminary numerical experiments were undertaken to investigatpitilgative
differences in the behavior of solutions to three different models of flow in a fissured
medium: the classicalingle porosity modelhe distributed microstructure or two-
scale model of dotally fissured mediumand the corresponding model that was
introduced above for partially fissured medium A sink was introduced in the
fissure system, active only for an interval of time, after which the system began to
move to a new equilibrium. The values of the responding densities as functions of
time at a nearby point were recorded. We chese 0 and«x = 1 in thepartially
fissured mediurm order to maximize the separation @f andp,, by the blocks.

The first observation was that in all models the pressure dropped downward from
the initial equilibrium value until the time at which the sink was deactivated. It was
seen that, of these three models, the fissure density gfatiglly fissured medium
had the largest initial responsate, and that of thaotally fissured mediurhad the
largest total value in response to the sink. The drop in the fissure densitytatahyg
fissured mediunwas significantly more pronounced than the corresponding drop of
density in thesingle porosity modelThis is a reflection of the fact that the fast flow
in the fissure system of thetally fissured mediurprovides a more efficient way to
deliver fluid to the sink than the single porosity system. Moreover, the fissure system
in the partially fissured mediurimitially responded even more dramatically, but the
fissure density there quickly leveled off at a somewhat higher level. This apparent
stability results from the weaker coupling to the blocks and the corresponding slower
drop of block pressure ingartially fissured mediurthan in aotally fissured medium
The fissures are being supplied by these blocks during this period. The blocks in a
totally fissured mediurare coupled exclusively to the fissures, so they respond more
quickly to the drop in fissure density than those of gaatially fissured medium
model where they are coupled to both the fissures and to the slower matrix flow.
The wide variations in block density and the correspondingly slow flow within the
blocks causes a substantial delay in the time that the system needs to stabilize. It
was precisely this last effect, observed long ago, that provided the motivation for the
development of such coupled models of flow through fractured reservoirs. Finally,
the matrix density in th@artially fissured mediundropped very slowly during the
period in which the sink was active. Itis this flow in the matrix which represents the
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connectivitypbetween the blocks. It drains slowly into the system of blocks, and this
contributes to the relative stabilization of the block system inpeially fissured
mediumin comparison with that of thiotally fissured medium

We note that theotally fissured mediuns obtained formally by setting = 0.
Moreover, by adjusting the parameterss, and«, one can calibrate the model to
obtain a very wide variety of response curves. If we are given a real multi-porosity
reservoir, then, as previously referenced evidence in the literature shows, and our
current simple results confirmed, it is important to construct a fully coupled model
describing the effects of the inhomogeneous nature of the reservoir. Such two-scale
models give us then the information about the local (microscopic) distribution of the
fluid. However, this information can have a significantly different character in the
dual-permeability case of interconnected blocks from the one for isolated blocks.
In reality we can expect that some part of thlebal flow will occur within the
interconnected system of the blocks, and this component of the total flow is described
by this model for gatrtially fissured medium
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