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Abstract. Totally fissured media in which the individual cells are isolated by the fissure system
are effectively described by double porosity models with microstructure. Such models contain
the geometry of the individual cells in the medium and the flux across their interface with the
fissure system which surrounds them. We extend these results to a dual-permeability model which
accounts for the secondary flux arising from direct cell-to-cell diffusion within the solid matrix.
Homogenization techniques are used to construct a new macroscopic model for the flow of a single
phase compressible fluid through a partially fissured medium from an exact but highly singular
microscopic model, and it is shown that this macroscopic model is mathematically well posed.
Preliminary numerical experiments illustrate differences in the behaviour of solutions to the partially
fissured from that of the totally fissured case.
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1. Introduction

TheL bulk characteristics of laminar flow through porous media are determined in
the homogeneous case by two essential parameters, theporosityand thepermeability
of the medium [10]. A more detailed description of flow in naturally fractured porous
media was initiated by necessity in the petroleum industry during the 1940’s, where
the high rate of recovery in the initial stages of reservoir production in fractured
media often led to substantial overestimates of well production and capacity. In fact,
the storage capacity of naturally fractured reservoirs varies extensively and depends
largely on the degree of fracturing and the consequential range and distribution of
the values of porosity and permeability. An extensive list of references on flow in
fractured rocks is available in [34]. Any theory of flow through fractured media must
account for this range of size in the pores and interstitial openings. The primary pores
are the smallest, but they account for about 30 percent of the volume, while the rela-
tively widely spaced and highly permeable fractures constitute only about 2 percent
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of the volume. This leads to the basic characteristics of fractured media, namely, that
most storage can occur in the pore system while the fractures are responsible for
most transport. The wide range in values of porosity and permeability in these two
regions together with their volume distribution and geometric arrangement greatly
complicate the development of models for flow in naturally fractured media. The
objective is to accurately characterize the pressure changes and depletion history
of the medium, and much effort over decades has been devoted to reproducing the
transient response of the fluid exchange between fractures and matrix blocks.

Any attempt to exactly model the flow through such highly inhomogeneous media
leads to very singular problems of partial differential equations with rapidly oscillat-
ing coefficients. As an alternative, many methods of averaging have been developed,
and these lead to various models ofdual-porosityanddual-permeabilitytypes. The
development of such dual models began with [8] where the fractured medium is
represented by two independent overlapping flow fields, one representing the porous
matrix and the other representing the system of fissures. These are coupled togeth-
er to form a system of two (possibly degenerate) parabolic equations over the flow
domain, one for the density field in each component of the medium, and these can
be specialized further to reflect the assumptions incorporated in the corresponding
model. The two components are treated symmetrically in the resulting system of two
parabolic partial differential equations; such models are thus said to be ofparallel
flow type. In particular, this type of dual-porosity model for the idealized case of a
totally fissured mediumis developed in [8]: there is no flow in the porous matrix but
only through the system of fissures, because the matrix is assumed to be composed
of individual blocks which are isolated from each other by the very well developed
system of fissures. In the more general dual-permeability case for which the fissure
system is less developed and there is some flow permitted within the porous matrix,
we call this apartially fissured medium. This more general model should prove useful
in describing the variety of features which occur in naturally fractured media. These
parallel flow models of dual-porosity or dual-permeability type have been developed
substantially for a variety of problems; see [1, 7, 14, 16, 21, 28, 33].

Essential limitations of the parallel flow models include the suppression of the
geometry of the small matrix blocks and their corresponding interfaces on which
the coupling occurs as well as the lack of any distinction between the space and
time scales of the two components of the medium. These deficiencies motivated
the class of models ofdistributed microstructuretype. Such models are known in
many cases to be the limit (by homogenization) as the scale of the inhomogeneity
tends to zero, and they provide a means not only to justify rigorously the model but
also to represent it as a continuous distribution of blocks with prescribed geometry.
Here we shall develop a distributed microstructure model for the flow of a single
phase, slightly compressible fluid in apartially fissured medium, hereafter denoted
by PFM. This is defined to be a porous medium inR3 composed of two interwoven
and connected components, the first being a matrix of porous blocks and the second
being a system of fissures, so it exhibits both dual-porosity and dual-permeability
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characteristics. Note that it is impossible to satisfy these geometric constraints in
R2. Limiting cases of the geometry arise when one of the two components of the
medium becomes disconnected. In the special case of disjoint porous blocks which
are separated by the system of fissures, it is called atotally fissured mediumand
denoted hereafter by TFM. Single phase flow, as well as more complicated flows, in
a TFM have been investigated by several authors; see [2, 5, 6, 11, 20, 31]. The recent
book [19] contains a survey of these and other results on distributed microstructure
models. Below, we develop such a model of single phase flow in the general case
of a PFM which in the limit (as the ratio of the volume of space occupied by the
connecting portion of the matrix to the bulk volume of the matrix tends to zero)
reduces to the corresponding model for a TFM.

The common characteristics of fissured media are that the matrix of porous blocks
occupies a much larger volume than the fissures and that it is relatively much more
resistant to fluid flow than is the fissure system. As a consequence, most of the
flow passes through the system of fissures, while bulk storage of fluid takes place
primarily inside the porous matrix formed by the blocks. In a TFM the flow in the
blocks is induced only by the exchange of fluid which takes place on the block-fissure
interfaces, and any interaction between the blocks is possible only via the neighboring
system of fissures, which separate the blocks. The proper description of flow in a
fissured medium requires both global and local characteristics; it is not possible to
capture the duality between macro- and micro-structure by means of standard models
for flow in porous media (see [11]).

In partially fissured media, blocks are connected to neighboring blocks, so that
some part of the flow passes through the block interconnections. While the primary
flow will continue to be that from blocks into fissures followed by flow within the
fissures, the flow in the porous matrix has more than only a local character, as in
the case of a TFM. In a PFM, it is possible that the behavior in nearby blocks
can influence directly the behavior in each, not just indirectly via the system of
fissures. In many situations this effect is less promiment than the bulk flow in the
fractures, but in others where the matrix has a moderately higher permeability and
the interconnections between the blocks are sufficiently large it can have a noticeable
effect.

Exact microscopic models of flow in a fissured medium customarily treat the fis-
sures and the matrix systems as two Darcy media with different physical parameters.
The discontinuities in the parameter values across the matrix-fissure interfaces are
severe, with the ratios of their values in the fissures and blocks usually being of some
orders of magnitude; moreover, the characteristic width of the fissures will be very
small in comparison with the size of the blocks. Consequently, the exact microscop-
ic model, written as a classical interface problem, is numerically and analytically
intractable. The common technique used to overcome this difficulty is to construct
models which describe the flow on two scales, macroscopic and microscopic (see
[2, 5, 6, 11, 20, 31]). At the macroscopic scale of the reservoir the whole domain of
flow is seen as occupied by a pseudo-porous medium with the ‘impermeable’ solid
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part being replaced by the matrix of permeable blocks and the pores representing
the fissures. In these models, the microscopic scale appears through the necessity to
define the flow on matrix blocks. The flow in the two scales is related through inter-
face conditions on the faces of the blocks that conserve mass and momentum (and, in
the case of some more complicated fluids, additional quantities); these interface con-
ditions present themselves as boundary conditions on the blocks and as distributed
source terms in the macroscopic equations.

Derivations of these two-scale models of distributed microstructure type have
been carried out for the case of totally fissured media, and they are based on an
averaging over the exact geometry of the region (see [2, 3]) or by the construction
of a continuous distribution of blocks over the region as in [31] or by assuming
some periodic structure for the domain that permits the use of the homogenization
technique (see [20] or [23] for a review). The general modeling framework has also
been applied to derive models for multiphase, multicomponent, and nonisothermal
flows in a TFM, for which some analytical as well as numerical results exist (see
[4, 11, 19, 24, 25]).

In this paper we shall construct by means of homogenization a model for the
simplest type of flow, that of a single phase, compressible fluid, in a partially fissured
medium. We shall apply general ideas of homogenization (see [9, 29] and the specific
framework introduced in [5]) for modeling of flows in fissured media. The plan is
as follows. In Section 2 we review the construction of a model for single phase
flow in a TFM. In Section 3 we develop an exactε-model for diffusion in a PFM
which provides the basis for the homogenization construction; Section 4 contains
technical calculations which lead to the limiting model composed of macroscopic and
microscopic equations. In Section 5 we summarize the limiting model and comment
on its well–posedness. The concluding Section 6 consists of some remarks on the
observed relative behavior of the various models in some preliminary numerical
experiments. These indicate that the qualitative differences in behavior of solutions of
the PFM model from those of the TFM are sufficiently large to be observable. Realistic
numerical models constructed from typical data will be developed elsewhere.

2. A Homogenized Model for Single Phase Flow in a TFM

Here we review the derivation by homogenization of a model for single phase flow
in totally fissured media following [6, 11]. The notation below closely follows that
of these papers as well.

We begin with the microscopic model of single phase flow in a fissured domain�,
a bounded open subset ofR3, over the time intervalI = (0, T ), T > 0. The fissure
and matrix components of the domain are denoted by�f and�m, respectively. Their
boundaries are denoted by∂�f and∂�m. The fissure-matrix interface is given by
If m = ∂�f ∩ ∂�m. The domain is assumed to have a periodic structure, with the
cell of the period being taken to beY = (0, 1)3 for simplicity (see [11, 12, 13] for
different choices in the shape of the period); hence,� consists of a lattice of copies
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Figure 1. Fissured media.

of Y . The cellY retains the double component structure of the fissured domain and
Y = Yf ∪ Ym, with Yf andYm denoting the fissure and matrix parts of the cell. Let
0f m be the part ofIf m contained inY , and let0ff and0mm denote the respective
intersections of∂Y with �f and�m. We note that, in the totally fissured case, the
block interconnection0mm is is empty (see Figure 1). Byηm, we denote the normal
unit vector to0f m which points in the direction out ofYm and byηf its counterpart
out ofYf .

In addition to the assumption of periodicity of the geometry, we assume that the
physical parameters of the problem haveY -periodic character, which implies that the
solutions to the differential problem also exhibit certain periodic behavior. They have,
however, also some macroscopic (nonperiodic) behavior which is seen on the scale
of the whole reservoir. We are interested in capturing and possibly decoupling both of
these solution modes, the ‘global’ (macroscopic) mode and the ‘local’ (microscopic-
periodic) mode; this will be achieved by the technique of homogenization. To this
aim, we shall investigate the asymptotics of solutions asε → 0 to a family of properly
scaled problems posed on domains�ε formed by unions of copies of cellsεY . Below,
we useε as a superscript or subscript on coefficients or variables to denote objects
periodic with respect toεY ; we omit this notation whenε = 1.

In order to define theε-model, we first recall the model of flow of a slightly
compressible, viscous fluid of densityρ, viscosityµ, and compressibilityc in an
ordinary porous medium of porosityφ and permeabilityk. The equation of state
relating the pressure to the density is given by

dρ = cρ dp. (2.1)

Conservation of momentum is expressed by Darcy’s Law, which together with
the continuity equation (conservation of mass) leads to the equation (see [10, 11])

φ
∂ρ

∂t
− ∇ · (λ∇ρ) = 0, (2.2)
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in which the mobilityλ is defined by

λ = k

µc
. (2.3)

Let the system of fissures and matrix blocks in�ε be denoted by�ε
f and�ε

m,
respectively. Theε-model on�ε consists of differential equations on each of the
subdomains�ε

f and�ε
m for the density, which will be denoted byρf,ε on�ε

f and by
γε on�ε

m, respectively, plus two interface conditions on0ε
f m to insure conservation

of mass and momentum across0ε
f m. An exterior boundary condition and an initial

condition must also be specified, but they do not enter into the derivation of the limit
model. In the totally fissured case, it has been shown that, to preserve the magnitude
of the flux crossing the interfaces contained within a fixed volume of the medium as
ε → 0, it is necessary to scale the mobility in the blocks by the factorε2 (see [5]).
Thus, theε-model of diffusion in a TFM has the form

ϕf
∂ρf,ε

∂t
− ∇ · (λf ∇ρf,ε) = 0, x ∈ �ε

f , t ∈ I, (2.4)

ϕm
∂γε

∂t
− ∇ · (ε2λm∇γε) = 0, x ∈ �ε

m, t ∈ I, (2.5)

λf ∇ρf,ε · ηm = ε2λm∇γε · ηm, x ∈ 0ε
f m, t ∈ I, (2.6)

γε = ρf,ε, x ∈ 0ε
f m, t ∈ I. (2.7)

If ρf,ε andγε are expanded in powers ofε and the formal analysis of these expansions
is carried out (see [5]), it can be seen that the leading terms for the densities in the
fractures and matrix blocks satisfy the following system of equations

ϕf
|Yf |
|Y |

∂ρf,0

∂t
(x, t) − ∇x · (3f ∇xρf,0) = qmf (x, t),

x ∈ �, t ∈ I, (2.8)

qmf (x, t) = − 1

|Y |
∫
0f m

λm∇yγ0 · ηm d0, x ∈ �, t ∈ I, (2.9)

ϕm
∂γ0

∂t
(x, y, t) − ∇y · (λm∇yγ0) = 0,

y ∈ Ym(x), x ∈ �, t ∈ I, (2.10)

γ0 = ρf,0, y ∈ ∂Ym(x), x ∈ �, t ∈ I, (2.11)
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where|Y | and|Yf | denote the volumes of the reference setsY andYf , respectively.
The effective mobility tensor3f is given by

(3f )ij = 1

|Y |
∫
Yf

λf

(
δi,j |Yf | + ∂ωi

∂yj

)
dy, (2.12)

with the auxiliary functionsωk, k = 1, 2, 3, beingY -periodic solutions (modulo a
constant) of

∇2
yωk = 0, y ∈ Yf , (2.13)

∇yωk · ηf = −ek · ηf , y ∈ 0f m, (2.14)

whereek is the unit vector in the direction of thek–axis.
Equation (2.8) is to be solved in� for the macroscopic density,ρf,0. The right-

hand side of this equation contains the distributed source term,qmf , which evaluates
the flux across the boundary of the blockYm(x) topologically attached to the point
x ∈ � in the two-sheeted covering of�. Blocks over different points in� are
disconnected; thus, no flow can take place directly from one such block to another.
It is this feature that identifies this distributed microstructure or two-scale model as
being a dual porosity model for flow in a totally fissured medium.

If the scaling of the permeability in the blocks had been omitted, then the limit
process would have led to a single porosity macroscopic system that fails to represent
the delay that is inherent in the flux entering the fractures from the blocks. It is
precisely this delay that led three decades ago to the introduction by Barenblatt,
Zheltov, and Kochina [8] and Warren and Root [33] of simpler parallel flow models,
which were limited by the computational capacities then available, in order to match
observed reservoir behavior better. For further discussion, see [5, 11, 14, 17, 18] and
the references therein.

3. Single Phase Flow in a PFM: Thee-Model

In this section we develop anε-model for single phase flow in a partially fissured
medium. In the next section we apply homogenization to theε-model to derive the
limiting, macroscopic model for this type of flow.

Let us first discuss what would happen if we were to change only the geometry
of the TFM. This seems to provide a possible model for a PFM, since we did not
explicitly use the assumption that the matrix blocks be disconnected in the construc-
tion of theε-model, nor did it seem to be used when passing formally to the limit
asε → 0. However, the scaling of the permeability in the blocks and the form of
the interface conditions implicitly contain the assumption of local disconnectivity;
nowhere was there a provision for global flow to take place totally within the matrix.
This lack is clearly apparent in the auxiliary problems (2.13)–(2.14) whose solutions
are used to close the homogenization process and to evaluate the permeability tensor
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in the macroscopic treatment of the fractures. Hence, no macroscopic model can
result from the TFMε-model that can successfully model flow having two global
parts, as is intuitively inherent in the case of a PFM. Thus, it is necessary to redesign
theε-model to account for the connectivity of the blocks, while still accounting for
the local interaction between the fracture and block structures. In particular, it is
necessary to provide for the existence of a globally defined density in the matrix,
in addition to the local description of the density in a block; i.e., both the rapidly
varying and the slowly varying components of the density in the matrix must enter
into the model. Thus, we are led heuristically to introduce two scalings of the perme-
ability in the matrix, but only one in the fractures. (The porosity, the viscosity, and
the compressibility do not scale.)

As in theε-model for diffusion in a TFM, we useρf,ε to describe the density in
the fissures; but, in order to describe the density in the matrix, instead of one variable
we use two variables. The first,ρm,ε, leads to the global description of the density
in the matrix, while the second,γε, will provide the required information about the
local behavior of the density as restricted to a single cell. We specify two coefficients,
α andβ, which determine the ‘proportion’ between the slow and rapid (global and
local) phases of the ‘total’ density in the matrix as measured on the interface0f m.
Note thatα + β = 1, β > 0, α > 0.

Theε-model is as follows

ϕf
∂ρf,ε

∂t
− ∇ · (λf ∇ρf,ε) = 0 in �ε

f × I, (3.1)

ϕm
∂ρm,ε

∂t
− ∇ · (λm∇ρm,ε) = 0 in �ε

m × I, (3.2)

ϕm
∂γε

∂t
− ∇ · (ε2λm∇γε) = 0 in ∪ Y ε

m × I, (3.3)

βλf ∇ρf,ε · ηf + ε2λm∇γε · ηm = 0 on0ε
f m × I, (3.4)

αλf ∇ρf,ε · ηf + λm∇ρm,ε · ηm = 0 on0ε
f m × I, (3.5)

ρf,ε = αρm,ε + βγε on0ε
f m × I, (3.6)

γε = κρm,ε on0ε
mm × I, (3.7)

λm∇ρm,ε · ηm + κε2λm∇γε · ηm = 0 on0ε
mm × I. (3.8)

The first three equations describe ‘fast’, ‘moderate’, and ‘very slow’ flow, which are
defined in the fissures, the matrix, and individual blocks, respectively. In order to
stress the difference between the definitions ofρm,ε andγε, note the different spatial
domains on which Equations (3.2) and (3.3) are to be solved. The Equation (3.3) is to
be solved in the set of interiors of what are now artificially disconnected individual
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blocks, while (3.2) is to be solved in the whole of�ε
m, which includes all of the

blocks and the interfaces between adjacent blocks to form a globally connected set.
The conditions (3.4) and (3.5) conserve mass across the interfaces0ε

f m between the
density in fissures and the ‘total’ density in the matrix, with prescribed proportions
between the two components of the total density in the matrix; (3.5) is an ordinary
interface condition, while (3.4) is typical for a fissured medium interface condition
with the permeability coefficient scaled to preserve the magnitude of the flux across
the union of all interfaces contained in a fixed volume asε → 0. As a consequence
of those two relations, the fluxes described by the two density variables in the matrix
satisfy the equation

λm∇ρm,ε · ηm = α

β
ε2λm∇γε · ηm on0ε

f m. (3.9)

The condition (3.6) expresses conservation of momentum between the fissures and
the matrix, with prescribed proportions between the two phases (global and local) in
the matrix. We note that the condition (3.6) is, in a mathematical sense, dual to the
conditions (3.4) and (3.5) (see below notes on the well-posedness of the problem).
The system is complemented by a pair of conservation Equations (3.7) and (3.8)
(momentum and mass) on (the artificial interface)0ε

mm. The constantκ appearing
in these (pairwise dual) equations gives the option of imposing another proportion
between global and local phases of the density in the matrix to hold on0ε

mm. We
require that 0<κ<1.

The combination of the three constantsα, β, andκ determines the proportions
between the different components of the total density in the matrix on the boundary
of the blocksY ε

m. The relevant values in a particular application can be established
by an experimental or numerical study. Some choices of the values of the parameters
{α, β, κ} have special interpretations, as discussed below. For example, the case of
α = 0, β = 1 is interpreted as follows: the interface0ε

f m is ‘impervious’ for the
‘global flow’ in the matrix (described by the variableρm,ε) or, in other words, that the
changes inρm,ε arise only by interaction withγ ε, which, in turn is ‘fed’ by the flow
in the fissures across0f m. On the other hand, the choice ofκ = 1 for conditions on
0ε

mm leads to the interpretation that the fluxes associated with the ‘local’ and ‘global’
variable are mutually ‘reflected’ from the (artificial) boundary. One might also see
then (3.7) and (3.8) as a pair of ‘standard interface conditions’ modified to indicate
that both variables are considered on the same side of0ε

mm, rather than on opposite
sides as it is the case of classical interface conditions. Finally, ifα = 0, β = 1, κ = 1,
and0ε

mm = ∅ (formally), then the model reduces to theε-model for the TFM case.
The model derived in the limiting process from this choice is equivalent to the model
for TFM, as shown later. Other choices ofα, β, andκ lead to different patterns of
splitting between the two pseudo-phases.
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Independent of the choice ofα, β, andκ, one can prove that the system (3.1)–
(3.8) is well-posed, when complemented by the appropriate initial and boundary
conditions

ρf,ε(x, 0) = ρf,init , x ∈ �ε
f , (3.10)

ρm,ε(x, 0) = ρm,init (x), x ∈ �ε
m, (3.11)

γ (x, 0) = γinit (x), x ∈ �ε
m, (3.12)

λf ∇ρf,ε · η� = 0, x ∈ ∂� ∩ ∂�ε
f , (3.13)

λm∇ρm,ε · η� = 0, x ∈ ∂� ∩ ∂�ε
m, (3.14)

ε2λm∇γε · η� = 0, x ∈ ∂� ∩ ∂�ε
m. (3.15)

It is a system of linear parabolic equations coupled by interface conditions. The
coupling on interfaces is the crucial element in the system, and it is the main source
of difficulty in its analysis and approximation. One can see that the dynamics of
the problem is governed by an analytic semigroup, in the general setting of the fol-
lowing well-known result (see e.g. [30]).

THEOREM 1.Assume thatV andH are Hilbert spaces, withV dense and con-
tinuously imbedded inH. Let a(·, ·) be a continuous bilinear form defined onV
such that the forma(·, ·) + (·, ·)H is V-coercive; i.e., for some positive constantc,
a(u, u) + (u, u)H > c‖u‖2

V . Then, wheneverf ∈ Cν([0, ∞),H), 0 < ν < 1, and
u0 ∈ H, there exists a uniqueu ∈ C([0, ∞),H)∩C1((0, ∞),H) such thatu(t) ∈ V
for t > 0 and

(u′(t), v)H + a(u(t), v) = (f, v)H, ∀v ∈ V,

u(0) = u0. (3.16)

To apply the theorem in order to prove well-posedness of (3.1)–(3.15) (or its more
general form, with an external source termf as admitted by the theorem) we need
to define an appropriate abstract setting for the problem. Let

H = L2(�ε
f ) × L2(�ε

m) × L2(�ε
m).

Note thatL2(�ε
m) = L2(∪Y ε

m). The scalar product inH is defined as

(u, v)H =
∫
�ε

f

φf u1v1 dx +
∫
�ε

m

φm(u2v2 + u3v3) dx.
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Next, set

V = {u ∈ H1(�ε
f ) × H 1(�ε

m) × H 1(�ε
m) :

u1 = αu2 + βu3 on0f m, κu2 = u3 on0mm}
and define the bilinear form

a(u, v) ≡
∫
�ε

f

(λf ∇u1 · ∇v1) dx +

+
∫
�ε

m

(λm∇u2 · ∇v2 + ε2λm∇u3 · ∇v3) dx.

Under appropriate assumptions on the data of the problem (specified in Corollary 2
below), the required hypotheses of the theorem hold onV,H, a(·, ·). Hence, the
Cauchy problem (3.16) has a unique solution.

Now we demonstrate that this problem is a variational form of our differential
problem (3.1)–(3.15) by the following calculation. Letv = (v1, v2, v3) ∈ V, multi-
ply (3.1), (3.2), and (3.3) by the corresponding components ofv, and integrate the
resulting equations over�f , �m, and�m. Integration over�ε

m means integration
over individual blocks, followed by summation over all of the blocks. Application
of Green’s Theorem and the boundary conditions on∂� leads to the relations∫

�ε
f

(
φf

∂ρf,ε

∂t
v1 + λf ∇ · ρf,ε∇v1

)
dx =

∫
0f m

λf ∇ρf,ε · ηf v1 d0,

∫
�ε

m

(
φm

∂ρm,ε

∂t
v2 + λm∇ρm,ε · ∇v2

)
dx

=
∫
0f m

λm∇ρm,ε · ηmv2 d0 +
∫
0mm

λm∇ρm,ε · ηmv2 d0,

∫
�ε

m

(
φm

∂γε

∂t
v3 + ε2λm∇γε · ∇v3

)
dx

=
∫
0f m

ε2λm∇γε · ηmv3 d0 +
∫
0mm

ε2λm∇γε · ηmv3 d0,

where the integrals over0f m and0mm should be understood as a sum over all blocks
of integrals on the interfaces restricted to the individual blocks. The flux conservation
conditions (3.4) and (3.5) give∫

0f m

λf ∇ρf,ε · ηf v1 d0 = − 1

β

∫
0f m

ε2λm∇γε · ηmv1 d0,
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0f m

λm∇ρm,ε · ηmv2 d0 = α

β

∫
0f m

ε2λm∇γε · ηmv2 d0,

while it follows from (3.8) that∫
0mm

λm∇ρm,ε · ηmv2 d0 = −κ

∫
0mm

ε2λm∇γε · ηmv2 d0.

Add the equations above, apply the relationsv1 = αv2 + βv3 on0f m andv3 = κv2
on0mm, and setu = (ρf,ε, ρm,ε, γ ). Together with (3.13)–(3.15) we then obtain

(u′, v)H + a(u, v) = 0. (3.17)

Conversely, these calculations can be reversed to show that a solution of (3.17) is
a generalized solution of (3.1)–(3.8) and (3.13)–(3.15). This leads to the following
corollary.

COROLLARY 2. Let λf and λm be symmetric, positive-definite tensors, and let
φf andφm be positive. Then, the system(3.1)–(3.15) with square-integrable initial
values as specified in(3.13)–(3.15) is a well-posed Cauchy problem.

4. Single Phase Flow in a PFM: The Macroscopic Model

We shall apply the method of matched asymptotic expansions to theε-model of the
previous section when the functions are expressed in terms of two spatial variables,
the ‘slow’ variablex and the ‘fast’ variabley = x/ε, which represents the local
behavior on the scale of the cellεY , asε → 0. The time variable will always belong
to the intervalI ; it will not be necessary to repeat this below.

We assume the following formal asymptotic expansions (see [9, 29, 32] for the
general multiple scale expansion method and [5, 19], for applications to flows in
fissured media)

ρf,ε(x) = ρf,0(x, y) + ερf,1(x, y) + ε2ρf,2(x, y) + · · · , (4.1)

ρm,ε(x) = ρm,0(x, y) + ερm,1(x, y) + ε2ρm,2(x, y) + · · · , (4.2)

γε(x) = γ0(x, y) + εγ1(x, y) + ε2γ2(x, y) + · · · , (4.3)

∇ = ∇x + ε−1∇y, (4.4)

in addition, we assume that the functionsρf,i, i > 0, are periodic in they-variable
with periodY .

Now, insert (4.1)–(4.4) into (3.1)–(3.8) and compare like powers ofε. By (3.i, k),
we shall mean the equation forkth-order terms inε in Equation(3.i). Thus, the pair
(3.1,-2) and (3.4,-1) (which is satisfied for 0< β < 1) give the equations

∇y · (λf ∇yρf,0) = 0, y ∈ Yf , x ∈ �, (4.5)
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λf ∇yρf,0 · ηf = 0, y ∈ 0f m, x ∈ �. (4.6)

Equations (4.5) and (4.6), together with periodicity ofρf,0 on0ff , imply that

ρf,0 = ρf,0(x) (4.7)

is independent of the fast variabley, as it should be so thatρf,0 can indicate just the
smoothed, global behavior ofρ in the fissures.

Similarly, (3.2,-2) and (3.9,-1) (as a consequence of (3.4,-1) and (3.5,-1)), together
with (3.8,-1) imply that

ρm,0 = ρm,0(x), (4.8)

so thatρm,0 also describes global behavior, now in the matrix. Then, it is immediate
from (3.6,0) and (3.7,0) that

ρf,0(x) = αρm,0(x) + βγ0(x, y), y ∈ 0ε
f m;

γ0(x, y) = κρm,0(x), y ∈ 0ε
mm. (4.9)

Next, (3.1,-1) gives the relation

∇x · (λf ∇yρf,0) + ∇y · (λf ∇xρf,0) + ∇y · (λf ∇yρf,1) = 0,

x ∈ �, y ∈ Yf ,

from (4.7), we see that

∇y · (λf ∇yρf,1) = 0, y ∈ Yf . (4.10)

Then, (3.4,0) implies that

(λf ∇yρf,1) · ηf = −(λf ∇xρf,0) · ηf , y ∈ 0ε
f m. (4.11)

As in the derivation of the model for a TFM, we letωf,k, k = 1, 2, 3, denote
Y-periodic solutions (up to a constant) of

∇2
yωf,k = 0 in Yf , (4.12)

∇yωf,k · ηf = −ek · ηf on0f m, (4.13)

where, as before,ek is the unit vector in the direction of thek-axis; the mobilityλf

has been assumed to be a diagonal tensor in (4.13), though it is a simple extension
to allow it to have a more general form. Then,ρf,1 can be represented in the form

ρf,1(x, y) =
3∑

j=1

ωf,j (y)
∂ρf,0

∂xj
(x) + c(x), x ∈ �, y ∈ Yf . (4.14)
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Next, the equation generated by (3.1,0) reads as follows

ϕf

∂ρf,0

∂t
− ∇x · (λf ∇xρf,0) − ∇y · (λf ∇xρf,1)−

−∇x · (λf ∇yρf,1) − ∇y · (λf ∇yρf,2) = 0,

x ∈ �, y ∈ Yf . (4.15)

Integrate (4.15) overYf , use (4.14) for the fourth term, use (4.7), and divide the result
by |Y |

ϕf
|Yf |
|Y |

∂ρf,0

∂t
− 1

|Y |∇x ·
(∫

Yf

λf ∇xρf,0 dy

)
−

− 1

|Y |
∫
Yf

∇y · (λf (∇xρf,1 + ∇yρf,2)) dy −

− 1

|Y |∇x ·
 3∑

i,j=1

∫
Yf

λf
∂ωf,i(y)

∂yi

∂ρf,0

∂xj
dy

 = 0. (4.16)

Let

(3f )ij = 1

|Y |
∫
Yf

λf

(
|Yf |δij + ∂ωf,i

∂yj

)
dy, (4.17)

whereδij is the Kronecker symbol, and set

qf m(x, t) = 1

|Y |
∫
0f m

λm∇yγ0 · ηm d0. (4.18)

It follows from (3.4,1) that

λf (∇xρf,1 + ∇yρf,2) · ηf = − 1

β
λm∇yγ0 · ηm. (4.19)

Now, observe that∫
∂Yf

p · ηf d0 =
∫
0ff

p · ηf d0 +
∫
0f m

p · ηf d0

=
∫
0f m

p · ηf d0 = −
∫
0f m

p · ηm d0,

for anyY -periodicp.
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Sinceρf,1 andρf,2 areY -periodic, it follows from the divergence theorem, the
observation above, (4.19), and (4.18) that

1

|Y |
∫
Yf

∇y · (λf (∇xρf,1 + ∇yρf,2)) dy

= 1

|Y |
∫
∂Yf

λf (∇xρf,1 + ∇yρf,2) · ηf d0

= 1

|Y |
∫
0f m

λf (∇xρf,1 + ∇yρf,2) · ηf d0

= − 1

β|Y |
∫
0f m

λm∇yγ0 · ηm d0 = − 1

β
qf m(x, t). (4.20)

Thus, using (4.17) and (4.20), we can rewrite (4.16) in the form

8f

∂ρf,0

∂t
(x, t) − ∇x · (3f ∇xρf,0) = − 1

β
qf m(x, t), (4.21)

where it is convenient, here and below, to set

8f = ϕf |Yf |/|Y | and 8m = ϕm|Ym|/|Y |.

A similar construction can be given in order to determine the equation satisfied
by ρm,0. Define auxiliary functionsωm,k, k = 1, 2, 3, by replacing the subscriptf
everywhere it appears in (4.12) and (4.13) by the subscriptm. Analogously, define
an effective mobility tensor3m by replacingf by m in (4.17). The argument above
can be repeated to derive the following macroscopic equation forρm,0

8m
∂ρm,0

∂t
− ∇x · (3m∇xρm,0) = α

β
qf m(x, t) − κqmm(x, t), (4.22)

with

qmm(x, t) = 1

|Y |
∫
0mm

λm∇yγ0 · ηm d0.

The difference in the right-hand side comes from the fact that, in calculations over
∂�m, we do not have to change the outer normal fromηf to ηm and that∫

∂Ym

p · ηm d0 =
∫
0mm

p · ηm d0 +
∫
0f m

p · ηm d0,

where the integral over0mm need not vanish for nonperiodicp.
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Physically, the total flux ofγ0 calculated on the cellY is comprised byqf m and
qmm, the latter being a source in the matrix equation whileqf m splits to be a source
in the fissure equation and a sink in the matrix equation.

The local problem for the density on the block at the pointx results from (3.3,0),
(3.7,0) (together with the consequence of (3.6,0) derived above)

ϕm
∂γ0

∂t
− ∇y · (λm∇yγ0) = 0, y ∈ Ym, (4.23)

γ0(x, y) = κρm,0(x), y ∈ 0mm, (4.24)

γ (x, y) = 1

β
ρf (x) − α

β
ρm(x), y ∈ 0f m. (4.25)

5. The Limit Model

In this section we summarize the limit two-scale PFM-model and complement it with
suitable conditions on the external boundary∂� of � for t ∈ I , as well as initial
conditions forx ∈ � andt = 0. Then, we discuss the model, including its relation
to the TFM-model, and address its well-posedness.

We shall rewrite the equations derived in the previous section forρf,0, ρm,0, γ0
(and drop the subscript zero). In summary, the model consists of the following system
of equations, holding forx ∈ � andt ∈ I

8f
∂ρf

∂t
− ∇ · (3f ∇ρf ) = − 1

β
qf m, (5.1)

8m
∂ρm

∂t
− ∇ · (3m∇ρm) = α

β
qf m − κqmm, (5.2)

qf m(x, t) = 1

|Y |
∫
0f m

λm∇yγ · ηm d0, (5.3)

qmm(x, t) = 1

|Y |
∫
0mm

λm∇yγ · ηm d0, (5.4)

ϕm
∂γ

∂t
− ∇y · (λm∇yγ ) = 0, y ∈ Ym(x), (5.5)

γ (x, y, t) = κρm(x, t), y ∈ 0mm, (5.6)

γ (x, y, t) = 1

β
ρf (x, t) − α

β
ρm(x, t), y ∈ 0f m, (5.7)

ρf (x, 0) = ρf,init (x), t = 0, (5.8)
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ρm(x, 0) = ρm,init (x), t = 0, (5.9)

(3f ∇xρf (x, t)) · η� = 0, x ∈ ∂�, (5.10)

(3m∇xρm(x, t)) · η� = 0, x ∈ ∂�, (5.11)

γ (x, y, 0) = γinit (x, y), y ∈ Ym(x). (5.12)

Note that the variablesρf andρm depend on the global space variablex and the time
t , but not on the local space variabley, and the coefficients8f , 8m, ϕm, 3f , 3m, and
λm are functions ofx, whileγ depends on all three variables; consequently,qf m and
qmm depend onx andt . The initial valuesρf (·, 0) andρm(·, 0) also must depend on
x alone; if the simulation begins from an undisturbed state, the values forγ (x, y, 0)

should be consistent with the initial values forρf andρm; i.e., (5.6) and (5.7) should
be satisfied at the initial time, as well as later. Except under unusual circumstances,
the boundary values forρf andρm should be equal.

The PFM-model (5.1)–(5.12) can be characterized as a two-sheeted model, as was
the model for a TFM discussed in [2, 6, 11]. Here, we shall call the sheet on which the
global equations are defined themacrosheet; on it reside the Equations (5.1) and (5.2)
and the associated boundary and initial conditions (5.8)–(5.11) for the two globally
defined densities. The topology on this sheet is the standard Euclidean topology on
R3. Since in the TFM-model there was only one global function, the density in the
fissures or fractures, the macrosheet was called the fracture sheet in that model. The
second sheet, which we call the microsheet in this model and was called the block
sheet in the TFM-model, is more complicated. It consists of the product space�×Y ,
with the discrete topology on� and the usual Euclidean toplogy onY ; i.e., the blocks
are topologically disconnected. Equation (5.5) defines the local density function,γ ,
subject to the boundary conditions (5.6) and (5.7), which impose consistency in the
momentum between the macrosheet and the microsheet, and the initial condition
(5.12). Consistency (conservation) in the mass both on the macrosheet and between
the two sheets is expressed by the flux conditions (5.3)–(5.4).

For the particular choiceα = 0, β = 1, andκ = 1, the source in the fissure
equation is equal to−qf m, the term which represents the interaction of the fissure
system with the blocks. The source in the matrix equation equals−qmm, which
accounts for the balance of the two components of the ‘total density’ in the matrix.
Further, if0mm → ∅, thenqmm → 0, so that the equation (5.2) is decoupled from
the system, and its solution remains constant in time. Then, the total flux of the
“local variable” goes through0f m, and the system is reduced to the TFM-model, as
expected.

The system (5.1)–(5.12) can be considered as a pair of parabolic equations coupled
through an integro–differential relation dependent upon the solution of an infinite
system of parabolic equations in diagonal form. The esssential feature distinguishing
flow in fissured reservoirs from flow in unfissured media, that of the delay caused
by the slower flow in the matrix blocks, is indicated by the integral terms in the
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equations (5.1)–(5.2). In the case of TFM obtained from the above system upon
settingα = 0, β = 1, and0mm = ∅, those integral terms can be represented as
convolution integrals with kernels describing the fading memory effects, as discussed
in [2, 20, 23, 24]. The integro-differential system for the TFM-model reduces to the
single equation

8f
∂ρf

∂t
− ∇ · (3f ∇ρf ) = −τ ∗ ∂ρf

∂t
, x ∈ �, t ∈ I, (5.13)

with a positive, monotone decreasing kernelτ , singular at the origin. The discrete
equivalent of TFM-model was first shown to be mathematically well-posed by Arbo-
gast [2]. Later, Hornung and Showalter [20] and Peszyńska [23, 26], using techniques
related to strongly positive kernels (see [15, 22], offered other analyses as well as
numerical techniques (see 27]) for TFM by studying the integro–differential Equa-
tion (5.13).

To our knowledge, there exist no analytical nor numerical results for systems
analogous to the PFM-model, described by (5.1)–(5.12). Below we show that the
system is well-posed. A numerical method, so as to be generalizable to more complex
flows in a PFM, will be developed elsewhere.

THEOREM 3.Let the assumptions of the Corollary2 from Section3 hold. Then, the
system(5.1)–(5.12) is well-posed.

Proof. This is a consequence of the general result recalled in Theorem 1. We
define appropriate spaces

H = L2(�) × L2(�) × L2(� × Ym),

with the scalar product

(u, v)H =
∫
�

(
8f u1v1 + 8mu2v2 + 1

|Y |
∫
Ym

φmu3v3 dy

)
dx

and

V = {v = (v1, v2, v3) ∈ H1(�) × H 1(�) × L2(�, H1(Ym)),

v1 = αv2 + βv3 on0f m, v3 = κv2 on0mm}.
Note thatV andH satisfy the assumptions of Theorem 1. Next, we define the form

a(u, v)

=
∫
�

(
3f ∇u1 · ∇v1 + 3m∇u2 · ∇v2 + 1

|Y |
∫
Ym

λm∇yu3 · ∇yv3 dy

)
dx

and then verify that the sum,a(·, ·)+(·, ·)H isV-coercive. This involves showing that
the ‘macroscopic’ permeability tensors3f and3m are positive definite. This has
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been done, for example, in [6] for a TFM. Then, using a calculation to be shown below,
we conclude that the variational form of the Cauchy problem (5.1)–(5.12) is (3.16)
with u = (ρf , ρm, γ ) andu0 = (ρf,init , ρm,init , γinit ). Hence, the well-posedness of
the problem follows.

It remains to check that (3.16) is our variational problem. First, takev =
(v1, v2, v3) ∈ V, multiply (5.5) byv3, integrate the equation overYm and�, and
apply Green’s Theorem to get∫

�

∫
Ym

(φmγ ′v3 + λm∇yγ∇yv3) dy dx

=
∫
�

(∫
0f m

λm∇yγ · ηmv3 d0 +
∫
0mm

λm∇yγ · ηmv3 d0

)
dx

=
∫
�

(
1

β

∫
0f m

λm∇yγ · ηmv1 d0 − α

β

∫
0f m

λm∇yγ · ηmv2 d0+

+κ

∫
0mm

λm∇yγ · ηmv2 d0

)
dx,

where we have noted thatv3 = (v1 − αv2)/β on0f m andv3 = κv2 on0mm. Since
v1 andv2 are independent ofy, (5.3) and (5.4) imply that the right-hand side of the
last identity is equal to∫

�

(
|Y | qf m

(
1

β
v1 − α

β
v2

)
+ κv2|Y |qmm

)
dx.

Now, multiply (5.1) and (5.2) byv1 andv2, respectively, integrate over�, sum the
two equations, and apply the result above, scaled by the factor|Y |−1, to get∫

�

(
8f ρ′

f v1 + 3f ∇ρf · ∇v1 + 8mρ′
mv2 + 3m∇ρm · ∇v2+

+ 1

|Y |
∫
Ym

(φmγ ′v3 + λ∇yγ · ∇yv3 dy)

)

=
∫
�

(
− 1

β
qf mv1 + α

β
qf mv2 − κqmmv2

)
dx+

+ 1

|Y |
∫
�

(
|Y |qf m(v1

1

β
− v2

α

β
) + v2κ|Y |qmm

)
dx.

Since the terms on the right-hand side cancel, the last equation is the desired relation
(5.14).
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6. Concluding Remarks

The essential objective above was the derivation by means of the homogenization
method of the indicated PFM model with dual-permeability. In the geological setting
of rocks and fissures in which the diffusion parameters of the two media are so
extremely different, the additional global flow through the matrix can frequently be
ignored; that is, the dual-porosity model of TFM is sufficient. In the more general
situation of porous media with two components, the other extreme would consist of
a pair of component media whose parameters are of similar order in magnitude; then
the flow in each of the components is a substantial contribution. The model of PFM
with dual-permeability as developed here contains both of these extreme cases.

Preliminary numerical experiments were undertaken to investigate thequalitative
differences in the behavior of solutions to three different models of flow in a fissured
medium: the classicalsingle porosity model, the distributed microstructure or two-
scale model of atotally fissured medium, and the corresponding model that was
introduced above for apartially fissured medium. A sink was introduced in the
fissure system, active only for an interval of time, after which the system began to
move to a new equilibrium. The values of the responding densities as functions of
time at a nearby point were recorded. We choseα = 0 andκ = 1 in thepartially
fissured mediumin order to maximize the separation ofρf andρmby the blocks.

The first observation was that in all models the pressure dropped downward from
the initial equilibrium value until the time at which the sink was deactivated. It was
seen that, of these three models, the fissure density of thepartially fissured medium
had the largest initial responserate, and that of thetotally fissured mediumhad the
largest total value in response to the sink. The drop in the fissure density in thetotally
fissured mediumwas significantly more pronounced than the corresponding drop of
density in thesingle porosity model. This is a reflection of the fact that the fast flow
in the fissure system of thetotally fissured mediumprovides a more efficient way to
deliver fluid to the sink than the single porosity system. Moreover, the fissure system
in thepartially fissured mediuminitially responded even more dramatically, but the
fissure density there quickly leveled off at a somewhat higher level. This apparent
stability results from the weaker coupling to the blocks and the corresponding slower
drop of block pressure in apartially fissured mediumthan in atotally fissured medium.
The fissures are being supplied by these blocks during this period. The blocks in a
totally fissured mediumare coupled exclusively to the fissures, so they respond more
quickly to the drop in fissure density than those of thepartially fissured medium
model where they are coupled to both the fissures and to the slower matrix flow.
The wide variations in block density and the correspondingly slow flow within the
blocks causes a substantial delay in the time that the system needs to stabilize. It
was precisely this last effect, observed long ago, that provided the motivation for the
development of such coupled models of flow through fractured reservoirs. Finally,
the matrix density in thepartially fissured mediumdropped very slowly during the
period in which the sink was active. It is this flow in the matrix which represents the
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connectivitybetween the blocks. It drains slowly into the system of blocks, and this
contributes to the relative stabilization of the block system in thepartially fissured
mediumin comparison with that of thetotally fissured medium.

We note that thetotally fissured mediumis obtained formally by settingκ = 0.
Moreover, by adjusting the parametersα, β, andκ, one can calibrate the model to
obtain a very wide variety of response curves. If we are given a real multi-porosity
reservoir, then, as previously referenced evidence in the literature shows, and our
current simple results confirmed, it is important to construct a fully coupled model
describing the effects of the inhomogeneous nature of the reservoir. Such two-scale
models give us then the information about the local (microscopic) distribution of the
fluid. However, this information can have a significantly different character in the
dual-permeability case of interconnected blocks from the one for isolated blocks.
In reality we can expect that some part of theglobal flow will occur within the
interconnected system of the blocks, and this component of the total flow is described
by this model for apartially fissured medium.
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