1 Boundary-Value Problems

Neumann Boundary-Value Problem

Let G be a domain in \mathbb{R}^{N} with boundary ∂G on which \mathbf{n} is the unit outward normal. Let $a(\cdot) \in L^{\infty}(G)$ be uniformly positive: $a(x) \geq a_{0}>$ $0, x \in G$.
Consider the Neumann boundary-value problem

$$
\begin{align*}
-\boldsymbol{\nabla} \cdot a(x) \boldsymbol{\nabla} p(x) & =F(x), \quad x \in G \tag{1a}\\
a(\cdot) \boldsymbol{\nabla} p \cdot \mathbf{n} & =g \text { on } \partial G . \tag{1b}
\end{align*}
$$

The Weak Solution

Set $V=H^{1}(G)$. If $p \in V$ is a solution of (1), then for each $q \in V$ we have

$$
\begin{aligned}
\int_{G} F(x) q(x) d x=\int_{G} a(x) \nabla p(x) \cdot \boldsymbol{\nabla} q(x) d x-\int_{\partial G} a \boldsymbol{\nabla} p \cdot \mathbf{n} q d S \\
=\int_{G} a(x) \nabla p(x) \cdot \nabla q(x) d x-\int_{\partial G} g(s) q(s) d S
\end{aligned}
$$

so we obtain

$$
\begin{align*}
& p \in V: \quad \int_{G} a(x) \nabla p(x) \cdot \nabla q(x) d x= \\
& \int_{G} F(x) q(x) d x+\int_{\partial G} g(s) q(s) d S \text { for all } q \in V . \tag{2}
\end{align*}
$$

Conversely, we can show that any appropriately smooth solution of (2) is a solution of (1).

Notes

- Any two solutions of (2) differ by a constant in V, so we have uniqueness only up to constants.
- By taking $q(x)=1$ in (2) we find a necessary condition for existence of a solution:

$$
\begin{equation*}
\int_{G} F(x) d x+\int_{\partial G} g(s) d S=0 \tag{3}
\end{equation*}
$$

It is clear that the constant functions in V play a prominent role here. Uniqueness holds up to them, and the right side of (2) must vanish on them. We define the unit constant function on G by $\chi(x)=1, x \in G$. Constant functions are those in the linear span $\langle\chi\rangle=\mathbb{R} \chi$.

Hereafter we assume that (3) holds. We define the subspace $V_{0}=\{q \in$ $\left.V: \int_{G} q(x) d x=0\right\}=\{\chi\}^{\perp}$. These are the functions of V with meanvalue equal to zero. Then (2) is equivalent to

$$
\begin{align*}
& \tilde{p} \in V_{0}: \quad \int_{G} a(x) \boldsymbol{\nabla} \tilde{p}(x) \cdot \boldsymbol{\nabla} q(x) d x= \\
& \quad \int_{G} F(x) q(x) d x+\int_{\partial G} g(s) q(s) d S \text { for all } q \in V_{0} . \tag{4}
\end{align*}
$$

where $\tilde{p}(x)=p(x)-\frac{1}{|G|} \int_{G} p(y) d y$. Thus we obtain an alternative weak formulation for which we have uniqueness. What remains is to show that the bilinear form $\int_{G} \boldsymbol{\nabla} p(x) \cdot \boldsymbol{\nabla} q(x) d x$ is equivalent to the $H^{1}(Q)$-scalar product on V_{0}. But this follows from the estimate

$$
\|q\|_{L^{2}(G)}^{2} \leq\left(\int_{G} q(x) d x\right)^{2}+\frac{N}{2}\|\nabla q\|_{L^{2}(G)}^{2} .
$$

Summary

- The equations (1) are the strong form, and (2) and (4) are equivalent weak forms of the Neumann boundary-value problem.
- The bilinear form $(\boldsymbol{\nabla} p, \nabla q)_{L^{2}(G)}$ is equivalent to the $H^{1}(G)$ scalar product on V_{0}.

Theorem 1.1. Assume $a(\cdot) \in L^{\infty}(G)$ is uniformly positive, $a(x) \geq a_{0}>$ $0, x \in G$ and that $\int_{G} F(x) d x+\int_{\partial G} g(s) d S=0$. Then the Neumann boundary-value problem (4) has a unique solution. That is, there exists a solution of (2), and any two solutions of (2) differ by a constant.

A Mixed Formulation

The formulation (2) has the form

$$
\begin{equation*}
p \in V: \mathcal{A} p(q)=f(q), q \in V \tag{5}
\end{equation*}
$$

where the bilinear form

$$
\mathcal{A} p(q)=\int_{G} a(x) \boldsymbol{\nabla} p(x) \cdot \nabla q(x) d x, \quad p, q \in V,
$$

and the linear functional

$$
f(q)=\int_{G} F(x) q(x) d x+\int_{\partial G} g(s) q(s) d S, \quad q \in V,
$$

are defined as indicated. That is, $\mathcal{A} p=f$ in V^{\prime}, where $\mathcal{A}: V \rightarrow V^{\prime}$ is the indicated linear operator.

Now define another linear operator $\mathcal{B}: V \rightarrow \mathbb{R}^{\prime}$ by

$$
\mathcal{B} p=\int_{G} p(y) d y,
$$

and note that the dual operator $\mathcal{B}^{\prime}: \mathbb{R} \rightarrow V^{\prime}$ is given by

$$
\mathcal{B}^{\prime} r(\varphi)=r(\mathcal{B} \varphi)=\int_{G} r \varphi(x) d x,
$$

so we have $\operatorname{Rg}\left(\mathcal{B}^{\prime}\right)=\mathbb{R} \subset L^{2}(G) \subset V^{\prime}$, the constant functions.
Then the formulation (4) is of the form

$$
\begin{equation*}
p \in \operatorname{Ker}(\mathcal{B}): \mathcal{A} p-f \in \operatorname{Ker}(\mathcal{B})^{0}=\operatorname{Rg}\left(\mathcal{B}^{\prime}\right) . \tag{6}
\end{equation*}
$$

That is, we have

$$
\begin{align*}
p \in V: \mathcal{A} p+\mathcal{B}^{\prime} r & =f \text { in } V^{\prime} \tag{7a}\\
r \in \mathbb{R}: \mathcal{B} p & =0 \text { in } \mathbb{R} . \tag{7b}
\end{align*}
$$

In fact, we find that $\mathcal{B}^{\prime} r=f(1)$, so $f-\mathcal{B}^{\prime} r \in V_{0}^{\prime}$.

Trace and Normal Derivative on ∂G

We use the Sobolev space $H^{1}(G)=\left\{q \in L^{2}(G): \nabla q \in \mathbf{L}^{2}(G)\right\}$. This is a Hilbert space with the scalar product

$$
(p, q)_{H^{1}(G)}=(p, q)_{\mathbf{L}^{2}(G)}+(\boldsymbol{\nabla} p, \boldsymbol{\nabla} q)_{\mathbf{L}^{2}(G)} .
$$

For $q \in H^{1}(G)$ there is a well-defined restriction to the boundary, the trace $\gamma(q)=\left.q\right|_{\partial G}$ in $L^{2}(\partial G)$, and this map $q \mapsto \gamma(q)$ is linear and continuous: $\gamma \in \mathcal{L}\left(H^{1}(G), L^{2}(\partial G)\right)$. The kernel of the trace map is denoted by $H_{0}^{1}(G)$. Define $\mathbb{B} \subset L^{2}(\partial G)$ to be the range of the trace map, the set of boundaryvalues of functions in $H^{1}(G)$. If we define the norm on \mathbb{B} by

$$
\begin{equation*}
\|\mu\|_{\mathbb{B}}=\inf _{q \in H^{1}(G): \gamma(q)=\mu}\|q\|_{H^{1}(G)}, \tag{8}
\end{equation*}
$$

then $\gamma \in \mathcal{L}\left(H^{1}(G), \mathbb{B}\right)$ is onto \mathbb{B}. We denote the range of the trace map by $\mathbb{B}=H^{1 / 2}(\partial G)$ and its dual space by $\mathbb{B}^{\prime}=H^{-1 / 2}(\partial G)$.

We shall also use the space $\mathbf{L}_{\text {div }}^{2}(G)=\left\{\mathbf{v} \in \mathbf{L}^{2}(G): \boldsymbol{\nabla} \cdot \mathbf{v} \in L^{2}(G)\right\}$. This is a Hilbert space with the scalar product

$$
(\mathbf{u}, \mathbf{v})_{\mathbf{L}_{d i v}^{2}(G)}=(\mathbf{u}, \mathbf{v})_{\mathbf{L}^{2}(G)}+(\boldsymbol{\nabla} \cdot \mathbf{u}, \boldsymbol{\nabla} \cdot \mathbf{v})_{L^{2}(G)},
$$

and smooth functions are dense in this space. For $\mathbf{u} \in \mathbf{L}_{d i v}^{2}(G)$ there is a well-defined normal trace $\mathbf{u} \cdot \mathbf{n} \in H^{-1 / 2}(\partial G)$ for which

$$
\begin{equation*}
\int_{G}(\mathbf{u} \cdot \nabla q+\boldsymbol{\nabla} \cdot \mathbf{u} q) d x=\mathbf{u} \cdot \mathbf{n}(\gamma q), \quad q \in H^{1}(G) . \tag{9}
\end{equation*}
$$

In fact, the left side of (9) defines a functional in $H^{1}(G)^{\prime}$ which vanishes on $H_{0}^{1}(G)$, that is, an element of the annihilator $H_{0}^{1}(G)^{0}$. By the closed range theorem, this is equal to $\operatorname{Rg}\left(\gamma^{\prime}\right)$, so the functional equals $\gamma^{\prime}(\mathbf{u} \cdot \mathbf{n})$ for a unique $\mathbf{u} \cdot \mathbf{n} \in \mathbb{B}^{\prime}$. The right side of (9) is $\gamma^{\prime}(\mathbf{u} \cdot \mathbf{n})(q)$. For smoother $\mathbf{u} \in \mathbf{H}^{1}(G)$ the (componentwise) trace has normal component $\gamma(\mathbf{u}) \cdot \mathbf{n} \in$ $L^{2}(\partial G) \subset H^{-1 / 2}(\partial G)$, and the Stokes theorem shows

$$
\mathbf{u} \cdot \mathbf{n}(\gamma q)=\int_{\partial G} \gamma(\mathbf{u}) \cdot \mathbf{n} q d S,
$$

so we have denoted this functional by $\mathbf{u} \cdot \mathbf{n}$ also for $\mathbf{u} \in \mathbf{L}_{d i v}^{2}(G)$.

Finally we note the special case of (9) with $\mathbf{u}=\nabla p$:

$$
\begin{align*}
& \int_{G}(\boldsymbol{\nabla} p \cdot \nabla q+\nabla \cdot \nabla p q) d x=\int_{\partial G} \nabla p \cdot \mathbf{n}(\gamma q) d S \\
& \quad \text { for all } q \in H^{1}(G), p \in H^{1}(G) \text { with } \nabla \cdot \nabla p \in L^{2}(G) \tag{10}
\end{align*}
$$

The normal component of the gradient on ∂G is the normal derivative $\frac{\partial p}{\partial n}=\boldsymbol{\nabla} p \cdot \mathbf{n} \in H^{-1 / 2}(\partial G)$. The equation (10) is Green's identity for the Laplacean $\Delta=\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}$, and it was precisely this equation that we needed for the weak formulation of the Neumann problem (1).

Dirichlet-Neumann Boundary-Value-Problem

Set $Q=\left\{q \in H^{1}(G):\left.q\right|_{\Gamma_{1}}=0\right\}$ where the boundary of G is the disjoint union $\partial G=\Gamma_{1} \cup \Gamma_{2}$.

Direct Variational Form

$p \in Q: \quad \int_{G}(\lambda c(x) p q+\kappa(x) \boldsymbol{\nabla} p \cdot \boldsymbol{\nabla} q) d x=\int_{G} f q d x+\int_{\Gamma_{2}} h q d S \forall q \in Q$.
The strong form is, respectively,

$$
\begin{gathered}
\left.p\right|_{\Gamma_{1}}=0, \lambda c(x) p-\boldsymbol{\nabla} \cdot \kappa(x) \boldsymbol{\nabla} p=f \text { in } G, \\
\text { and } \int_{\partial G} \kappa \boldsymbol{\nabla} p \cdot \mathbf{n} q d S=\int_{\Gamma_{2}} h q d S \forall q \in Q \text {, that is, }\left.\kappa \boldsymbol{\nabla} p \cdot \mathbf{n}\right|_{\Gamma_{2}}=h
\end{gathered}
$$

A Gradient Mixed Formulation

Set $a(x)=\frac{1}{\kappa(x)}$ and $\mathbf{u}(x) \equiv-\kappa(x) \boldsymbol{\nabla} p$.

$$
\begin{aligned}
& \mathbf{u} \in \mathbf{L}^{2}(G), p \in Q: \int_{G} a(x) \mathbf{u} \cdot \mathbf{v} d x+\int_{G} \boldsymbol{\nabla} p \cdot \mathbf{v} d x=0 \forall \mathbf{v} \in \mathbf{L}^{2}(G), \\
& \lambda \int_{G} c(x) p q d x-\int_{G} \mathbf{u} \cdot \nabla q d x=\int_{G} f q d x+\int_{\Gamma_{2}} h q d S \forall q \in Q .
\end{aligned}
$$

The strong form is

$$
\begin{aligned}
& \left.\quad p\right|_{\Gamma_{1}}=0, a(x) \mathbf{u}+\boldsymbol{\nabla} p=0, \lambda c(x) p+\boldsymbol{\nabla} \cdot \mathbf{u}=f \text { in } G, \\
& \text { and }-\int_{\partial G} \mathbf{u} \cdot \mathbf{n} q d S=\int_{\Gamma_{2}} h q d S \forall q \in Q, \text { that is }-\left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}=h .
\end{aligned}
$$

Here we have set

$$
\mathcal{A} \mathbf{u}(\mathbf{v})=\int_{G} a(x) \mathbf{u} \cdot \mathbf{v} d x, \mathcal{B} \mathbf{v}(q)=\int_{G} \mathbf{v} \cdot \boldsymbol{\nabla} q d x, \mathcal{C} p(q)=\int_{G} c(x) p q d x .
$$

Note: This mixed formulation is equivalent to the Direct Variational Form above. The constraint on $\left.p\right|_{\Gamma_{1}}$ is a strong (prescribed) boundary condition; the constraint on $\left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}$ is the corresponding weak or dual boundary condition. A non-homogeneous value for $\left.p\right|_{\Gamma_{1}}$ can be obtained by translation.

A Divergence Mixed Formulation

Set $\mathbf{V}=\left\{\mathbf{v} \in \mathbf{L}_{d i v}^{2}(G):\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma_{2}}=0\right\}$.

$$
\begin{array}{r}
\mathbf{u} \in \mathbf{V}, p \in L^{2}(G): \int_{G} a(x) \mathbf{u} \cdot \mathbf{v} d x-\int_{G} p \boldsymbol{\nabla} \cdot \mathbf{v} d x=\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} \forall \mathbf{v} \in \mathbf{V}, \\
\lambda \int_{G} c(x) p q d x+\int_{G} \boldsymbol{\nabla} \cdot \mathbf{u} q d x=\int_{G} f q d x \forall q \in L^{2}(G) .
\end{array}
$$

Although we write it as an integral, the right side of the first equation is actually $\mathbf{v} \cdot \mathbf{n}\left(g_{0}\right)$ for an appropriate g_{0}. (See Remark 1.1 below.) The strong form of this problem is

$$
\begin{aligned}
& \left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}=0, a(x) \mathbf{u}+\boldsymbol{\nabla} p=0, \lambda c(x) p+\boldsymbol{\nabla} \cdot \mathbf{u}=f, \\
& \text { and }-\int_{\partial G} p \mathbf{v} \cdot \mathbf{n}=\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} \forall \mathbf{v} \in \mathbf{V}, \text { that is, }-\left.p\right|_{\Gamma_{1}}=g_{0}
\end{aligned}
$$

In this formulation we set \mathcal{A} and \mathcal{C} as above, but

$$
\mathcal{B} \mathbf{v}(q)=-\int_{G} \boldsymbol{\nabla} \cdot \mathbf{v} \cdot q d x
$$

Note: The constraint on $\left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}$ is a strong (prescribed) boundary condition; the constraint on $\left.p\right|_{\Gamma_{1}}$ is the corresponding weak or dual boundary condition. A non-homogeneous value for $\left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}$ can be obtained by translation.

The non-homogeneous Poisson system

The fully non-homogeneous case can be handled in other ways. The boundary conditions or other constraints can be moved from the space
to the operators. Thus set $\mathbf{V}=\mathbf{L}_{d i v}^{2}(G), Q=L^{2}(G) \times \mathbb{B}^{\prime}$ and seek

$$
\begin{align*}
& \mathbf{u} \in \mathbf{V}, p=\left[p_{1}, p_{2}\right] \in Q \\
& \qquad \begin{aligned}
& \int_{G} a(x) \mathbf{u} \cdot \mathbf{v} d x-\int_{G} p_{1} \nabla \cdot \mathbf{v} d x+\int_{\Gamma_{2}} p_{2} \mathbf{v} \cdot \mathbf{n} d S \\
&=\int_{G} \mathbf{f}_{0} \cdot \mathbf{v} d x+\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S \quad \forall \mathbf{v} \in \mathbf{V}, \\
& \begin{aligned}
& \lambda \int_{G} c(x) p_{1} q_{1} d x+\int_{G} \boldsymbol{\nabla} \cdot \mathbf{u} q_{1} d x-\int_{\Gamma_{2}} \mathbf{u} \cdot \mathbf{n} q_{2} d S \\
&=\int_{G} f q_{1} d x+\int_{\Gamma_{2}} h q_{2} d S \quad \forall q \in L^{2}(G) .
\end{aligned}
\end{aligned} . \begin{array}{l}
\text {. }
\end{array}
\end{align*}
$$

In this formulation we define \mathcal{A} and \mathcal{C} as above, but

$$
\mathcal{B} \mathbf{v}(q)=-\int_{G} \boldsymbol{\nabla} \cdot \mathbf{v} \cdot q_{1} d x+\int_{\Gamma_{2}} \mathbf{v} \cdot \mathbf{n} q_{2} d S .
$$

Here $\mathcal{B}: \mathbf{L}_{d i v}^{2}(G) \rightarrow L^{2}(G) \times \mathbb{B}^{\prime}$ and $\mathcal{B}^{\prime}: L^{2}(G) \times \mathbb{B} \rightarrow \mathbf{L}_{d i v}^{2}(G)^{\prime}$, and we have a pair of Lagrange multipliers p_{1}, p_{2}. These are independent, so we have equivalently a pair of constraint operators $\mathcal{B}_{1}: \mathbf{L}_{\text {div }}^{2}(G) \rightarrow L^{2}(G)$ and $\mathcal{B}_{2}: \mathbf{L}_{d i v}^{2}(G) \rightarrow \mathbb{B}^{\prime}$. The strong form is the non-homogeneous system

$$
\begin{gather*}
a(x) \mathbf{u}+\boldsymbol{\nabla} p_{1}=\mathbf{f}_{0}, \lambda c(x) p_{1}+\boldsymbol{\nabla} \cdot \mathbf{u}=f, \tag{12a}\\
-\left.p_{1}\right|_{\Gamma_{1}}=g_{0},\left.p_{1}\right|_{\Gamma_{2}}=p_{2},-\left.\mathbf{u} \cdot \mathbf{n}\right|_{\Gamma_{2}}=h . \tag{12b}
\end{gather*}
$$

The trace values of p_{1} are meaningful because (11a) first shows that $\nabla p_{1} \in$ $\mathbf{L}^{2}(G)$, and then it gives

$$
-\int_{\partial G} p_{1} \mathbf{v} \cdot \mathbf{n} d S+\int_{\Gamma_{2}} p_{2} \mathbf{v} \cdot \mathbf{n} d S=\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S \quad \forall \mathbf{v} \in \mathbf{V} .
$$

In particular, the Lagrange multipliers of a solution are not independent.
Remark 1.1. The second term of \mathcal{B} is delicate because $\mathbf{v} \cdot \mathbf{n} \in \mathbb{B}^{\prime}$ so q_{2} needs to be extended to \mathbb{B}. This same issue is implicit in the preceding formulations of the Dirichlet-Neumann problem as well. This leads to the special spaces of local boundary values, $H_{00}^{1 / 2}\left(\Gamma_{2}\right)$.

The non-homogeneous boundary-value problem (12) can be also be resolved by using non-zero constraints in the convex set. For example, the second component p minimizes the functional $(\kappa(x)=1 / a(x))$

$$
\begin{aligned}
& J_{1}(q)=\frac{1}{2} \int_{G} \kappa(x)|\boldsymbol{\nabla} q|^{2} d x-\int_{G} \kappa(x) \mathbf{f}_{0} \cdot \boldsymbol{\nabla} q \\
& \quad-\int_{\Gamma_{2}} h q d S-\int_{G} f q d S+\frac{\lambda}{2} \int_{G} c(x) q^{2} d x
\end{aligned}
$$

on the convex set $K_{1}=\left\{q \in H^{1}(G):\left.\gamma(q)\right|_{\Gamma_{1}}=-g_{0}\right\}$. This follows directly from the calculations

$$
\begin{gathered}
J_{1}(q)=\frac{1}{2} \int_{G} \kappa\left(|\nabla q|^{2}-2 \boldsymbol{\nabla} p \cdot \boldsymbol{\nabla} q\right) d x-\int_{G} \mathbf{u} \boldsymbol{\nabla} q d x \\
\quad-\int_{\Gamma_{2}} h q d S-\int_{G} f q d S+\frac{\lambda}{2} \int_{G} c(x) q^{2} d x \\
=\frac{1}{2} \int_{G} \kappa\left(|\boldsymbol{\nabla} q|^{2}-2 \boldsymbol{\nabla} p \cdot \boldsymbol{\nabla} q\right) d x+\int_{G} \boldsymbol{\nabla} \cdot \mathbf{u} q d x-\int_{\partial G} \mathbf{u} \cdot \mathbf{n} q d S \\
\quad-\int_{\Gamma_{2}} h q d S-\int_{G} f q d S+\frac{\lambda}{2} \int_{G} c(x) q^{2} d x \\
=\frac{1}{2} \int_{G} \kappa\left(|\nabla q|^{2}-2 \boldsymbol{\nabla} p \cdot \nabla q\right) d x-\int_{\Gamma_{1}} \mathbf{u} \cdot \mathbf{n} q d S+\frac{\lambda}{2} \int_{G} c(x)\left(q^{2}-2 p q\right) d x \\
J_{1}(p)=-\frac{1}{2} \int_{G}|\nabla p|^{2} d x+\int_{\Gamma_{1}} \mathbf{u} \cdot \mathbf{n} g_{0} d S-\frac{\lambda}{2} \int_{G} c(x) p^{2} d x
\end{gathered}
$$

from which we obtain

$$
J_{1}(q)-J_{1}(p)=\frac{1}{2} \int_{G} \kappa(x)|\boldsymbol{\nabla}(q-p)|^{2} d x+\frac{\lambda}{2} \int_{G} c(x)(p-q)^{2} d x \geq 0
$$

for all $q \in K_{1}$. The minimal point p is obtained as the solution of a variational inequality.

Likewise, for the case $\lambda=0$, the first component \mathbf{u} minimizes the functional

$$
J_{2}(\mathbf{v})=\frac{1}{2} \int_{G} a(x)|\mathbf{v}|^{2} d x-\int_{G} \mathbf{v} \cdot \mathbf{f}_{0} d x-\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S
$$

on the set $K_{2}=\left\{\mathbf{v} \in L_{d i v}^{2}(G): \nabla \cdot \mathbf{v}=f\right.$ in $\left.G,\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma_{2}}=-h\right\}$:

$$
\begin{gathered}
J_{2}(\mathbf{v})=\frac{1}{2} \int_{G} a(x)\left(|\mathbf{v}|^{2}-2 \mathbf{v} \cdot \mathbf{u}\right) d x-\int_{G} \mathbf{v} \cdot \nabla p d x-\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S \\
=\frac{1}{2} \int_{G} a(x)\left(|\mathbf{v}|^{2}-2 \mathbf{v} \cdot \mathbf{u}\right) d x+\int_{G} \nabla \cdot \mathbf{v} p d x-\int_{\partial G} \mathbf{v} \cdot \mathbf{n} p d S-\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S \\
=\frac{1}{2} \int_{G} a(x)\left(|\mathbf{v}|^{2}-2 \mathbf{v} \cdot \mathbf{u}\right) d x+\int_{G} f p d x+\int_{\Gamma_{2}} h p d S \text { for all } \mathbf{v} \in K_{2}, \\
J_{2}(\mathbf{u})=-\frac{1}{2} \int_{G} a(x)|\mathbf{u}|^{2} d x+\int_{G} f p d x+\int_{\Gamma_{2}} h p d S,
\end{gathered}
$$

so that we find

$$
J_{2}(\mathbf{v})-J_{2}(\mathbf{u})=\frac{1}{2} \int_{G} a(x)|\mathbf{v}-\mathbf{u}|^{2} d x \geq 0 \text { for all } \mathbf{v} \in K_{2}
$$

and \mathbf{u} is characterized as the solution of a variational inequality.
When $\lambda>0$ and $c(x) \geq c_{0}>0$, we can show directly that the first component \mathbf{u} minimizes the functional
$J_{3}(\mathbf{v})=\frac{1}{2} \int_{G} a(x)|\mathbf{v}|^{2} d x+\int_{G} \frac{1}{2 \lambda c(x)}(\boldsymbol{\nabla} \cdot \mathbf{v}-f)^{2} d x-\int_{G} \mathbf{v} \cdot \mathbf{f}_{0} d x-\int_{\Gamma_{1}} g_{0} \mathbf{v} \cdot \mathbf{n} d S$ on the set $K_{2}=\left\{\mathbf{v} \in L_{\text {div }}^{2}(G):\left.\mathbf{v} \cdot \mathbf{n}\right|_{\Gamma_{2}}=-h\right\}$.

Interface Boundary-Value-Problems

Let the domain G be split into subdomains G_{1} and G_{2} by an interface Γ. The normal \mathbf{n} on Γ is directed out of G_{1} and into G_{2}. For $q \in L^{2}(G)$, we denote with subscripts the restrictions to the respective regions, $q_{j}=$ $\left.q\right|_{G_{j}}, j=1$, 2. Similarly we denote restrictions of vector-valued $\mathbf{v} \in \mathbf{L}^{2}(G)$ by $\mathbf{v}_{j}, j=1,2$.

- If we choose a gradient mixed formulation on $G\left(p \in L^{2}(G)\right)$ the strong interface condition is $p_{1}=p_{2}$ on Γ and there is a corresponding weak or dual interface condition on $\mathbf{u}_{1} \cdot \mathbf{n}-\mathbf{u}_{2} \cdot \mathbf{n}$.
- If we choose a divergence mixed formulation on $G\left(\mathbf{u} \in L_{d i v}^{2}(G)\right)$ the strong interface condition is $\mathbf{u}_{1} \cdot \mathbf{n}=\mathbf{u}_{2} \cdot \mathbf{n}$ on Γ and there is a corresponding weak or dual interface condition on $p_{1}-p_{2}$.

These are the most frequently appropriate conditions, but there can be reasons to consider more general situations, such as modeling over multiple scales. See [1].

A Neumann Interface problem in Direct Formulation

$$
\begin{gathered}
Q=\left\{q \in L^{2}(G): \nabla q_{1} \in L^{2}\left(G_{1}\right), \nabla q_{2} \in L^{2}\left(G_{2}\right)\right\} \text { so traces on } \\
\Gamma=\partial G_{1} \cap \partial G_{2}, \Gamma_{1}=\partial G_{1}-\Gamma, \Gamma_{2}=\partial G_{2}-\Gamma
\end{gathered}
$$

are all defined. Define the convex set

$$
K_{g}=\left\{q \in Q: \beta_{1} q_{1}-\beta_{2} q_{2}=g \text { on } \Gamma\right\}
$$

The variational inequality

$$
\begin{aligned}
& p \in K_{g}: \int_{G}(c p(q-p)+k \boldsymbol{\nabla} p \cdot \nabla(q-p)) d x \geq \\
& \qquad \int_{G} F(q-p) d x+\int_{\Gamma \cup \Gamma_{1} \cup \Gamma_{2}} h(q-p) d S, q \in K_{g}
\end{aligned}
$$

is equivalent to

$$
p \in K_{g}: \int_{G}(c p q+k \boldsymbol{\nabla} p \cdot \boldsymbol{\nabla} q) d x=\int_{G} F q d x+\int_{\Gamma \cup \Gamma_{1} \cup \Gamma_{2}} h q d S, q \in K_{0} .
$$

This is a weak formulation of the Neumann-interface problem

$$
\begin{align*}
& c_{1} p_{1}-\nabla \cdot\left(k_{1} \boldsymbol{\nabla} p_{1}\right)=F_{1} \text { in } G_{1}, \quad k_{1} \nabla p_{1} \cdot \mathbf{n}=h_{1} \text { on } \Gamma_{1}, \tag{13a}\\
& c_{2} p_{2}-\nabla \cdot\left(k_{2} \nabla p_{2}\right)=F_{2} \text { in } G_{2}, \quad k_{2} \nabla p_{2} \cdot \mathbf{n}=h_{2} \text { on } \Gamma_{2} \tag{13b}\\
& \beta_{1} p_{1}-\beta_{2} p_{2}=g, \quad \beta_{2} k_{1} \boldsymbol{\nabla} p_{1} \cdot \mathbf{n}-\beta_{1} k_{2} \nabla p_{2} \cdot \mathbf{n}=\beta_{2} h \text { on } \Gamma . \tag{13c}
\end{align*}
$$

Note that the coefficients β_{1}, β_{2} were defined in the convex set K, and those same coefficients appear in both of the interface conditions.

A Mixed-Mixed Formulation

Here we 'mix' the gradient and divergence formulations to get both interface conditions weak. In particular, there are no constraints to couple the spaces.

$$
\begin{array}{r}
\mathbf{V} \equiv\left\{\mathbf{u} \in \mathbf{L}^{2}\left(G_{1}\right) \times \mathbf{L}_{d i v}^{2}\left(G_{2}\right): \alpha^{1 / 2} \mathbf{u}_{2} \cdot \mathbf{n} \in L^{2}(\Gamma)\right\} \quad Q \equiv H^{1}\left(G_{1}\right) \times L^{2}\left(G_{2}\right) \\
\mathcal{A} \mathbf{u}(\mathbf{v})=\int_{G_{1}} a_{1} \mathbf{u}_{1} \cdot \mathbf{v}_{1} d x+\int_{G_{2}} a_{2} \mathbf{u}_{2} \cdot \mathbf{v}_{2} d x+\int_{\Gamma} \alpha \mathbf{u}_{2} \cdot \mathbf{n} \mathbf{v}_{2} \cdot \mathbf{n} d S \\
\mathcal{B} \mathbf{u}(q)=\int_{G_{1}} \beta_{1} \mathbf{u}_{1} \cdot \nabla q_{1} d x-\int_{G_{2}} \beta_{2} \boldsymbol{\nabla} \cdot \mathbf{u}_{2} q_{2}-\int_{\Gamma} \beta_{3} \mathbf{u}_{2} \cdot \mathbf{n} q_{1} d S \\
\mathcal{C} p(q)=\int_{G_{1}} c_{1} p_{1} q_{1} d x+\int_{G_{2}} c_{2} p_{2} q_{2} d x+\int_{\Gamma} c_{3} p_{1} q_{1} d S
\end{array}
$$

The mixed problem is

$$
\begin{array}{r}
\mathbf{u} \in \mathbf{V}, p \in Q: \\
-\mathcal{A} \mathbf{u}+\mathcal{B}^{\prime} p=f \text { in } \mathbf{V}^{\prime} \tag{14}\\
-\mathcal{B} \mathbf{u}+\mathcal{C} p=g \text { in } Q^{\prime}
\end{array}
$$

and it has the form

$$
\begin{array}{r}
\mathbf{u}_{1} \in \mathbf{L}^{2}\left(G_{1}\right), \mathbf{u}_{2} \in \mathbf{L}_{d i v}^{2}\left(G_{2}\right), \mathbf{u}_{2} \cdot \mathbf{n} \in L^{2}(\Gamma) \\
p_{1} \in H^{1}\left(G_{1}\right), p_{2} \in L^{2}\left(G_{2}\right): \\
\int_{G_{1}}\left(a_{1} \mathbf{u}_{1} \cdot \mathbf{v}_{1} d x+\beta_{1} \nabla p_{1} \cdot \mathbf{v}_{1}-\beta_{1} \mathbf{u}_{1} \cdot \nabla q_{1}+c_{1} p_{1} q_{1}\right) d x \\
+\int_{G_{2}}\left(a_{2} \mathbf{u}_{2} \cdot \mathbf{v}_{2}-\beta_{2} p_{2} \boldsymbol{\nabla} \cdot \mathbf{v}_{2}+\beta_{2} \boldsymbol{\nabla} \cdot \mathbf{u}_{2} q_{2}+c_{2} p_{2} q_{2}\right) d x \\
+\int_{\Gamma}\left(\alpha \mathbf{u}_{2} \cdot \mathbf{n v}_{2} \cdot \mathbf{n}-\beta_{3} p_{1} \mathbf{v}_{2} \cdot \mathbf{n}+\beta_{3} \mathbf{u}_{2} \cdot \mathbf{n} q_{1}+c_{3} p_{1} q_{1}\right) d S \\
=\int_{G}(\mathbf{f} \cdot \mathbf{v}+g q) d x+\int_{\Gamma}\left(f_{0} \mathbf{v}_{2} \cdot \mathbf{n}+g_{0} q_{1}\right) d S
\end{array}
$$

for all $\mathbf{v}_{1} \in \mathbf{L}^{2}\left(G_{1}\right), \mathbf{v}_{2} \in \mathbf{L}_{\text {div }}^{2}\left(G_{2}\right)$ with $\mathbf{v}_{2} \cdot \mathbf{n} \in L^{2}(\Gamma), q_{1} \in H^{1}\left(G_{1}\right), q_{2} \in$ $L^{2}\left(G_{2}\right)$.

The strong form of the system is

$$
\begin{aligned}
& a_{1} \mathbf{u}_{1}+\beta_{1} \boldsymbol{\nabla} p_{1}=\mathbf{f}_{1}, c_{1} p_{1}+\nabla \cdot \beta_{1} \mathbf{u}_{1}=g_{1} \text { in } G_{1} \\
& a_{2} \mathbf{u}_{2}+\boldsymbol{\nabla} \beta_{2} p_{2}=\mathbf{f}_{2}, c_{2} p_{2}+\beta_{2} \boldsymbol{\nabla} \cdot \mathbf{u}_{2}=g_{2} \text { in } G_{2}
\end{aligned}
$$

the boundary conditions

$$
\mathbf{u}_{1} \cdot \mathbf{n}=0 \text { on } \partial G_{1}-\Gamma, \quad p_{2}=0 \text { on } \partial G_{2}-\Gamma
$$

and

$$
\begin{aligned}
& \int_{\Gamma}\left(-\beta_{1} \mathbf{u}_{1} \cdot \mathbf{n} q_{1}+\beta_{2} p_{2} \mathbf{v}_{2} \cdot \mathbf{n}+\alpha \mathbf{u}_{2} \cdot \mathbf{\mathbf { v } _ { 2 }} \cdot \mathbf{n}\right. \\
& \left.\quad-\beta_{3} p_{1} \mathbf{v}_{2} \cdot \mathbf{n}+\beta_{3} \mathbf{u}_{2} \cdot \mathbf{n} q_{1}+c_{3} p_{1} q_{1}\right) d S=\int_{\Gamma}\left(f_{0} \mathbf{v}_{2} \cdot \mathbf{n}+g_{0} q_{1}\right) d S
\end{aligned}
$$

for all $\mathbf{v}_{2} \in \mathbf{L}_{d i v}^{2}\left(G_{2}\right)$ with $\mathbf{v}_{2} \cdot \mathbf{n} \in L^{2}(\Gamma), q_{1} \in H^{1}\left(G_{1}\right)$. That is,

$$
\begin{gathered}
\beta_{2} p_{2}-\beta_{3} p_{1}+\alpha \mathbf{u}_{2} \cdot \mathbf{n}=f_{0} \text { and } \\
-\beta_{1} \mathbf{u}_{1} \cdot \mathbf{n}+\beta_{3} \mathbf{u}_{2} \cdot \mathbf{n}+c_{3} p_{1}=g_{0} \text { on } \Gamma .
\end{gathered}
$$

Note that the first term in each of these equations is defined only for solutions of the problem. Both equations are dual statements. Moreover, we can prescribe the ratios of p_{1}, p_{2} and $\mathbf{u}_{1} \cdot \mathbf{n}, \mathbf{u}_{2} \cdot \mathbf{n}$ independently with the three numbers $\beta_{1}, \beta_{2}, \beta_{3}$.

References

[1] Vincent Martin, Jérôme Jaffré, and Jean E. Roberts. Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput., 26(5):1667-1691 (electronic), 2005.

