
1 Boundary-Value Problems

Neumann Boundary-Value Problem

Let G be a domain in IRN with boundary ∂G on which n is the unit
outward normal. Let a(·) ∈ L∞(G) be uniformly positive: a(x) ≥ a0 >
0, x ∈ G.
Consider the Neumann boundary-value problem

−∇ · a(x)∇p(x) = F (x), x ∈ G, (1a)

a(·)∇p · n = g on ∂G. (1b)

The Weak Solution

Set V = H1(G). If p ∈ V is a solution of (1), then for each q ∈ V we have∫
G

F (x)q(x) dx =

∫
G

a(x)∇p(x) ·∇q(x) dx−
∫

∂G

a∇p · nq dS

=

∫
G

a(x)∇p(x) ·∇q(x) dx−
∫

∂G

g(s) q(s) dS ,

so we obtain

p ∈ V :

∫
G

a(x)∇p(x) ·∇q(x) dx =∫
G

F (x)q(x) dx +

∫
∂G

g(s) q(s) dS for all q ∈ V. (2)

Conversely, we can show that any appropriately smooth solution of (2) is
a solution of (1).

Notes

• Any two solutions of (2) differ by a constant in V , so we have unique-
ness only up to constants.

• By taking q(x) = 1 in (2) we find a necessary condition for existence
of a solution:
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∫
G

F (x) dx +

∫
∂G

g(s) dS = 0 . (3)

It is clear that the constant functions in V play a prominent role here.
Uniqueness holds up to them, and the right side of (2) must vanish on
them. We define the unit constant function on G by χ(x) = 1, x ∈ G.
Constant functions are those in the linear span < χ >= IRχ.

Hereafter we assume that (3) holds. We define the subspace V0 = {q ∈
V :

∫
G q(x) dx = 0} = {χ}⊥. These are the functions of V with mean-

value equal to zero. Then (2) is equivalent to

p̃ ∈ V0 :

∫
G

a(x)∇p̃(x) ·∇q(x) dx =∫
G

F (x)q(x) dx +

∫
∂G

g(s)q(s) dS for all q ∈ V0. (4)

where p̃(x) = p(x) − 1
|G|

∫
G p(y) dy. Thus we obtain an alternative weak

formulation for which we have uniqueness. What remains is to show that
the bilinear form

∫
G ∇p(x) · ∇q(x) dx is equivalent to the H1(Q)-scalar

product on V0. But this follows from the estimate

‖q‖2
L2(G) ≤

(∫
G

q(x) dx

)2

+
N

2
‖∇q‖2

L2(G) .

Summary

• The equations (1) are the strong form, and (2) and (4) are equivalent
weak forms of the Neumann boundary-value problem.

• The bilinear form (∇p, ∇q)L2(G) is equivalent to the H1(G) scalar
product on V0.

Theorem 1.1. Assume a(·) ∈ L∞(G) is uniformly positive, a(x) ≥ a0 >
0, x ∈ G and that

∫
G F (x) dx +

∫
∂G g(s) dS = 0. Then the Neumann

boundary-value problem (4) has a unique solution. That is, there exists a
solution of (2), and any two solutions of (2) differ by a constant.
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A Mixed Formulation

The formulation (2) has the form

p ∈ V : Ap(q) = f(q), q ∈ V, (5)

where the bilinear form

Ap(q) =

∫
G

a(x)∇p(x) ·∇q(x) dx, p, q ∈ V,

and the linear functional

f(q) =

∫
G

F (x)q(x) dx +

∫
∂G

g(s) q(s) dS, q ∈ V,

are defined as indicated. That is, Ap = f in V ′, where A : V → V ′ is the
indicated linear operator.

Now define another linear operator B : V → IR′ by

Bp =

∫
G

p(y) dy ,

and note that the dual operator B′ : IR → V ′ is given by

B′r(ϕ) = r(Bϕ) =

∫
G

r ϕ(x) dx ,

so we have Rg(B′) = IR ⊂ L2(G) ⊂ V ′, the constant functions.
Then the formulation (4) is of the form

p ∈ Ker(B) : Ap− f ∈ Ker(B)0 = Rg(B′). (6)

That is, we have

p ∈ V : Ap +B′r = f in V ′ (7a)

r ∈ IR : Bp = 0 in IR. (7b)

In fact, we find that B′r = f(1), so f − B′r ∈ V ′
0 .
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Trace and Normal Derivative on ∂G

We use the Sobolev space H1(G) = {q ∈ L2(G) : ∇q ∈ L2(G)}. This is
a Hilbert space with the scalar product

(p, q)H1(G) = (p, q)L2(G) + (∇p, ∇q)L2(G).

For q ∈ H1(G) there is a well-defined restriction to the boundary, the trace
γ(q) = q|∂G in L2(∂G), and this map q 7→ γ(q) is linear and continuous:
γ ∈ L(H1(G), L2(∂G)). The kernel of the trace map is denoted by H1

0(G).
Define B ⊂ L2(∂G) to be the range of the trace map, the set of boundary-
values of functions in H1(G). If we define the norm on B by

‖µ‖B = inf
q∈H1(G): γ(q)=µ

‖q‖H1(G), (8)

then γ ∈ L(H1(G), B) is onto B. We denote the range of the trace map
by B = H1/2(∂G) and its dual space by B′ = H−1/2(∂G).

We shall also use the space L2
div(G) = {v ∈ L2(G) : ∇ · v ∈ L2(G)}.

This is a Hilbert space with the scalar product

(u,v)L2
div(G) = (u,v)L2(G) + (∇ · u, ∇ · v)L2(G),

and smooth functions are dense in this space. For u ∈ L2
div(G) there is a

well-defined normal trace u · n ∈ H−1/2(∂G) for which∫
G

(u ·∇q + ∇ · u q) dx = u · n(γq), q ∈ H1(G). (9)

In fact, the left side of (9) defines a functional in H1(G)′ which vanishes
on H1

0(G), that is, an element of the annihilator H1
0(G)0. By the closed

range theorem, this is equal to Rg(γ′), so the functional equals γ′(u · n)
for a unique u · n ∈ B′. The right side of (9) is γ′(u · n)(q). For smoother
u ∈ H1(G) the (componentwise) trace has normal component γ(u) · n ∈
L2(∂G) ⊂ H−1/2(∂G), and the Stokes theorem shows

u · n(γq) =

∫
∂G

γ(u) · n q dS,

so we have denoted this functional by u · n also for u ∈ L2
div(G).
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Finally we note the special case of (9) with u = ∇p:∫
G

(∇p ·∇q + ∇ ·∇p q) dx =

∫
∂G

∇p · n(γq) dS

for all q ∈ H1(G), p ∈ H1(G) with ∇ ·∇p ∈ L2(G). (10)

The normal component of the gradient on ∂G is the normal derivative
∂p
∂n = ∇p · n ∈ H−1/2(∂G). The equation (10) is Green’s identity for the
Laplacean ∆ = ∇ ·∇, and it was precisely this equation that we needed
for the weak formulation of the Neumann problem (1).

Dirichlet-Neumann Boundary-Value-Problem

Set Q = {q ∈ H1(G) : q|Γ1
= 0} where the boundary of G is the disjoint

union ∂G = Γ1 ∪ Γ2.

Direct Variational Form

p ∈ Q :

∫
G

(λc(x)pq + κ(x)∇p ·∇q) dx =

∫
G

fq dx +

∫
Γ2

h q dS ∀q ∈ Q.

The strong form is, respectively,

p|Γ1
= 0, λc(x)p−∇ · κ(x)∇p = f in G,

and

∫
∂G

κ∇p · n q dS =

∫
Γ2

h q dS ∀q ∈ Q, that is, κ∇p · n|Γ2
= h

A Gradient Mixed Formulation

Set a(x) = 1
κ(x) and u(x) ≡ −κ(x)∇p.

u ∈ L2(G), p ∈ Q :

∫
G

a(x)u · v dx +

∫
G

∇p · v dx = 0 ∀v ∈ L2(G),

λ

∫
G

c(x)pq dx−
∫

G

u ·∇q dx =

∫
G

fq dx +

∫
Γ2

h q dS ∀q ∈ Q.

The strong form is

p|Γ1
= 0, a(x)u + ∇p = 0, λc(x)p + ∇ · u = f in G,

and −
∫

∂G

u · n q dS =

∫
Γ2

h q dS ∀q ∈ Q, that is − u · n|Γ2
= h.
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Here we have set

Au(v) =

∫
G

a(x)u · v dx, Bv(q) =

∫
G

v ·∇q dx, Cp(q) =

∫
G

c(x)pq dx.

Note: This mixed formulation is equivalent to the Direct Variational Form
above. The constraint on p|Γ1

is a strong (prescribed) boundary condition;
the constraint on u ·n|Γ2

is the corresponding weak or dual boundary con-
dition. A non-homogeneous value for p|Γ1

can be obtained by translation.

A Divergence Mixed Formulation

Set V = {v ∈ L2
div(G) : v · n|Γ2

= 0}.

u ∈ V, p ∈ L2(G) :

∫
G

a(x)u ·v dx−
∫

G

p∇ ·v dx =

∫
Γ1

g0v ·n ∀v ∈ V,

λ

∫
G

c(x)pq dx +

∫
G

∇ · u q dx =

∫
G

fq dx ∀q ∈ L2(G).

Although we write it as an integral, the right side of the first equation
is actually v · n(g0) for an appropriate g0. (See Remark 1.1 below.) The
strong form of this problem is

u · n|Γ2
= 0, a(x)u + ∇p = 0, λc(x)p + ∇ · u = f,

and −
∫

∂G

pv · n =

∫
Γ1

g0v · n ∀v ∈ V, that is, − p|Γ1
= g0

In this formulation we set A and C as above, but

Bv(q) = −
∫

G

∇ · v · q dx

Note: The constraint on u ·n|Γ2
is a strong (prescribed) boundary con-

dition; the constraint on p|Γ1
is the corresponding weak or dual boundary

condition. A non-homogeneous value for u ·n|Γ2
can be obtained by trans-

lation.

The non-homogeneous Poisson system

The fully non-homogeneous case can be handled in other ways. The
boundary conditions or other constraints can be moved from the space
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to the operators. Thus set V = L2
div(G), Q = L2(G)× B′ and seek

u ∈ V, p = [p1, p2] ∈ Q :∫
G

a(x)u · v dx−
∫

G

p1∇ · v dx +

∫
Γ2

p2 v · n dS

=

∫
G

f0 · v dx +

∫
Γ1

g0 v · n dS ∀v ∈ V, (11a)

λ

∫
G

c(x)p1q1 dx +

∫
G

∇ · u q1 dx−
∫

Γ2

u · n q2 dS

=

∫
G

fq1 dx +

∫
Γ2

hq2 dS ∀q ∈ L2(G). (11b)

In this formulation we define A and C as above, but

Bv(q) = −
∫

G

∇ · v · q1 dx +

∫
Γ2

v · nq2 dS.

Here B : L2
div(G) → L2(G) × B′ and B′ : L2(G) × B → L2

div(G)′, and we
have a pair of Lagrange multipliers p1, p2. These are independent, so we
have equivalently a pair of constraint operators B1 : L2

div(G) → L2(G) and
B2 : L2

div(G) → B′. The strong form is the non-homogeneous system

a(x)u + ∇p1 = f0, λc(x)p1 + ∇ · u = f, (12a)

−p1|Γ1
= g0, p1|Γ2

= p2, −u · n|Γ2
= h. (12b)

The trace values of p1 are meaningful because (11a) first shows that ∇p1 ∈
L2(G), and then it gives

−
∫

∂G

p1v · n dS +

∫
Γ2

p2v · n dS =

∫
Γ1

g0 v · n dS ∀v ∈ V.

In particular, the Lagrange multipliers of a solution are not independent.

Remark 1.1. The second term of B is delicate because v · n ∈ B′ so q2

needs to be extended to B. This same issue is implicit in the preceding
formulations of the Dirichlet-Neumann problem as well. This leads to the
special spaces of local boundary values, H

1/2
00 (Γ2).
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The non-homogeneous boundary-value problem (12) can be also be re-
solved by using non-zero constraints in the convex set. For example, the
second component p minimizes the functional (κ(x) = 1/a(x))

J1(q) = 1
2

∫
G

κ(x)|∇q|2dx−
∫

G

κ(x)f0 ·∇q

−
∫

Γ2

h q dS −
∫

G

f q dS + λ
2

∫
G

c(x)q2 dx

on the convex set K1 = {q ∈ H1(G) : γ(q)|Γ1
= −g0}. This follows directly

from the calculations

J1(q) = 1
2

∫
G

κ(|∇q|2 − 2∇p ·∇q) dx−
∫

G

u∇q dx

−
∫

Γ2

h q dS −
∫

G

f q dS + λ
2

∫
G

c(x)q2 dx

= 1
2

∫
G

κ(|∇q|2 − 2∇p ·∇q) dx +

∫
G

∇ · uq dx−
∫

∂G

u · n q dS

−
∫

Γ2

h q dS −
∫

G

f q dS + λ
2

∫
G

c(x)q2 dx

= 1
2

∫
G

κ(|∇q|2 − 2∇p ·∇q) dx−
∫

Γ1

u · n q dS + λ
2

∫
G

c(x)(q2 − 2pq) dx,

J1(p) = −1
2

∫
G

|∇p|2 dx +

∫
Γ1

u · n g0 dS − λ
2

∫
G

c(x)p2 dx,

from which we obtain

J1(q)− J1(p) = 1
2

∫
G

κ(x)|∇(q − p)|2 dx + λ
2

∫
G

c(x)(p− q)2 dx ≥ 0

for all q ∈ K1. The minimal point p is obtained as the solution of a
variational inequality.

Likewise, for the case λ = 0, the first component u minimizes the
functional

J2(v) = 1
2

∫
G

a(x)|v|2 dx−
∫

G

v · f0 dx−
∫

Γ1

g0 v · n dS
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on the set K2 = {v ∈ L2
div(G) : ∇ · v = f in G,v · n|Γ2

= −h}:

J2(v) = 1
2

∫
G

a(x)(|v|2 − 2v · u) dx−
∫

G

v ·∇p dx−
∫

Γ1

g0 v · n dS

= 1
2

∫
G

a(x)(|v|2−2v ·u) dx+

∫
G

∇ ·v p dx−
∫

∂G

v ·n p dS−
∫

Γ1

g0 v ·n dS

= 1
2

∫
G

a(x)(|v|2 − 2v · u) dx +

∫
G

f p dx +

∫
Γ2

h p dS for all v ∈ K2,

J2(u) = −1
2

∫
G

a(x)|u|2 dx +

∫
G

f p dx +

∫
Γ2

h p dS,

so that we find

J2(v)− J2(u) = 1
2

∫
G

a(x)|v − u|2 dx ≥ 0 for all v ∈ K2,

and u is characterized as the solution of a variational inequality.
When λ > 0 and c(x) ≥ c0 > 0, we can show directly that the first

component u minimizes the functional

J3(v) = 1
2

∫
G

a(x)|v|2 dx+

∫
G

1
2λc(x)(∇·v−f)2 dx−

∫
G

v·f0 dx−
∫

Γ1

g0 v·n dS

on the set K2 = {v ∈ L2
div(G) : v · n|Γ2

= −h}.

Interface Boundary-Value-Problems

Let the domain G be split into subdomains G1 and G2 by an interface Γ.
The normal n on Γ is directed out of G1 and into G2. For q ∈ L2(G),
we denote with subscripts the restrictions to the respective regions, qj =
q|Gj

, j = 1, 2. Similarly we denote restrictions of vector-valued v ∈ L2(G)
by vj, j = 1, 2.

• If we choose a gradient mixed formulation on G (p ∈ L2(G)) the
strong interface condition is p1 = p2 on Γ and there is a corresponding
weak or dual interface condition on u1 · n− u2 · n.

• If we choose a divergence mixed formulation on G (u ∈ L2
div(G))

the strong interface condition is u1 · n = u2 · n on Γ and there is a
corresponding weak or dual interface condition on p1 − p2.
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These are the most frequently appropriate conditions, but there can be
reasons to consider more general situations, such as modeling over multiple
scales. See [1].

A Neumann Interface problem in Direct Formulation

Q = {q ∈ L2(G) : ∇q1 ∈ L2(G1), ∇q2 ∈ L2(G2)} so traces on

Γ = ∂G1 ∩ ∂G2, Γ1 = ∂G1 − Γ, Γ2 = ∂G2 − Γ

are all defined. Define the convex set

Kg = {q ∈ Q : β1q1 − β2q2 = g on Γ}

The variational inequality

p ∈ Kg :

∫
G

(cp(q − p) + k∇p ·∇(q − p)) dx ≥∫
G

F (q − p) dx +

∫
Γ∪Γ1∪Γ2

h(q − p) dS, q ∈ Kg

is equivalent to

p ∈ Kg :

∫
G

(cpq + k∇p ·∇q) dx =

∫
G

Fq dx +

∫
Γ∪Γ1∪Γ2

hq dS, q ∈ K0.

This is a weak formulation of the Neumann-interface problem

c1p1 −∇ · (k1∇p1) = F1 in G1, k1∇p1 · n = h1 on Γ1, (13a)

c2p2 −∇ · (k2∇p2) = F2 in G2, k2∇p2 · n = h2 on Γ2, (13b)

β1p1 − β2p2 = g, β2k1∇p1 · n− β1k2∇p2 · n = β2h on Γ. (13c)

Note that the coefficients β1, β2 were defined in the convex set K, and
those same coefficients appear in both of the interface conditions.

A Mixed-Mixed Formulation

Here we ‘mix’ the gradient and divergence formulations to get both inter-
face conditions weak. In particular, there are no constraints to couple
the spaces.
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V ≡ {u ∈ L2(G1)× L2
div(G2) : α1/2u2 · n ∈ L2(Γ)} Q ≡ H1(G1)× L2(G2)

Au(v) =

∫
G1

a1u1 · v1 dx +

∫
G2

a2u2 · v2 dx +

∫
Γ
αu2 · nv2 · n dS

Bu(q) =

∫
G1

β1u1 ·∇q1 dx−
∫

G2

β2∇ · u2q2 −
∫

Γ
β3u2 · n q1 dS

Cp(q) =

∫
G1

c1p1q1 dx +

∫
G2

c2p2q2 dx +

∫
Γ
c3p1q1 dS

The mixed problem is

u ∈ V, p ∈ Q : Au + B′p = f in V′,

−Bu + Cp = g in Q′,
(14)

and it has the form

u1 ∈ L2(G1), u2 ∈ L2
div(G2), u2 · n ∈ L2(Γ),

p1 ∈ H1(G1), p2 ∈ L2(G2) :∫
G1

(a1u1 · v1 dx + β1∇p1 · v1 − β1u1 ·∇q1 + c1p1q1) dx

+

∫
G2

(a2u2 · v2 − β2p2∇ · v2 + β2∇ · u2 q2 + c2p2q2) dx

+

∫
Γ
(αu2 · nv2 · n− β3p1v2 · n + β3u2 · n q1 + c3p1q1) dS

=

∫
G

(f · v + g q) dx +

∫
Γ
(f0v2 · n + g0q1) dS

for all v1 ∈ L2(G1), v2 ∈ L2
div(G2) with v2 ·n ∈ L2(Γ), q1 ∈ H1(G1), q2 ∈

L2(G2).
The strong form of the system is

a1u1 + β1∇p1 = f1, c1p1 + ∇ · β1u1 = g1 in G1,

a2u2 + ∇β2p2 = f2, c2p2 + β2∇ · u2 = g2 in G2,

the boundary conditions

u1 · n = 0 on ∂G1 − Γ, p2 = 0 on ∂G2 − Γ,
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and∫
Γ
(−β1u1 · n q1 + β2p2v2 · n + αu2 · nv2 · n

− β3p1v2 · n + β3u2 · n q1 + c3p1q1)dS =

∫
Γ
(f0v2 · n + g0q1) dS

for all v2 ∈ L2
div(G2) with v2 · n ∈ L2(Γ), q1 ∈ H1(G1). That is,

β2p2 − β3p1 + αu2 · n = f0 and

−β1u1 · n + β3u2 · n + c3p1 = g0 on Γ.

Note that the first term in each of these equations is defined only for
solutions of the problem. Both equations are dual statements. Moreover,
we can prescribe the ratios of p1, p2 and u1 · n, u2 · n independently with
the three numbers β1, β2, β3.
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