1. Evolution Equations

An unbounded linear operator $L: D \rightarrow H^{\prime}$ with domain D in the Hilbert space H is monotone if

$$
L x(x) \geq 0, \quad x \in D,
$$

and it is maximal monotone if, in addition, $\mathcal{R}+L$ maps D onto H^{\prime}, where \mathcal{R} is the Riesz map $\mathcal{R}: H \rightarrow H^{\prime}, \mathcal{R} x(y)=(x, y)_{H}$. Sufficient conditions for an initial-value problem to be well-posed are provided by the Hille-Yosida theorem.

Theorem 1.1. Let the operator $L: D \rightarrow H^{\prime}$ be maximal monotone on the Hilbert space H. Then for every $w^{0} \in D(A)$ and $f \in C^{1}\left([0, \infty), H^{\prime}\right)$ there is a unique solution $w \in C^{1}([0, \infty), H)$ of the initial-value problem

$$
\begin{equation*}
\frac{d}{d t} \mathcal{R} w(t)+L w(t)=f(t), \quad t>0, \quad w(0)=w^{0} \tag{1}
\end{equation*}
$$

If additionally L is self-adjoint, then for each $w^{0} \in H$ and Hölder continuous $f \in$ $C^{\beta}\left([0, \infty), H^{\prime}\right), 0<\beta<1$, there is a unique solution $w \in C([0, \infty), H) \cap C^{1}((0, \infty), H)$ of (1).

Example 2. Let $H=L^{2}(0,1)$ with the usual scalar product, so \mathcal{R} is the identity, $D=$ $\left\{v \in H^{1}(0,1): v(0)=0\right\}$, and $L v=\partial v$ for $v \in D$. Then L is maximal monotone. The equation

$$
v+L v=f \text { in } L^{2}(0,1)
$$

corresponds to the problem

$$
v(x)+\partial v(x)=f(x), x \in(0,1), v(0)=0
$$

and the equation (1) corresponds to the problem

$$
\begin{gathered}
\partial_{t} w(x, t)+\partial_{x} w(x, t)=f(x, t) \\
w(x, 0)=w^{0}(x), w(0, t)=0, t>0,0<x<1
\end{gathered}
$$

for the advection equation.
Example 3. Let $\rho \in L^{\infty}(0,1)$ with $\rho(x) \geq \rho_{0}>0$. Set $H_{\rho}=L^{2}(0,1)$ with the scalar product $(u, v)_{H_{\rho}}=\int_{0}^{1} \rho(x) u(x) v(x) d x$. Then the Riesz map is given by $\mathcal{R} u=\rho u$. Set $D=\left\{v \in H^{2}(0,1): v(0)=0, v^{\prime}(1)=0\right\}$, and $L v=-\partial^{2} v$ for $v \in D$. Then L is maximal monotone. The equation

$$
\mathcal{R} v+L v=f \text { in } L^{2}(0,1)
$$

corresponds to the boundary-value problem

$$
\rho(x) v(x)-\partial^{2} v(x)=f(x), x \in(0,1), v(0)=0, v^{\prime}(1)=0,
$$

and the equation (1) corresponds to the initial-boundary-value problem

$$
\begin{aligned}
\rho(x) \partial_{t} w(x, t)-\partial_{x}^{2} w(x, t) & =f(x, t), \\
w(x, 0)=w^{0}(x), w(0, t)=0, \partial_{x} w(1, t) & =0, t>0,0<x<1,
\end{aligned}
$$

for the diffusion equation. This L is self-adjoint.

Mixed Problems, I. Consider first the evolutionary Stokes system. We defined the subspace $\mathbf{V}_{0}=\left\{\mathbf{w} \in \mathbf{H}_{0}^{1}(\Omega): \boldsymbol{\nabla} \cdot \mathbf{w}=0\right.$ in $\left.\Omega\right\}$ of $\mathbf{H}_{0}^{1}(\Omega)$ and showed the first component $\mathbf{u}(t)=\mathbf{u}(\cdot, t)$ (velocity) of the solution is characterized by the Stokes equation
(2) $\mathbf{u}(t) \in \mathbf{V}_{0}: \int_{\Omega} \rho(x) \frac{\partial}{\partial t} \mathbf{u}(t) \cdot \mathbf{w} d x+\mu \int_{\Omega} \boldsymbol{\nabla} u_{i}(t) \cdot \nabla w_{i} d x$

$$
=\int_{\Omega} \mathbf{f}(t) \cdot \mathbf{w} d x \text { for all } \mathbf{w} \in \mathbf{V}_{0} t>0, \mathbf{u}(\cdot, 0)=\mathbf{u}_{0}(\cdot)
$$

Let $\rho \in L^{\infty}(\Omega)$ satisfy $\rho(x) \geq \rho_{0}>0$, and define \mathbf{H}_{ρ} to be the closure of \mathbf{V}_{0} with the scalar product $(\mathbf{u}, \mathbf{v})_{\mathbf{H}_{\rho}}=\int_{\Omega} \rho(x) \mathbf{u}(x) \cdot \mathbf{v}(x) d x$. Then the Riesz map is given by $\mathcal{R} \mathbf{u}=\rho \mathbf{u}$ and $\mathbf{V}_{0} \hookrightarrow \mathbf{H}_{\rho}$ is continuous with \mathbf{V}_{0} dense in \mathbf{H}_{ρ}, hence, $\mathbf{H}_{\rho}^{\prime} \subset \mathbf{H}_{0}^{1}(\Omega)^{\prime}=\mathbf{H}^{-1}(\Omega)$. Note also that $\mathbf{V}_{0} \subset \mathbf{H}_{0}^{1}(\Omega)$.

Define the operator $\mathcal{A}: \mathbf{H}_{0}^{1}(\Omega) \rightarrow \mathbf{H}^{-1}(\Omega)$ by

$$
\mathcal{A} \mathbf{u}(\mathbf{w})=\mu \int_{\Omega} \boldsymbol{\nabla} u_{i}(t) \cdot \nabla w_{i} d x, \mathbf{u}, \mathbf{w} \in \mathbf{H}_{0}^{1}(\Omega)
$$

and let $f(t) \in \mathbf{H}_{0}^{1}(\Omega)^{\prime}$ be given for each $t>0$. Then (2) takes the form

$$
\begin{equation*}
\mathbf{u}(t) \in \mathbf{V}_{0}, \frac{d}{d t} \mathcal{R} \mathbf{u}(t)(\mathbf{w})+\mathcal{A} \mathbf{u}(t)(\mathbf{w})=f(t)(\mathbf{w}), \mathbf{w} \in \mathbf{V}_{0}, t>0, \quad \mathbf{u}(0)=\mathbf{u}_{0} . \tag{3}
\end{equation*}
$$

Define $D=\left\{\mathbf{v} \in \mathbf{V}_{0}: \mathcal{A} \mathbf{v} \in \mathbf{H}_{\rho}^{\prime}\right\}$ and set $L \mathbf{u}=\mathcal{A} \mathbf{u}$ for $\mathbf{u} \in D$. Then L is maximal monotone and symmetric, so Theorem 1.1 shows that for each $\mathbf{u}_{0} \in \mathbf{H}_{\rho}$ and Hölder continuous $f \in C^{\beta}\left([0, \infty), \mathbf{H}_{\rho}^{\prime}\right), 0<\beta<1$, there is a unique solution $\mathbf{u} \in C\left([0, \infty), \mathbf{H}_{\rho}\right) \cap$ $C^{1}\left((0, \infty), \mathbf{H}_{\rho}\right)$ of (3) with $\mathbf{u}(t) \in \mathbf{V}_{0}$ and $\Delta \mathbf{u}(t) \in \mathbf{H}_{\rho}^{\prime}$ for each $t>0$. Since \mathbf{V}_{0} is the kernel of the divergence, we then obtain the pressure $p(t) \in L^{2}(\Omega)$ for $t>0$ to complete the system.
The Stokes system is an example of a mixed formulation in which the evolution term (time derivative) occurs in the first equation. We shall call this a mixed evolution system of Type I. More generally, suppose we have a pair of spaces V, W and operators

$$
\mathcal{A}: V \rightarrow V^{\prime}, \mathcal{B}: V \rightarrow W^{\prime}, \mathcal{C}: W \rightarrow W^{\prime}
$$

which determine an evolution system in mixed form

$$
\begin{align*}
u(t) \in V, p(t) \in & W: \rho \frac{\partial}{\partial t} u(t)+\mathcal{A} u(t)+\mathcal{B}^{\prime} p(t)=f \text { in } V^{\prime} \\
& -\mathcal{B} u(t)+\mathcal{C} p(t)=0 \text { in } W^{\prime} . \tag{4}
\end{align*}
$$

Assume that $V \hookrightarrow H_{\rho}$ is dense, where $H_{\rho}=L^{2}(\Omega)$ is given as in the preceding example, so that $H_{\rho}^{\prime} \hookrightarrow V^{\prime}$.

Define an operator $L: D \rightarrow H_{\rho}^{\prime}$ on the domain $D \subset H_{\rho}$ by $D=\left\{\mathbf{v} \in V: \mathcal{A} \mathbf{v}+\mathcal{B}^{\prime} p \in\right.$ H_{ρ}^{\prime} and $-\mathcal{B} \mathbf{v}+\mathcal{C} p=0$ for some $\left.p \in W\right\}$. Then set $L \mathbf{v}=\mathcal{A} \mathbf{v}+\mathcal{B}^{\prime} p$ for $\mathbf{v} \in D$. The operator L is monotone, since $L \mathbf{v}(\mathbf{v})=\mathcal{A} \mathbf{v}(\mathbf{v})+\mathcal{C} p(p) \geq 0$, and maximal if the system

$$
\begin{gathered}
v \in V, p \in W: \rho v+\mathcal{A} v+\mathcal{B}^{\prime} p=f \text { in } V^{\prime}, \\
-\mathcal{B} v+\mathcal{C} p=0 \text { in } W^{\prime} .
\end{gathered}
$$

always has a unique solution with $\mathcal{B}^{\prime} p$ unique. Then $u(t), p(t)$ is a solution of (4) if and only if

$$
\begin{equation*}
\rho \frac{\partial}{\partial t} u(t)+L u(t)=f(t) \text { in } H_{\rho}^{\prime} . \tag{5}
\end{equation*}
$$

The operator L is symmetric, so the initial-value problem can be solved for each $\mathbf{u}(0)=$ $\mathbf{u}_{0} \in H_{\rho}$. Note that if the second equation in (4) is non-homogeneous, then we can use a translation to reduce the problem back to (4). This will be illustrated in the next example.

Mixed Problems, II. Porous media flow provides an example of a mixed evolution system of Type II in which the evolution term is in the second equation. The constitutive law of Darcy is

$$
\begin{equation*}
a(x) \mathbf{u}+\nabla p=\mathbf{g}(x) \tag{6a}
\end{equation*}
$$

where \mathbf{u} represents the flux, p the pressure, and $a(\cdot)$ the resistance of the porous medium, i.e., viscosity times the reciprocal of permeability, and \mathbf{g} represents the gravity force. After dividing by the (constant) density, the fluid conservation law is

$$
\begin{equation*}
c(x) \frac{\partial}{\partial t} p+\nabla \cdot \mathbf{u}=f(x, t) . \tag{6b}
\end{equation*}
$$

We shall show that these equations together with an initial condition and boundary condition

$$
\begin{equation*}
p(x, 0)=p_{0}(x), x \in \Omega, \quad \mathbf{u}(s, t) \cdot \mathbf{n}=0, s \in \partial \Omega \tag{6c}
\end{equation*}
$$

constitute a well-posed problem.
Define the operators

$$
\begin{aligned}
\mathcal{A}: V & \rightarrow V^{\prime}, \mathcal{B}: V \rightarrow W^{\prime}, \mathcal{C}: W \rightarrow W^{\prime} \\
\mathcal{A} \mathbf{u}(\mathbf{v}) & =\int_{\Omega} a(x) \mathbf{u} \cdot \mathbf{v} d x, \quad \mathbf{u}, \mathbf{v} \in V \\
\mathcal{B} \mathbf{u}(q) & =\int_{\Omega} \mathbf{u} \cdot \boldsymbol{\nabla} q d x, \quad \mathbf{u} \in V, q \in W \\
\mathcal{C} p(q) & =\int_{\Omega} c(x) p q d x, \quad p, q \in W
\end{aligned}
$$

on the spaces $V \equiv \mathbf{L}^{2}(\Omega)$ and $W=H^{1}(\Omega)$.
The mixed formulation of the initial-boundary-value problem (6) takes the form

$$
\begin{gather*}
\mathbf{u}(t) \in V, p(t) \in W: \mathcal{A} \mathbf{u}(t)(\mathbf{v})+\mathcal{B}^{\prime} p(t)(\mathbf{v})=\mathbf{g}(\mathbf{v}) \\
\mathcal{C} \frac{\partial}{\partial t} p(t)(q)-\mathcal{B} \mathbf{u}(t)(q)=f(t)(q), \mathbf{v} \in V, q \in W \tag{7}
\end{gather*}
$$

Remark 3.1. The backward-difference approximation $\frac{\partial}{\partial t} p(t) \approx(p(t)-p(t-h)) / h$ leads to the stationary system

$$
\begin{gather*}
\mathbf{u}(t) \in V, p(t) \in W: \mathcal{A} \mathbf{u}(t)(\mathbf{v})+\mathcal{B}^{\prime} p(t)(\mathbf{v})=\mathbf{g}(\mathbf{v}), \\
-\mathcal{B} \mathbf{u}(t)(q)+\lambda \mathcal{C} p(t)(q)=\lambda \mathcal{C} p(t-h)(q)+f(q), \mathbf{v} \in V, q \in W \tag{8}
\end{gather*}
$$

where $\lambda=h^{-1}$ is the reciprocal of the time increment, $h>0$.
Let's resolve (7). First find a pair u_{g}, p_{g} which is a solution of a stationary problem,

$$
\begin{aligned}
\mathbf{u}_{g} \in V, p_{g} \in W: \mathcal{A} \mathbf{u}_{g}+\mathcal{B}^{\prime} p_{g} & =\mathbf{g}, \\
-\mathcal{B} \mathbf{u}_{g} & =0
\end{aligned}
$$

Subtract u_{g} from $\mathbf{u}(t)$ to get the problem (7) but with $\mathbf{g}=\mathbf{0}$ and the initial condition $\mathcal{C} p(0)=\mathcal{C} p_{0}-\mathcal{C} p_{g}$ for the translates, $\mathbf{u}(t)-\mathbf{u}_{g}, p(t)-p_{g}$. Thus, we want to solve the reduced evolution system

$$
\begin{align*}
\mathbf{u}(t) \in V, p(t) \in W & : \mathcal{A} \mathbf{u}(t)+\mathcal{B}^{\prime} p(t)=\mathbf{0} \text { in } V^{\prime} \\
& -\mathcal{B} \mathbf{u}(t)+\mathcal{C} \frac{\partial}{\partial t} p(t)=f(t) \text { in } W^{\prime} . \tag{9}
\end{align*}
$$

Let $c \in L^{\infty}(\Omega), c(x) \geq c_{0}>0$ and W_{c} denote the Hilbert space $L^{2}(\Omega)$ with the scalar product $(u, v)_{c}=\int_{\Omega} c(x) u(x) v(x) d x$. Note that $W \hookrightarrow W_{c}$ and $W_{c}^{\prime} \hookrightarrow W^{\prime}$.

Define L as follows: $L p=f$ if $f \in W_{c}^{\prime}$ and

$$
\begin{equation*}
\mathbf{u} \in V, p \in W: \mathcal{A} \mathbf{u}+\mathcal{B}^{\prime} p=\mathbf{0},-\mathcal{B} \mathbf{u}=f \tag{10}
\end{equation*}
$$

Then $u(t), p(t)$ is a solution of (9) if and only if

$$
\begin{equation*}
\mathcal{C} \frac{\partial}{\partial t} p(t)+L p(t)=f(t) \text { in } W_{c}^{\prime}, \mathcal{C} p(0)=\mathcal{C} p_{0} . \tag{11}
\end{equation*}
$$

Note that L is

- monotone: $L p(p)=-\mathcal{B} \mathbf{u}(p)=-\mathcal{B}^{\prime} p(\mathbf{u})=\mathcal{A} \mathbf{u}(\mathbf{u}) \geq 0$
- maximal: $C p+L p=f$ is solvable for $f \in W_{c}^{\prime}=L^{2}(\Omega)$
because we can solve the equivalent mixed system

$$
\begin{align*}
\mathbf{u} \in V, p \in W & : \mathcal{A} \mathbf{u}+\mathcal{B}^{\prime} p=\mathbf{0} \\
& -\mathcal{B} \mathbf{u}+\mathcal{C} p=f \tag{12}
\end{align*}
$$

This corresponds to

$$
\begin{align*}
\mathbf{u} \in \mathbf{L}^{2}(\Omega), p \in H^{1}(\Omega): a(x) \mathbf{u}+\boldsymbol{\nabla} p & =\mathbf{0} \text { and } \\
\nabla \cdot \mathbf{u}+c(x) p & =f \text { in } \mathbf{L}^{2}(\Omega), \tag{13}\\
\mathbf{u} \cdot \mathbf{n} & =0 \text { on } \partial \Omega .
\end{align*}
$$

Remark 3.2. More generally, if $\mathcal{C}(\cdot)(\cdot)$ is a scalar product on W and we denote the completion of this space by W_{c}, then the corresponding extension $\mathcal{C}: W_{c} \rightarrow W_{c}^{\prime}$ is the Riesz map and the preceding construction applies.

Mixed Problems, III. If the evolution terms appear in both equations, we call it a mixed evolution system of Type III. These take the form

$$
\begin{gather*}
u(t) \in V, p(t) \in W: \rho \frac{\partial}{\partial t} u(t)+\mathcal{A} u(t)(v)+\mathcal{B}^{\prime} p(t)(v)=g(t)(v) \tag{14}\\
\mathcal{C} \frac{\partial}{\partial t} p(t)(q)-\mathcal{B} u(t)(q)=f(t)(q), v \in V, q \in W, t>0 \tag{15}
\end{gather*}
$$

Write this system in the form

$$
\frac{\partial}{\partial t}\binom{\rho u(t)}{\mathcal{C} p(t)}+\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B}^{\prime} \tag{16}\\
-\mathcal{B} & 0
\end{array}\right)\binom{u(t)}{p(t)}=\binom{g(t)}{f(t)} .
$$

Choose \mathcal{R} on the space H obtained by completing $V \times W$ with the scalar product

$$
\left(\binom{u}{p},\binom{v}{q}\right)_{H}=(u, v)_{H_{\rho}}+\mathcal{C} p(q)
$$

so $\mathcal{R}=\left(\begin{array}{ll}\rho & 0 \\ 0 & \mathcal{C}\end{array}\right)$. Construct L from the matrix $\left(\begin{array}{cc}\mathcal{A} & \mathcal{B}^{\prime} \\ -\mathcal{B} & 0\end{array}\right)$ restricted to H^{\prime} as before. Department of Mathematics, Oregon State University, Corvallis, OR 97331

