1. EVOLUTION EQUATIONS

An unbounded linear operator L : D — H’ with domain D in the Hilbert space H is
monotone if

Lz(x) >0, reD,

and it is maximal monotone if, in addition, R + L maps D onto H’, where R is the Riesz
map R : H — H', Rx(y) = (x,y)n. Sufficient conditions for an initial-value problem to
be well-posed are provided by the Hille-Yosida theorem.

Theorem 1.1. Let the operator L : D — H' be maximal monotone on the Hilbert
space H. Then for every w® € D(A) and f € C*(]0,00), H') there is a unique solution
w € CY([0,00), H) of the initial-value problem

(1) LRw(t) + Lw(t) = f(t), t>0, w(0)=u"

If additionally L is self-adjoint, then for each w® € H and Hélder continuous f €
CP([0,00), H'), 0 < B3 < 1, there is a unique solution w € C([0,00), H) N C*((0,00), H)
of (1).

Example 2. Let H = L*(0,1) with the usual scalar product, so R is the identity, D =
{ve HY(0,1): v(0) =0}, and Lv = dv for v € D. Then L is mazimal monotone. The
equation

v+ Lv = f in L*(0,1)
corresponds to the problem
v(z) + dv(z) = f(x), = € (0,1), v(0) =0,
and the equation (1) corresponds to the problem
Orw(x,t) + dyw(x,t) = f(x,t),
w(x,0) = w’(z), w(0,t)=0,t>0, 0<z<1,

for the advection equation.

Example 3. Let p € L°°(O 1) with p(x) > po > 0. Set H, = L*(0,1) with the scalar
pmduct u,v)g, = fo Yu(z)v(z)dx. Then the Riesz map is given by Ru = pu. Set

= {v € H*0,1) : U(O) =0, v'(1) = 0}, and Lv = —9?v for v € D. Then L is
maximal monotone. The equation

Rv+ Lv = f in L*(0,1)
corresponds to the boundary-value problem
p(x)v(z) — 0*v(x) = f(z), = € (0,1), v(0) =0, v'(1) =0,
and the equation (1) corresponds to the initial-boundary-value problem
p() D, ) — Dz, ) = fz,0),
w(z,0) = w’(z), w(0,t) =0,0,w(l,t) =0, t>0, 0 <z <1,

for the diffusion equation. This L is self-adjoint.
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Mixed Problems, I. Consider first the evolutionary Stokes system. We defined the sub-
space Vo = {w € H{(Q) : V-w = 0in Q} of H}(Q) and showed the first component
u(t) = u(-,t) (velocity) of the solution is characterized by the Stokes equation

(2) u(t) € Vg : /Qp(x)%u(t) -wdr + /L/Q Vu(t) - Vw; dx

:/f(t)-wdx for all w € Vo t >0, u(,0) = ug(").
Q

Let p € L>(Q) satisfy p(x) > po > 0, and define H, to be the closure of V| with the
scalar product (u,v)u, = [, p()u(z)-v(z)dz. Then the Riesz map is given by Ru = pu
and Vo — H, is continuous with V, dense in H,, hence, H, C H5(©2)’ = H™'(Q2). Note
also that Vo € Hj(9).

Define the operator A : Hj(Q2) — H™*(Q) by

Au(w) = ,u/ Vui(t) - Vw;dr, u, w € H}(Q),
0

and let f(t) € H)(Q) be given for each ¢t > 0. Then (2) takes the form
(3)  u(t) € Vo, 2Ru(t)(w) + Au(t)(w) = f(t)(w), w € Vo, t >0, u(0) = u,.

Define D = {v € Vo : Av € H}} and set Lu = Au for u € D. Then L is maximal
monotone and symmetric, so Theorem 1.1 shows that for each uy € H, and Hoélder
continuous f € C?([0,00),H)), 0 < < 1, there is a unique solution u € C([0, 00), H,)N
C'((0,00),H,) of (3) with u(t) € Vo and Au(t) € H), for each ¢t > 0. Since V is the
kernel of the divergence, we then obtain the pressure p(t) € L?(2) for ¢t > 0 to complete
the system.

The Stokes system is an example of a mixed formulation in which the evolution term
(time derivative) occurs in the first equation. We shall call this a mixed evolution system
of Type I. More generally, suppose we have a pair of spaces V, W and operators

AV -V B:V-W,C:W-—-W
which determine an evolution system in mixed form
u(t) €V, p(t) e W plu(t)+ Au(t) + B'p(t) = f in V',
(4) —Bu(t) + Cp(t) = 0 in W'
Assume that V < H, is dense, where H, = L*(2) is given as in the preceding example,
so that H) — V.
Define an operator L : D — H,, on the domain D C H,by D={veV:Av+Bpe

H) and — Bv + Cp = 0 for some p € W}. Then set Lv = Av + B'p for v € D. The
operator L is monotone, since Lv(v) = Av(v) + Cp(p) > 0, and maximal if the system

veV,peW: pv+Av+Bp=finV/
—Bv+Cp=0in W'

always has a unique solution with B'p unique. Then u(t), p(t) is a solution of (4) if and
only if

(5) p2u(t) + Lu(t) = f(t) in .



3

The operator L is symmetric, so the initial-value problem can be solved for each u(0) =
uy € H,. Note that if the second equation in (4) is non-homogeneous, then we can use
a translation to reduce the problem back to (4). This will be illustrated in the next
example.

Mixed Problems, II. Porous media flow provides an example of a mixed evolution system
of Type II in which the evolution term is in the second equation. The constitutive law of
Darcy is

(6a) a(z)u+ Vp = g(z),

where u represents the flux, p the pressure, and a(-) the resistance of the porous medium,
i.e., viscosity times the reciprocal of permeability, and g represents the gravity force.
After dividing by the (constant) density, the fluid conservation law is

(6b) c(z) Zp+ V- -u= f(z,).

We shall show that these equations together with an initial condition and boundary
condition

(6¢) p(x,0) =po(z),z € Q, u(s,t)-n=0, s,

constitute a well-posed problem.
Define the operators

AV sV B:V-W,C:W-—-=W
Au(v):/a(x)u~vdx, u,vev,
0

Bu(q):/u-qux, ueV, geW,
Q

Cplq) = / c(@)pade, p.geW
(9]

on the spaces V = L?(Q) and W = HY(Q).
The mixed formulation of the initial-boundary-value problem (6) takes the form

u(t) €V, p(t) e W: Au(t)(v) + B'p(t)(v) = g(v),
(7) Cap(t)(q) — Bu(t)(q) = f(t)(q), vEV, g€ W.

Remark 3.1. The backward-difference approzimation 2p(t) ~ (p(t) — p(t — h))/h leads
to the stationary system

u(t) €V, p(t) € W Au(t)(v) + B'p(t)(v) = g(v),
(8) —Bu(t)(q) + ACp(t)(q) = XCp(t — h)(q) + f(q), VEV, ¢ €W,
where X\ = h™' is the reciprocal of the time increment, h > 0.

Let’s resolve (7). First find a pair u,, p, which is a solution of a stationary problem,
u, €V, p,e W: Au, + B'p, =g,
—Bu, = 0.
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Subtract u, from u(t) to get the problem (7) but with g = 0 and the initial condition
Cp(0) = Cpy — Cp, for the translates, u(t) — u,, p(t) — p,. Thus, we want to solve the
reduced evolution system

u(t) eV, p(t) e W: Au(t) + B'p(t) =0in V',
—Bu(t) + C2p(t) = f(t) in W'
Let ¢ € LOO(Q) c(x ) > Co > 0 and W, denote the Hilbert space L?(£2) with the scalar

product (u,v), = [, c(z (z) dz. Note that W — W, and W/ — W',
Define L as follows Lp f 1f feW!and

(10) ueV,peW: Au+Bp=0, —Bu=f.
Then u(t), p(t) is a solution of (9) if and only if
(11) C2p(t) + Lp(t) = f(t) im WY, Cp(0) = Cpo.

Note that L is

e monotone: Lp(p) = —Bu(p) = —B'p(u) = Au(u) > 0
e maximal: Cp + Lp = f is solvable for f € W/ = L?*()

because we can solve the equivalent mixed system
ucV,peW: Au+Bp=0,
—Bu+Cp=f.

(9)

(12)

This corresponds to
ucl?*Q), pe H(Q): a(x)u+ Vp=0 and
(13) V-u+c(z)p = fin L*(Q),
u-n=_0on 0.
Remark 3.2. More generally, if C(-)(:) is a scalar product on W and we denote the

completion of this space by W, then the corresponding extension C : W, — W/ is the
Riesz map and the preceding construction applies.

Mized Problems, I1I. If the evolution terms appear in both equations, we call it a mixed
evolution system of Type III. These take the form

(14) u(t) € Vi p(t) € W pult) + Au(t)(v) + B'p(t)(v) = g(t)(v),
(15) Cp(t)(q) — Bu(t)(q) = f(t)(q), vEV, g€ W, t > 0.
Write this system in the form

pu(t) A B (ut)) _ (9(t)
(16) w (o)~ (55 5) G) = (56):

Choose R on the space H obtained by completing V' x W with the scalar product

((Z> ’ (Z) ) . (u, v)n, + Cpla)



p 0 . A B . ,
so R = 0 c) Construct L from the matrix "B 0 restricted to H' as before.
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