
1. Evolution Equations

An unbounded linear operator L : D → H ′ with domain D in the Hilbert space H is
monotone if

Lx(x) ≥ 0 , x ∈ D ,

and it is maximal monotone if, in addition, R+L maps D onto H ′, where R is the Riesz
map R : H → H ′, Rx(y) = (x, y)H . Sufficient conditions for an initial-value problem to
be well-posed are provided by the Hille-Yosida theorem.

Theorem 1.1. Let the operator L : D → H ′ be maximal monotone on the Hilbert
space H. Then for every w0 ∈ D(A) and f ∈ C1([0,∞), H ′) there is a unique solution
w ∈ C1([0,∞), H) of the initial-value problem

(1) d
dt
Rw(t) + Lw(t) = f(t) , t > 0 , w(0) = w0.

If additionally L is self-adjoint, then for each w0 ∈ H and Hölder continuous f ∈
Cβ([0,∞), H ′), 0 < β < 1, there is a unique solution w ∈ C([0,∞), H) ∩ C1((0,∞), H)
of (1).

Example 2. Let H = L2(0, 1) with the usual scalar product, so R is the identity, D =
{v ∈ H1(0, 1) : v(0) = 0}, and Lv = ∂v for v ∈ D. Then L is maximal monotone. The
equation

v + Lv = f in L2(0, 1)

corresponds to the problem

v(x) + ∂v(x) = f(x), x ∈ (0, 1), v(0) = 0,

and the equation (1) corresponds to the problem

∂tw(x, t) + ∂xw(x, t) = f(x, t),

w(x, 0) = w0(x), w(0, t) = 0, t > 0, 0 < x < 1,

for the advection equation.

Example 3. Let ρ ∈ L∞(0, 1) with ρ(x) ≥ ρ0 > 0. Set Hρ = L2(0, 1) with the scalar

product (u, v)Hρ =
∫ 1

0
ρ(x)u(x)v(x) dx. Then the Riesz map is given by Ru = ρu. Set

D = {v ∈ H2(0, 1) : v(0) = 0, v′(1) = 0}, and Lv = −∂2v for v ∈ D. Then L is
maximal monotone. The equation

Rv + Lv = f in L2(0, 1)

corresponds to the boundary-value problem

ρ(x) v(x)− ∂2v(x) = f(x), x ∈ (0, 1), v(0) = 0, v′(1) = 0,

and the equation (1) corresponds to the initial-boundary-value problem

ρ(x) ∂tw(x, t)− ∂2
xw(x, t) = f(x, t),

w(x, 0) = w0(x), w(0, t) = 0, ∂xw(1, t) = 0, t > 0, 0 < x < 1,

for the diffusion equation. This L is self-adjoint.
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Mixed Problems, I. Consider first the evolutionary Stokes system. We defined the sub-
space V0 = {w ∈ H1

0(Ω) : ∇ · w = 0 in Ω} of H1
0(Ω) and showed the first component

u(t) = u(·, t) (velocity) of the solution is characterized by the Stokes equation

(2) u(t) ∈ V0 :

∫
Ω

ρ(x) ∂
∂t

u(t) ·w dx + µ

∫
Ω

∇ui(t) ·∇wi dx

=

∫
Ω

f(t) ·w dx for all w ∈ V0 t > 0, u(·, 0) = u0(·).

Let ρ ∈ L∞(Ω) satisfy ρ(x) ≥ ρ0 > 0, and define Hρ to be the closure of V0 with the
scalar product (u,v)Hρ =

∫
Ω

ρ(x)u(x)·v(x) dx. Then the Riesz map is given byRu = ρu
and V0 ↪→ Hρ is continuous with V0 dense in Hρ, hence, H′

ρ ⊂ H1
0(Ω)′ = H−1(Ω). Note

also that V0 ⊂ H1
0(Ω).

Define the operator A : H1
0(Ω) → H−1(Ω) by

Au(w) = µ

∫
Ω

∇ui(t) ·∇wi dx, u, w ∈ H1
0(Ω),

and let f(t) ∈ H1
0(Ω)′ be given for each t > 0. Then (2) takes the form

(3) u(t) ∈ V0,
d
dt
Ru(t)(w) +Au(t)(w) = f(t)(w), w ∈ V0, t > 0 , u(0) = u0.

Define D = {v ∈ V0 : Av ∈ H′
ρ} and set Lu = Au for u ∈ D. Then L is maximal

monotone and symmetric, so Theorem 1.1 shows that for each u0 ∈ Hρ and Hölder
continuous f ∈ Cβ([0,∞),H′

ρ), 0 < β < 1, there is a unique solution u ∈ C([0,∞),Hρ)∩
C1((0,∞),Hρ) of (3) with u(t) ∈ V0 and ∆u(t) ∈ H′

ρ for each t > 0. Since V0 is the

kernel of the divergence, we then obtain the pressure p(t) ∈ L2(Ω) for t > 0 to complete
the system.

The Stokes system is an example of a mixed formulation in which the evolution term
(time derivative) occurs in the first equation. We shall call this a mixed evolution system
of Type I. More generally, suppose we have a pair of spaces V, W and operators

A : V → V ′, B : V → W ′, C : W → W ′

which determine an evolution system in mixed form

u(t) ∈ V, p(t) ∈ W : ρ ∂
∂t

u(t) +Au(t) + B′p(t) = f in V ′,

−Bu(t) + Cp(t) = 0 in W ′.(4)

Assume that V ↪→ Hρ is dense, where Hρ = L2(Ω) is given as in the preceding example,
so that H ′

ρ ↪→ V ′.
Define an operator L : D → H ′

ρ on the domain D ⊂ Hρ by D = {v ∈ V : Av + B′p ∈
H ′

ρ and − Bv + Cp = 0 for some p ∈ W}. Then set Lv = Av + B′p for v ∈ D. The
operator L is monotone, since Lv(v) = Av(v) + Cp(p) ≥ 0, and maximal if the system

v ∈ V, p ∈ W : ρ v +Av + B′p = f in V ′,

−Bv + Cp = 0 in W ′.

always has a unique solution with B′p unique. Then u(t), p(t) is a solution of (4) if and
only if

(5) ρ ∂
∂t

u(t) + Lu(t) = f(t) in H ′
ρ.
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The operator L is symmetric, so the initial-value problem can be solved for each u(0) =
u0 ∈ Hρ. Note that if the second equation in (4) is non-homogeneous, then we can use
a translation to reduce the problem back to (4). This will be illustrated in the next
example.

Mixed Problems, II. Porous media flow provides an example of a mixed evolution system
of Type II in which the evolution term is in the second equation. The constitutive law of
Darcy is

(6a) a(x)u +∇p = g(x),

where u represents the flux, p the pressure, and a(·) the resistance of the porous medium,
i.e., viscosity times the reciprocal of permeability, and g represents the gravity force.
After dividing by the (constant) density, the fluid conservation law is

(6b) c(x) ∂
∂t

p +∇ · u = f(x, t).

We shall show that these equations together with an initial condition and boundary
condition

(6c) p(x, 0) = p0(x), x ∈ Ω, u(s, t) · n = 0, s ∈ ∂Ω,

constitute a well-posed problem.
Define the operators

A : V → V ′, B : V → W ′, C : W → W ′

Au(v) =

∫
Ω

a(x)u · v dx, u,v ∈ V,

Bu(q) =

∫
Ω

u ·∇q dx, u ∈ V, q ∈ W,

Cp(q) =

∫
Ω

c(x)pq dx, p, q ∈ W

on the spaces V ≡ L2(Ω) and W = H1(Ω).
The mixed formulation of the initial-boundary-value problem (6) takes the form

u(t) ∈ V, p(t) ∈ W : Au(t)(v) + B′p(t)(v) = g(v),

C ∂
∂t

p(t)(q)− Bu(t)(q) = f(t)(q), v ∈ V, q ∈ W.(7)

Remark 3.1. The backward-difference approximation ∂
∂t

p(t) ≈ (p(t)− p(t− h))/h leads
to the stationary system

u(t) ∈ V, p(t) ∈ W : Au(t)(v) + B′p(t)(v) = g(v),

−Bu(t)(q) + λCp(t)(q) = λCp(t− h)(q) + f(q), v ∈ V, q ∈ W,(8)

where λ = h−1 is the reciprocal of the time increment, h > 0.

Let’s resolve (7). First find a pair ug, pg which is a solution of a stationary problem,

ug ∈ V, pg ∈ W : Aug + B′pg = g,

−Bug = 0.
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Subtract ug from u(t) to get the problem (7) but with g = 0 and the initial condition
Cp(0) = Cp0 − Cpg for the translates, u(t) − ug, p(t) − pg. Thus, we want to solve the
reduced evolution system

u(t) ∈ V, p(t) ∈ W : Au(t) + B′p(t) = 0 in V ′,

−Bu(t) + C ∂
∂t

p(t) = f(t) in W ′.
(9)

Let c ∈ L∞(Ω), c(x) ≥ c0 > 0 and Wc denote the Hilbert space L2(Ω) with the scalar
product (u, v)c =

∫
Ω

c(x)u(x)v(x) dx. Note that W ↪→ Wc and W ′
c ↪→ W ′.

Define L as follows: Lp = f if f ∈ W ′
c and

(10) u ∈ V, p ∈ W : Au + B′p = 0, −Bu = f.

Then u(t), p(t) is a solution of (9) if and only if

(11) C ∂
∂t

p(t) + Lp(t) = f(t) in W ′
c, Cp(0) = Cp0.

Note that L is

• monotone: Lp(p) = −Bu(p) = −B′p(u) = Au(u) ≥ 0
• maximal: Cp + Lp = f is solvable for f ∈ W ′

c = L2(Ω)

because we can solve the equivalent mixed system

u ∈ V, p ∈ W : Au + B′p = 0,

−Bu + Cp = f.
(12)

This corresponds to

u ∈ L2(Ω), p ∈ H1(Ω) : a(x)u + ∇p = 0 and

∇ · u + c(x)p = f in L2(Ω),

u · n = 0 on ∂Ω.

(13)

Remark 3.2. More generally, if C(·)(·) is a scalar product on W and we denote the
completion of this space by Wc, then the corresponding extension C : Wc → W ′

c is the
Riesz map and the preceding construction applies.

Mixed Problems, III. If the evolution terms appear in both equations, we call it a mixed
evolution system of Type III. These take the form

u(t) ∈ V, p(t) ∈ W : ρ ∂
∂t

u(t) +Au(t)(v) + B′p(t)(v) = g(t)(v),(14)

C ∂
∂t

p(t)(q)− Bu(t)(q) = f(t)(q), v ∈ V, q ∈ W, t > 0.(15)

Write this system in the form

(16) ∂
∂t

(
ρu(t)
Cp(t)

)
+

(
A B′
−B 0

) (
u(t)
p(t)

)
=

(
g(t)
f(t)

)
.

Choose R on the space H obtained by completing V ×W with the scalar product((
u
p

)
,

(
v
q

))
H

= (u, v)Hρ + Cp(q)
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so R =

(
ρ 0
0 C

)
. Construct L from the matrix

(
A B′
−B 0

)
restricted to H ′ as before.
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