1 Constrained Optimization

Let B be an $M \times N$ matrix, a linear operator from the space \mathbb{R}^N to \mathbb{R}^M with adjoint B^T . For (column vectors) $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^M$ we have $\mathbf{x} \cdot B^T \mathbf{y} = B\mathbf{x} \cdot \mathbf{y}$. This vanishes for all $y \in \mathbb{R}^M$ exactly when $\mathbf{x} \in \text{Ker}(B)$, and this is equivalent to having \mathbf{x} perpendicular to $\text{Rg}(B^T)$, the range of B^T . But this is the column space of B^T which is the row space of B, and \mathbf{x} perpendicular to the rows of B is equivalent to $B\mathbf{x} = \mathbf{0}$. Thus we have $\text{Ker}(B) = \text{Rg}(B^T)^{\perp}$, the orthogonal complement of the range of B^T , and it follows that $\text{Ker}(B)^{\perp} = \text{Rg}(B^T)$ and $\text{Ker}(B^T)^{\perp} = \text{Rg}(B)$. We begin by characterizing those linear operators on more general spaces with this property.

Let V and W be Hilbert spaces, and let $\mathcal{B}: V \to W'$ be continuous and linear. Define the *adjoint* operator $\mathcal{B}': W \to V'$ by $\mathcal{B}'w(v) = \mathcal{B}v(w), \forall v \in V, w \in W$. Then \mathcal{B}' is continuous, and its adjoint is given by $\mathcal{B}'' = \mathcal{B}$.

NOTE: We do not identify V and V' by the Riesz map, since this map is frequently equivalent to a boundary-value problem. However, We will identify V and V'', since this involves the composition of the Riesz map followed by its inverse.

Let U be a subset of W. The *annihilator* of U is the set of functionals given by

$$U^0 \equiv \{ f \in W' : f(w) = 0 \ \forall w \in U \}.$$

Then it follows that U^0 is a closed subspace of W'.

The Inf-Sup Condition

Let the continuous and linear operator $\mathcal{B}: V \to W'$ be given as above. A direct computation shows that

$$(\operatorname{Ker} \mathcal{B}')^{0} = \{ f \in W' : f(w) = 0 \ \forall w \in \operatorname{Ker} \mathcal{B}' \}$$

$$= \{ f \in W' : f(w) = 0 \ \forall w : \mathcal{B}' w(v) = 0 \ \forall v \in V \}$$

$$= \{ f \in W' : f(w) = 0 \ \forall w : \mathcal{B}v(w) = 0 \ \forall v \in V \}$$

$$\supset \mathcal{B}(V) = \operatorname{Rg} \mathcal{B}.$$

so, we have $(\operatorname{Ker} \mathcal{B}')^0 \supset \operatorname{Rg} \mathcal{B}$. Suppose $f_0 \in W'$ but $f_0 \notin \operatorname{Rg} \mathcal{B}$. Then the separation theorem gives a $w^* \in W$ and $a \in \operatorname{IR}$ such that $f_0(w^*) > a$ and $\mathcal{B}v(w^*) \leq a \ \forall v \in V$, hence $a \geq 0$ and $\mathcal{B}v(w^*) = 0 \ \forall v \in V$. These show that $f_0(w^*) \neq 0$ and $\mathcal{B}'(w^*) = 0$, so $f_0 \notin (\operatorname{Ker} \mathcal{B}')^0$.

Theorem 1.1. If $\mathcal{B}: V \to W'$ is continuous and linear, then the closure of the range of \mathcal{B} is the annihilator of the kernel of \mathcal{B}' , that is,

$$\overline{\mathcal{B}(V)} = (\operatorname{Ker} \mathcal{B}')^0.$$

Corollary 1.2. There exists a $\beta > 0$ such that

$$\|\mathcal{B}(v)\|_{W'} \ge \beta \|v\|_V \ \forall v \in V,\tag{1}$$

if and only if \mathcal{B} is an isomorphism of V onto $(\operatorname{Ker} \mathcal{B}')^0$.

In this case, we say that \mathcal{B} is bounding.

Proof. From (1), we see that \mathcal{B} is injective and \mathcal{B}^{-1} is continuous, hence, that the range of \mathcal{B} is closed.

Remark 1.1. The condition (1) is equivalent to

$$\sup_{v \in W} \frac{\mathcal{B}v(w)}{\|w\|_W} \ge \beta \|v\|_V \ \forall v \in V,$$

and this is precisely the inf-sup condition

$$\inf_{v \in V} \sup_{w \in W} \frac{\mathcal{B}v(w)}{\|v\|_V \|w\|_W} \ge \beta > 0.$$

$$\tag{2}$$

Also, it follows easily that when additionally the adjoint \mathcal{B}' is injective, the operator \mathcal{B} is an isomorphism onto W'.

Corollary 1.3. The linear $\mathcal{B}: V \to W'$ is an isomorphism if and only if it satisfies

• \mathcal{B} is bounded: there is a constant C_B such that

$$|\mathcal{B}v(w)| \le C_B \|v\|_V \|w\|_W, \quad v \in V, \ w \in W,$$
(3)

• \mathcal{B} is bounding: (1) holds for some $\beta > 0$, and

• for every $w \in W$, $w \neq 0$, there is a $v \in V$ with $\mathcal{B}v(w) \neq 0$.

Proof. The last condition implies that $\operatorname{Ker} \mathcal{B}' = \{0\}$ so $\overline{\mathcal{B}(V)} = W'$ by Theorem 1.1, and Corollary 1.2 shows \mathcal{B} is an isomorphism. The reverse implication is clear.

Finally, we apply Corollary 1.2 to \mathcal{B}' to obtain the equivalence of the first two parts of the following.

Theorem 1.4. Assume $\mathcal{B}: V \to W'$ is continuous and linear. The following are equivalent:

- The adjoint $\mathcal{B}': W \to (\operatorname{Ker} \mathcal{B})^0$ is an isomorphism.
- \mathcal{B}' is bounding:

$$\inf_{w \in W} \sup_{v \in V} \frac{\mathcal{B}'w(v)}{\|v\|_V \|w\|_W} \ge \beta > 0.$$

$$\tag{4}$$

• The restriction to the orthogonal complement $\mathcal{B}: (\operatorname{Ker} \mathcal{B})^{\perp} \to W'$ is an isomorphism, and

$$\|\mathcal{B}v\|_{W'} \ge \beta \|v\|_V, \quad v \in (\operatorname{Ker} \mathcal{B})^{\perp}.$$
(5)

• $\mathcal{B}: V \to W'$ is a surjection.

Proof. If the first condition holds, then for some $\beta > 0$ we have

$$\|\mathcal{B}'w\|_{V'} \ge \beta \|w\|_W, \quad w \in W.$$
(6)

Thus, for each $v \in (\text{Ker }\mathcal{B})^{\perp}$ we pick $w \in W$ with $\mathcal{B}'w(z) = (v, z)_V, z \in V$. From (6) we get $||v||_V = ||\mathcal{B}'w||_{V'} \ge \beta ||w||_W$. Setting z = v above we obtain the equality in

$$\sup_{u \in W} \frac{\mathcal{B}v(u)}{\|u\|_W} \ge \frac{\mathcal{B}v(w)}{\|w\|_W} = \frac{(v, v)_V}{\|w\|_W} \ge \beta \|v\|_V.$$
(7)

This shows $\mathcal{B}: (\operatorname{Ker} \mathcal{B})^{\perp} \to W'$ satisfies the conditions of Corollary 1.2, so it is an isomorphism.

Assume $\mathcal{B}: (\operatorname{Ker} \mathcal{B})^{\perp} \to W'$ is an isomorphism and (5) holds. Then we have

$$\|w\|_{W} = \sup_{v \in \operatorname{Ker} \mathcal{B}^{\perp}} \frac{\mathcal{B}'w(v)}{\|\mathcal{B}v\|_{W'}} \le \sup_{v \in \operatorname{Ker} \mathcal{B}^{\perp}} \frac{\mathcal{B}v(w)}{\beta \|v\|_{V}}.$$
(8)

This shows that (4) is satisfied, so the first three items are equivalent.

Finally, note that each $v \in V$ can be written $v = v_0 + v_\perp$ with $v_0 \in \operatorname{Ker} \mathcal{B}$ and $v_\perp \in (\operatorname{Ker} \mathcal{B})^\perp$ and $\|v_\perp\|_V = \inf\{\|v + z\|_V : z \in \operatorname{Ker} \mathcal{B}\}$. Thus, the third and fourth parts are equivalent by the open mapping theorem. \Box

Remark 1.2. In this case, the estimate

$$\|\mathcal{B}v\|_{W'} \ge \beta \inf_{z \in \operatorname{Ker} \mathcal{B}} \|v + z\|_{V}, \quad v \in V,$$
(9)

holds, and (9) can be written in terms of the norm

$$\|\tilde{v}\|_{V/\operatorname{Ker}\mathcal{B}} = \inf_{z \in \operatorname{Ker}\mathcal{B}} \|v + z\|_{V}$$

on the quotient space $\tilde{V} = V / \operatorname{Ker} \mathcal{B}$.

The Closed Range Theorem

Lemma 1.5. If $\mathcal{B} : V \to W'$ has closed range, $\operatorname{Rg} \mathcal{B}$, then its adjoint $\mathcal{B}' : W \to V'$ has closed range, $\operatorname{Rg} \mathcal{B}'$.

Proof. Suppose \mathcal{B}_1 is just \mathcal{B} regarded as an operator from V to the Hilbert (sub)space $\operatorname{Rg} \mathcal{B} = \overline{\operatorname{Rg}} \mathcal{B}$. To compute the adjoint $(\mathcal{B}_1)' : (\operatorname{Rg} \mathcal{B})' \to V'$, let $g_1 \in (\operatorname{Rg} \mathcal{B})'$ and note that it can be extended to a $g \in W'' = W$. Then for each $v \in V$ we have $(\mathcal{B}_1)'g_1(v) = \langle \mathcal{B}_1v, g_1 \rangle = (\mathcal{B}v, g) = \mathcal{B}'g(v)$, so $(\mathcal{B}_1)'(g_1) = \mathcal{B}'(g)$, and we have shown that $\operatorname{Rg} \mathcal{B}'_1 = \operatorname{Rg} \mathcal{B}'$. Hence, it suffices to assume $\operatorname{Rg} \mathcal{B} = W'$. But if \mathcal{B} is a surjection, then \mathcal{B}' is bounding and has a closed range. \Box

This applies as well to \mathcal{B}' , so we obtain the following summary.

Theorem 1.6. The following are equivalent:

- $\mathcal{B}: V \to W'$ has closed range
- $\mathcal{B}(V) = (\operatorname{Ker} \mathcal{B}')^0$
- $\sup_{u \in W} \frac{\mathcal{B}v(u)}{\|u\|_W} \ge \beta \inf_{z \in \operatorname{Ker} \mathcal{B}} \|v + z\|_V, \quad v \in V,$
- the adjoint $\mathcal{B}': W \to V'$ has closed range
- $\mathcal{B}'(W) = (\operatorname{Ker} \mathcal{B})^0$

• $\sup_{v \in V} \frac{\mathcal{B}v(w)}{\|v\|_V} \ge \beta \inf_{z \in \operatorname{Ker} \mathcal{B}'} \|w + z\|_V, \quad w \in W,$

A very special but important case of Corollary 1.3 is the following.

Corollary 1.7. Assume that the linear operator $\mathcal{A}: V \to V'$ is continuous and V-coercive: there is an $\alpha > 0$ such that

$$\mathcal{A}v(v) \ge \alpha \|v\|_V^2, \quad v \in V.$$
(10)

Then $\mathcal{A}: V \to V'$ is an isomorphism: for each $f \in V'$ there is a unique $u \in V$ for which $\mathcal{A}u = f$, and moreover $||u||_V \leq \alpha^{-1} ||f||_{V'}$.

This shows the equation $\mathcal{A}u = f$, *i.e.*,

$$u \in V$$
: $\mathcal{A}u(v) = f(v) \ \forall v \in V,$ (11)

is well-posed: for each $f \in V'$, (11) has a unique solution that depends continuously on f.

The Mixed Formulation

Let V and W be Hilbert spaces, and let $\mathcal{A} : V \to V'$ and $\mathcal{B} : V \to W'$ be continuous and linear. Let $f \in V'$ and $g \in \mathcal{B}(V) \subset W'$ be given.

Suppose that \mathcal{A} is symmetric and non-negative. Then the equation (11) characterizes the solution of the *minimization problem*

$$u \in V: \quad \frac{1}{2}\mathcal{A}u(u) - f(u) \le \frac{1}{2}\mathcal{A}v(v) - f(v) \; \forall v \in V, \tag{12}$$

If we minimize subject to a *constraint*, $\mathcal{B}v = g$, then this becomes

$$u \in V, \ \mathcal{B}u = g:$$

$$\frac{1}{2}\mathcal{A}u(u) - f(u) \leq \frac{1}{2}\mathcal{A}v(v) - f(v) \ \forall v \in V \text{ with } \mathcal{B}v = g.$$
(13)

We shall assume $g \in \operatorname{Rg}(\mathcal{B})$. The set $\{v \in V : \mathcal{B}v = g\}$ is convex, in fact, a translate of Ker \mathcal{B} , so the constrained minimum is characterized by

$$u \in V$$
: $\mathcal{B}u = g$ and $\mathcal{A}u - f \in (\operatorname{Ker} \mathcal{B})^0$. (14)

Consider the problem (14) without assuming \mathcal{A} is symmetric. If \mathcal{A} is *V*-coercive on Ker \mathcal{B} , then there exists a unique solution. To see this, let $u_g \in V$ with $\mathcal{B}u_g = g$. Then we seek $u_0 = u - u_g$ for which

$$u_0 \in \operatorname{Ker} \mathcal{B} : \ \mathcal{A}u_0 + \mathcal{A}u_g - f \in (\operatorname{Ker} \mathcal{B})^0.$$

But Corollary 1.7 applied to the restriction of \mathcal{A} to Ker \mathcal{B} shows there is exactly one such u_0 . Thus, there is a unique solution to the constrained equation

$$u \in V$$
: $\mathcal{B}u = g$ and $\mathcal{A}u(v) = f(v) \ \forall v \in \operatorname{Ker} \mathcal{B}.$ (15)

Note that the addition of the constraint equation for \mathcal{B} corresponds to a relaxation of the equation for \mathcal{A} .

If additionally \mathcal{B}' is bounding, then $\mathcal{A}u - f$ belongs to the range of \mathcal{B}' , so there exists a unique solution of the *mixed formulation*, a pair

$$[u, p] \in V \times W$$
: $\mathcal{B}u = g$ and $\mathcal{A}u + \mathcal{B}'p = f$.

The vector $p \in W$ realizes the relaxation of the equation in V', and we shall see that it is the *Lagrange multiplier* for the constraint, $\mathcal{B}u = g$.

Theorem 1.8. Assume that the linear operators $\mathcal{A}: V \to V', \ \mathcal{B}: V \to W'$ are continuous from the indicated Hilbert spaces V, W to their duals, and

• \mathcal{A} is non-negative and it is V-coercive on Ker \mathcal{B} : there is an $\alpha > 0$ such that

$$\mathcal{A}v(v) \ge \alpha \|v\|_V^2, \quad v \in \operatorname{Ker} \mathcal{B}.$$
 (16)

• \mathcal{B}' is bounding, i.e., it is injective and

$$\inf_{q \in W} \sup_{v \in V} \frac{|\mathcal{B}v(q)|}{\|v\|_V \|q\|_W} \ge \beta > 0.$$

Then for every $f \in V'$ and $g \in W'$ the mixed system

$$u \in V, \ p \in W: \ \mathcal{A}u + \mathcal{B}'p = f \in V', \\ \mathcal{B}u = g \in W',$$
(17)

has a unique solution in $V \times W$, and it satisfies the estimate

$$||u||_{V} + ||p||_{W} \le K(||f||_{V'} + ||g||_{W'}).$$
(18)

Proof. We have shown above that the system (17) has a unique solution. Let's obtain the precise form of the estimate (18). First, u_g can be chosen from $(\text{Ker }\mathcal{B}')^{\perp}$ with $||u_g||_V \leq \frac{1}{\beta}||g||_{W'}$. Then u_0 is obtained with the estimate $||u_0||_V \leq \frac{1}{\alpha}(||f||_{V'} + ||\mathcal{A}u_g||_{V'})$. Finally, p satisfies $||p||_W \leq \frac{1}{\beta}(||f||_{V'} + ||\mathcal{A}u||_{V'})$. Combining these, we find

$$\|u\|_{V} \leq \frac{1}{\alpha} (\|f\|_{V'} + \frac{1}{\beta} (\|\mathcal{A}\|_{\mathcal{L}(V,V')} + \alpha) \|g\|_{W'})$$
(19)

$$\|p\|_{W} \le \frac{1}{\beta} (\|f\|_{V'} + \|\mathcal{A}\|_{\mathcal{L}(V,V')} \|u\|_{V})$$
(20)

Here's the result from [1] with an additional operator.

Theorem 1.9. Assume that the linear operators $\mathcal{A} : V \to V', \ \mathcal{B} : V \to W', \ \mathcal{C} : W \to W'$ are continuous from the indicated Hilbert spaces V, W to their duals, and

• \mathcal{A} is non-negative and V-coercive on Ker \mathcal{B} : there is an $\alpha > 0$ such that

$$\mathcal{A}v(v) \ge \alpha \|v\|_V^2, \quad v \in \operatorname{Ker} \mathcal{B}.$$
(21)

- C is non-negative, symmetric, and
- \mathcal{B}' is bounding, i.e., it is injective and

$$\inf_{q \in W} \sup_{v \in V} \frac{|\mathcal{B}v(q)|}{\|v\|_V \|q\|_W} \ge \beta > 0.$$

Then for every $f \in V'$ and $g \in W'$ the system

$$u \in V, \ p \in W: \ \mathcal{A}u + \mathcal{B}'p = f \in V', -\mathcal{B}u + \mathcal{C}p = g \in W',$$
(22)

has a unique solution in $V \times W$, and it satisfies the estimate

$$\|\mathbf{u}\|_{V} + \|p\|_{W} \le K(\|f\|_{V'} + \|g\|_{W'}).$$
(23)

Here's the more general case from [2].

Theorem 1.10. Assume that the linear operators $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are continuous as indicated from the Hilbert spaces V, W to their duals, and

• \mathcal{A} is non-negative and invertible on Ker \mathcal{B} , i.e.,

$$\inf_{\mathbf{u}\in\operatorname{Ker}\mathcal{B}}\sup_{\mathbf{v}\in\operatorname{Ker}\mathcal{B}}\frac{\mathcal{A}\mathbf{u}(\mathbf{v})}{\|\mathbf{u}\|_{V}\|\mathbf{v}\|_{V}} \geq c_{0} > 0,$$

$$\inf_{\mathbf{v}\in\operatorname{Ker}\mathcal{B}}\sup_{\mathbf{u}\in\operatorname{Ker}\mathcal{B}}\frac{\mathcal{A}\mathbf{u}(\mathbf{v})}{\|\mathbf{u}\|_{V}\|\mathbf{v}\|_{V}} \geq c_{0},$$
(24)

• \mathcal{C} is non-negative, symmetric, W-coercive on Ker \mathcal{B}' , i.e.,

$$Cq(q) \ge c_0 \|q\|_W^2, \ q \in \operatorname{Ker} \mathcal{B}',$$
(25)

• *B* has closed range, i.e.,

$$\sup_{\mathbf{v}\in V}\frac{|\mathcal{B}\mathbf{v}(q)|}{\|\mathbf{v}\|_{V}} \ge c_{0}\|q\|_{W/\operatorname{Ker}\mathcal{B}'},$$

Then for every $f \in V'$ and $\mathbf{g} \in \operatorname{Rg} \mathcal{B}$ the system (22) has a solution which is unique in $V \times W/(\operatorname{Ker} \mathcal{B}' \cap \operatorname{Ker} \mathcal{C})$, and it satisfies the estimate

$$\|\mathbf{u}\|_{V} + \|p\|_{W/\operatorname{Ker}\mathcal{B}'} \le K(\|f\|_{V'} + \|g\|_{W'}).$$
(26)

Saddle-point and Lagrangian

In this section we shall assume that $\mathcal{A} : V \to V', \ \mathcal{B} : V \to W'$ are continuous and linear and that \mathcal{A} is symmetric and non-negative: $\mathcal{A} = \mathcal{A}' \geq 0$. Also $f \in V'$ and $g \in W'$ are given. Define the *energy functional* $J: V \to \mathbb{R}$ by

$$J(v) = \frac{1}{2}\mathcal{A}v(v) - f(v), \quad v \in V,$$

and the Lagrangian $\mathcal{L}: V \times W \to \mathbb{R}$ as

$$\mathcal{L}(v,q) = J(v) + \mathcal{B}v(q) - g(q), \quad [v,q] \in V \times W.$$

Note that the derivatives of $\mathcal{L}(v,q)$ with respect to v and q are given by $\mathcal{L}_v(v,q) = \mathcal{A}v - f + \mathcal{B}'q$ and $\mathcal{L}_q(v,q) = \mathcal{B}v - g$, respectively, and these vanish at [u,p] when the system (17) is satisfied. This relates the constrained minimization problem to an extremum over a linear space, namely, the saddle-point problem

$$[u,p] \in V \times W : \ \mathcal{L}(u,q) \le \mathcal{L}(u,p) \le \mathcal{L}(v,p) \ \forall v \in V, \ q \in W.$$
(27)

That is, a solution of the saddle-point problem is a *critical point* of the Lagrange function.

Theorem 1.11. The pair $[u, p] \in V \times W$ is a solution of the saddle-point problem (27) if and only if it is a solution of the mixed system (17).

Proof. For each $q \in W$ the functional $v \mapsto \mathcal{L}(v,q)$ is convex, so it takes a minimum at u exactly when $\mathcal{A}u + \mathcal{B}'q = f$. The second inequality of (27) is equivalent to the first equation of (17), and the first inequality of (27) is equivalent to $(\mathcal{B}u - g)(q - p) \leq 0$ for all $q \in W$, that is, $\mathcal{B}u = g$. \Box

If \mathcal{A} is Ker \mathcal{B} -coercive and \mathcal{B}' is bounding, then there is exactly one such solution pair.

We shall denote the infimum over a set by the *minimum* 'min' when it is attained by at least one element of that set. Similarly we denote the supremum by *maximum* 'max' when it is realized on that set.

Theorem 1.12. The pair [u, p] is a solution of the saddle-point problem (27) if and only if

$$\min_{v \in V} \left(\sup_{q \in W} \mathcal{L}(v, q) \right) = \max_{q \in W} \left(\inf_{v \in V} \mathcal{L}(v, q) \right),$$
(28)

and this quantity is equal to $\mathcal{L}(u, p)$.

Proof. Denote the upper and lower extrema by

$$\overline{\varphi}(v) = \sup_{q \in W} \mathcal{L}(v,q), \quad \underline{\varphi}(q) = \inf_{v \in V} \mathcal{L}(v,q).$$

(These can take the values $+\infty$ and $-\infty$, respectively.)

Suppose (28) and that the minimum of $\overline{\varphi}$ is attained at u, the maximum of $\underline{\varphi}$ is attained at p, and we have $\overline{\varphi}(u) = \underline{\varphi}(p)$. The definitions of $\overline{\varphi}$ and $\underline{\varphi}$ show that $\underline{\varphi}(p) \leq \mathcal{L}(u,p) \leq \overline{\varphi}(u)$, so $\overline{\varphi}(u) = \mathcal{L}(u,p) = \underline{\varphi}(p)$ and [u,p] is a saddle-point.

Note that since $\mathcal{L}(v,q) \leq \overline{\varphi}(v)$ for all $v \in V, q \in W$, we have $\underline{\varphi}(q) \leq \inf_{v \in V} \overline{\varphi}(v)$ and hence the inequality

$$\sup_{q \in W} \underline{\varphi}(q) \le \inf_{v \in V} \overline{\varphi}(v) \tag{29}$$

always holds. If [u, p] is a saddle-point, then $\overline{\varphi}(u) = \mathcal{L}(u, p) = \underline{\varphi}(p)$, so we have

$$\inf_{v \in V} \overline{\varphi}(v) \le \overline{\varphi}(u) = \underline{\varphi}(p) \le \sup_{q \in W} \underline{\varphi}(q).$$

Combining this with (29), we obtain

$$\inf_{v \in V} \overline{\varphi}(v) = \overline{\varphi}(u) = \mathcal{L}(u, p) = \underline{\varphi}(p) = \sup_{q \in W} \underline{\varphi}(q),$$

and this yields (28).

Note that the upper extrema above is given by

$$\overline{\varphi}(v) = \sup_{q \in W} \mathcal{L}(v, q) = \begin{cases} J(v) \text{ if } \mathcal{B}v = g, \\ +\infty \text{ if } \mathcal{B}v \neq g, \end{cases}$$

so it follows that

$$\inf_{v \in V} \left(\sup_{q \in W} \mathcal{L}(v, q) \right) = \inf_{\mathcal{B}v = g} J(v).$$

If [u, p] is a saddle-point, the inf-sup equality

$$\mathcal{L}(u,p) = \min_{v \in V} \left(\sup_{q \in W} \mathcal{L}(v,q) \right)$$

shows that

$$J(u) = \min_{\mathcal{B}v=g} J(v),$$

that is, the first component u of a saddle point is characterized as a solution of the constrained minimization problem (13). This is the *primal problem* where we began.

Let's consider the sup-inf equation

$$\mathcal{L}(u,p) = \underline{\varphi}(p) = \max_{q \in W} \left(\inf_{v \in V} \mathcal{L}(v,q) \right).$$
(30)

In order to characterize this equality, we assume in addition that \mathcal{A} is *V*-coercive. Then for each $q \in W$ there is a unique solution v_q of

$$v_q \in V : \mathcal{A}v_q + \mathcal{B}'q = f,$$

that is, v_q is the solution of the minimization problem

$$\underline{\varphi}(q) = \mathcal{L}(v_q, q) = \inf_{v \in V} \mathcal{L}(v, q), \ q \in W.$$

Since $v_p = u$, we have $\mathcal{L}(v_p, p) = \max_{q \in W} \mathcal{L}(v_q, q)$. The definitions of \mathcal{L} and v_q show that

$$\mathcal{L}(v_q, q) = \frac{1}{2}\mathcal{A}v_q(v_q) - f(v_q) + \mathcal{B}v_q(q) - g(q) = -\frac{1}{2}\mathcal{A}v_q(v_q) - g(q),$$

so we see that the function defined by

$$K(q) \equiv \frac{1}{2}\mathcal{A}v_q(v_q) + g(q), \quad q \in W,$$

is convex (since $q \mapsto v_q$ is affine) and it is minimized at p, that is,

$$p \in W: \ K(p) = \min_{q \in W} K(q).$$
(31)

This is the *dual problem*.

In order to characterize a solution of the dual problem (31), we compute the derivative K'(p) from the expansion

$$K(q) = \frac{1}{2}(f - \mathcal{B}'q)\mathcal{A}^{-1}((f - \mathcal{B}'q) + g(q))$$
$$= \frac{1}{2}f\mathcal{A}^{-1}(f) - f\mathcal{A}^{-1}\mathcal{B}'q + \frac{1}{2}\mathcal{B}'q\mathcal{A}^{-1}\mathcal{B}'q + g(q)$$

and then use the definition of v_q to obtain in turn

$$K'(p)(q) = (g - f\mathcal{A}^{-1}\mathcal{B}')(q) + \mathcal{B}'p\mathcal{A}^{-1}\mathcal{B}'q$$

= $-\mathcal{A}u(p)\mathcal{A}^{-1}\mathcal{B}'q + g(q) = -\mathcal{B}'q(u(p)) + g(q).$

Thus we have

$$K'(p) = -\mathcal{B}u(p) + g = -\mathcal{B}\mathcal{A}^{-1}(f - \mathcal{B}'p) + g,$$

and the solution p of the dual problem (31) is characterized by the equation

$$p \in W$$
: $\mathcal{B}\mathcal{A}^{-1}(\mathcal{B}'p - f) = -g \text{ in } W'.$ (32)

(Of course, we could obtain this directly from (17) since \mathcal{A} is invertible.)

In summary, [u, p] is a solution of the saddle-point problem (27), and this is equivalent to the mixed system (17), u is a solution of the primal problem (13) with constraint, and p is a solution of the dual problem (31). Also, u and p can be obtained from each other by means of the first equation of the mixed system (17) when \mathcal{A} is V-coercive and \mathcal{B}' is bounding.

References

 Dietrich Braess. *Finite elements*. Cambridge University Press, Cambridge, 1997. Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German original by Larry L. Schumaker. [2] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.