
1 Constrained Optimization

Let B be an M ×N matrix, a linear operator from the space IRN to IRM

with adjoint BT . For (column vectors) x ∈ IRN and y ∈ IRM we have
x ·BTy = Bx ·y. This vanishes for all y ∈ IRM exactly when x ∈ Ker(B),
and this is equivalent to having x perpendicular to Rg(BT ), the range of
BT . But this is the column space of BT which is the row space of B, and
x perpendicular to the rows of B is equivalent to Bx = 0. Thus we have
Ker(B) = Rg(BT )⊥, the orthogonal complement of the range of BT , and
it follows that Ker(B)⊥ = Rg(BT ) and Ker(BT )⊥ = Rg(B). We begin
by characterizing those linear operators on more general spaces with this
property.

Let V and W be Hilbert spaces, and let B : V → W ′ be continuous and
linear. Define the adjoint operator B′ : W → V ′ by B′w(v) = Bv(w), ∀v ∈
V, w ∈ W . Then B′ is continuous, and its adjoint is given by B′′ = B.

NOTE: We do not identify V and V ′ by the Riesz map, since this map
is frequently equivalent to a boundary-value problem. However, We will
identify V and V ′′, since this involves the composition of the Riesz map
followed by its inverse.

Let U be a subset of W . The annihilator of U is the set of functionals
given by

U 0 ≡ {f ∈ W ′ : f(w) = 0 ∀w ∈ U}.
Then it follows that U 0 is a closed subspace of W ′.

The Inf-Sup Condition

Let the continuous and linear operator B : V → W ′ be given as above. A
direct computation shows that

(KerB′)0 = {f ∈ W ′ : f(w) = 0 ∀w ∈ KerB′}
= {f ∈ W ′ : f(w) = 0 ∀w : B′w(v) = 0 ∀v ∈ V }
= {f ∈ W ′ : f(w) = 0 ∀w : Bv(w) = 0 ∀v ∈ V }
⊃ B(V ) = RgB.
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so, we have (KerB′)0 ⊃ RgB. Suppose f0 ∈ W ′ but f0 /∈ RgB. Then the
separation theorem gives a w∗ ∈ W and a ∈ IR such that f0(w

∗) > a and
Bv(w∗) ≤ a ∀v ∈ V , hence a ≥ 0 and Bv(w∗) = 0 ∀v ∈ V . These show
that f0(w

∗) 6= 0 and B′(w∗) = 0, so f0 /∈ (KerB′)0.

Theorem 1.1. If B : V → W ′ is continuous and linear, then the closure
of the range of B is the annihilator of the kernel of B′, that is,

B(V ) = (KerB′)0.

Corollary 1.2. There exists a β > 0 such that

‖B(v)‖W ′ ≥ β‖v‖V ∀v ∈ V, (1)

if and only if B is an isomorphism of V onto (KerB′)0.

In this case, we say that B is bounding.

Proof. From (1), we see that B is injective and B−1 is continuous, hence,
that the range of B is closed.

Remark 1.1. The condition (1) is equivalent to

sup
w∈W

Bv(w)

‖w‖W
≥ β‖v‖V ∀v ∈ V,

and this is precisely the inf-sup condition

inf
v∈V

sup
w∈W

Bv(w)

‖v‖V ‖w‖W
≥ β > 0. (2)

Also, it follows easily that when additionally the adjoint B′ is injective,
the operator B is an isomorphism onto W ′.

Corollary 1.3. The linear B : V → W ′ is an isomorphism if and only if
it satisfies

• B is bounded: there is a constant CB such that

|Bv(w)| ≤ CB‖v‖V ‖w‖W , v ∈ V, w ∈ W, (3)

• B is bounding: (1) holds for some β > 0, and
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• for every w ∈ W, w 6= 0, there is a v ∈ V with Bv(w) 6= 0.

Proof. The last condition implies that KerB′ = {0} so B(V ) = W ′ by
Theorem 1.1, and Corollary 1.2 shows B is an isomorphism. The reverse
implication is clear.

Finally, we apply Corollary 1.2 to B′ to obtain the equivalence of the
first two parts of the following.

Theorem 1.4. Assume B : V → W ′ is continuous and linear. The fol-
lowing are equivalent:

• The adjoint B′ : W → (KerB)0 is an isomorphism.

• B′ is bounding:

inf
w∈W

sup
v∈V

B′w(v)

‖v‖V ‖w‖W
≥ β > 0. (4)

• The restriction to the orthogonal complement B : (KerB)⊥ → W ′ is
an isomorphism, and

‖Bv‖W ′ ≥ β‖v‖V , v ∈ (KerB)⊥. (5)

• B : V → W ′ is a surjection.

Proof. If the first condition holds, then for some β > 0 we have

‖B′w‖V ′ ≥ β‖w‖W , w ∈ W. (6)

Thus, for each v ∈ (KerB)⊥ we pick w ∈ W with B′w(z) = (v, z)V , z ∈ V .
From (6) we get ‖v‖V = ‖B′w‖V ′ ≥ β‖w‖W . Setting z = v above we obtain
the equality in

sup
u∈W

Bv(u)

‖u‖W
≥ Bv(w)

‖w‖W
=

(v, v)V

‖w‖W
≥ β‖v‖V . (7)

This shows B : (KerB)⊥ → W ′ satisfies the conditions of Corollary 1.2, so
it is an isomorphism.

Assume B : (KerB)⊥ → W ′ is an isomorphism and (5) holds. Then we
have

‖w‖W = sup
v∈KerB⊥

B′w(v)

‖Bv‖W ′
≤ sup

v∈KerB⊥

Bv(w)

β‖v‖V
. (8)
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This shows that (4) is satisfied, so the first three items are equivalent.
Finally, note that each v ∈ V can be written v = v0+v⊥ with v0 ∈ KerB

and v⊥ ∈ (KerB)⊥ and ‖v⊥‖V = inf{‖v + z‖V : z ∈ KerB}. Thus, the
third and fourth parts are equivalent by the open mapping theorem.

Remark 1.2. In this case, the estimate

‖Bv‖W ′ ≥ β inf
z∈KerB

‖v + z‖V , v ∈ V, (9)

holds, and (9) can be written in terms of the norm

‖ṽ‖V/ KerB = inf
z∈KerB

‖v + z‖V

on the quotient space Ṽ = V/ KerB.

The Closed Range Theorem

Lemma 1.5. If B : V → W ′ has closed range, RgB, then its adjoint
B′ : W → V ′ has closed range, RgB′.

Proof. Suppose B1 is just B regarded as an operator from V to the Hilbert
(sub)space RgB = RgB. To compute the adjoint (B1)

′ : (RgB)′ → V ′,
let g1 ∈ (RgB)′ and note that it can be extended to a g ∈ W ′′ = W .
Then for each v ∈ V we have (B1)

′g1(v) = 〈B1v, g1〉 = (Bv, g) = B′g(v),
so (B1)

′(g1) = B′(g), and we have shown that RgB′1 = RgB′. Hence, it
suffices to assume RgB = W ′. But if B is a surjection, then B′ is bounding
and has a closed range.

This applies as well to B′, so we obtain the following summary.

Theorem 1.6. The following are equivalent:

• B : V → W ′ has closed range

• B(V ) = (KerB′)0

• supu∈W
Bv(u)
‖u‖W

≥ β infz∈KerB ‖v + z‖V , v ∈ V,

• the adjoint B′ : W → V ′ has closed range

• B′(W ) = (KerB)0
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• supv∈V
Bv(w)
‖v‖V

≥ β infz∈KerB′ ‖w + z‖V , w ∈ W,

A very special but important case of Corollary 1.3 is the following.

Corollary 1.7. Assume that the linear operator A : V → V ′ is continuous
and V-coercive: there is an α > 0 such that

Av(v) ≥ α‖v‖2
V , v ∈ V. (10)

Then A : V → V ′ is an isomorphism: for each f ∈ V ′ there is a unique
u ∈ V for which Au = f , and moreover ‖u‖V ≤ α−1‖f‖V ′.

This shows the equation Au = f , i.e.,

u ∈ V : Au(v) = f(v) ∀v ∈ V, (11)

is well-posed: for each f ∈ V ′, (11) has a unique solution that depends
continuously on f .

The Mixed Formulation

Let V and W be Hilbert spaces, and let A : V → V ′ and B : V → W ′ be
continuous and linear. Let f ∈ V ′ and g ∈ B(V ) ⊂ W ′ be given.

Suppose that A is symmetric and non-negative. Then the equation (11)
characterizes the solution of the minimization problem

u ∈ V : 1
2Au(u)− f(u) ≤ 1

2Av(v)− f(v) ∀v ∈ V, (12)

If we minimize subject to a constraint, Bv = g, then this becomes

u ∈ V, Bu = g :
1
2Au(u)− f(u) ≤ 1

2Av(v)− f(v) ∀v ∈ V with Bv = g. (13)

We shall assume g ∈ Rg(B). The set {v ∈ V : Bv = g} is convex, in fact,
a translate of KerB, so the constrained minimum is characterized by

u ∈ V : Bu = g and Au− f ∈ (KerB)0. (14)

Consider the problem (14) without assuming A is symmetric. If A is
V -coercive on KerB, then there exists a unique solution. To see this, let
ug ∈ V with Bug = g. Then we seek u0 = u− ug for which

u0 ∈ KerB : Au0 +Aug − f ∈ (KerB)0.
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But Corollary 1.7 applied to the restriction of A to KerB shows there is
exactly one such u0. Thus, there is a unique solution to the constrained
equation

u ∈ V : Bu = g and Au(v) = f(v) ∀v ∈ KerB. (15)

Note that the addition of the constraint equation for B corresponds to a
relaxation of the equation for A.

If additionally B′ is bounding, then Au− f belongs to the range of B′,
so there exists a unique solution of the mixed formulation, a pair

[u, p] ∈ V ×W : Bu = g and Au + B′p = f .

The vector p ∈ W realizes the relaxation of the equation in V ′, and we
shall see that it is the Lagrange multiplier for the constraint, Bu = g.

Theorem 1.8. Assume that the linear operators A : V → V ′, B : V → W ′

are continuous from the indicated Hilbert spaces V, W to their duals, and

• A is non-negative and it is V -coercive on KerB: there is an α > 0
such that

Av(v) ≥ α‖v‖2
V , v ∈ KerB. (16)

• B′ is bounding, i.e., it is injective and

inf
q∈W

sup
v∈V

|Bv(q)|
‖v‖V ‖q‖W

≥ β > 0.

Then for every f ∈ V ′ and g ∈ W ′ the mixed system

u ∈ V, p ∈ W : Au + B′p = f ∈ V ′,

Bu = g ∈ W ′,
(17)

has a unique solution in V ×W , and it satisfies the estimate

‖u‖V + ‖p‖W ≤ K(‖f‖V ′ + ‖g‖W ′). (18)

Proof. We have shown above that the system (17) has a unique solution.
Let’s obtain the precise form of the estimate (18). First, ug can be cho-
sen from (KerB′)⊥ with ‖ug‖V ≤ 1

β‖g‖W ′. Then u0 is obtained with
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the estimate ‖u0‖V ≤ 1
α(‖f‖V ′ + ‖Aug‖V ′). Finally, p satisfies ‖p‖W ≤

1
β (‖f‖V ′ + ‖Au‖V ′). Combining these, we find

‖u‖V ≤ 1

α
(‖f‖V ′ +

1

β
(‖A‖L(V,V ′) + α)‖g‖W ′) (19)

‖p‖W ≤ 1

β
(‖f‖V ′ + ‖A‖L(V,V ′)‖u‖V ) (20)

Here’s the result from [1] with an additional operator.

Theorem 1.9. Assume that the linear operators A : V → V ′, B : V →
W ′, C : W → W ′ are continuous from the indicated Hilbert spaces V, W
to their duals, and

• A is non-negative and V -coercive on KerB: there is an α > 0 such
that

Av(v) ≥ α‖v‖2
V , v ∈ KerB. (21)

• C is non-negative, symmetric, and

• B′ is bounding, i.e., it is injective and

inf
q∈W

sup
v∈V

|Bv(q)|
‖v‖V ‖q‖W

≥ β > 0.

Then for every f ∈ V ′ and g ∈ W ′ the system

u ∈ V, p ∈ W : Au + B′p = f ∈ V ′,

−Bu + Cp = g ∈ W ′,
(22)

has a unique solution in V ×W , and it satisfies the estimate

‖u‖V + ‖p‖W ≤ K(‖f‖V ′ + ‖g‖W ′). (23)

Here’s the more general case from [2].

Theorem 1.10. Assume that the linear operators A,B, C are continuous
as indicated from the Hilbert spaces V, W to their duals, and
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• A is non-negative and invertible on KerB, i.e.,

inf
u∈KerB

sup
v∈KerB

Au(v)

‖u‖V ‖v‖V
≥ c0 > 0,

inf
v∈KerB

sup
u∈KerB

Au(v)

‖u‖V ‖v‖V
≥ c0 ,

(24)

• C is non-negative, symmetric, W -coercive on KerB′, i.e.,

Cq(q) ≥ c0‖q‖2
W , q ∈ KerB′, (25)

• B has closed range, i.e.,

sup
v∈V

|Bv(q)|
‖v‖V

≥ c0‖q‖W/ KerB′,

Then for every f ∈ V ′ and g ∈ RgB the system (22) has a solution which
is unique in V ×W/(KerB′ ∩Ker C), and it satisfies the estimate

‖u‖V + ‖p‖W/ KerB′ ≤ K(‖f‖V ′ + ‖g‖W ′). (26)

Saddle-point and Lagrangian

In this section we shall assume that A : V → V ′, B : V → W ′ are
continuous and linear and that A is symmetric and non-negative: A =
A′ ≥ 0. Also f ∈ V ′ and g ∈ W ′ are given. Define the energy functional
J : V → IR by

J(v) = 1
2Av(v)− f(v), v ∈ V,

and the Lagrangian L : V ×W → IR as

L(v, q) = J(v) + Bv(q)− g(q), [v, q] ∈ V ×W.

Note that the derivatives of L(v, q) with respect to v and q are given
by Lv(v, q) = Av − f + B′q and Lq(v, q) = Bv − g, respectively, and
these vanish at [u, p] when the system (17) is satisfied. This relates the
constrained minimization problem to an extremum over a linear space,
namely, the saddle-point problem

[u, p] ∈ V ×W : L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ V, q ∈ W. (27)

That is, a solution of the saddle-point problem is a critical point of the
Lagrange function.
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Theorem 1.11. The pair [u, p] ∈ V ×W is a solution of the saddle-point
problem (27) if and only if it is a solution of the mixed system (17).

Proof. For each q ∈ W the functional v 7→ L(v, q) is convex, so it takes a
minimum at u exactly when Au +B′q = f . The second inequality of (27)
is equivalent to the first equation of (17), and the first inequality of (27)
is equivalent to (Bu− g)(q − p) ≤ 0 for all q ∈ W , that is, Bu = g.

If A is KerB-coercive and B′ is bounding, then there is exactly one
such solution pair.

We shall denote the infimum over a set by the minimum ‘min’ when it
is attained by at least one element of that set. Similarly we denote the
supremum by maximum ‘max’ when it is realized on that set.

Theorem 1.12. The pair [u, p] is a solution of the saddle-point problem
(27) if and only if

min
v∈V

(
sup
q∈W

L(v, q)
)

= max
q∈W

(
inf
v∈V

L(v, q)
)
, (28)

and this quantity is equal to L(u, p).

Proof. Denote the upper and lower extrema by

ϕ(v) = sup
q∈W

L(v, q), ϕ(q) = inf
v∈V

L(v, q).

(These can take the values +∞ and −∞, respectively.)
Suppose (28) and that the minimum of ϕ is attained at u, the maximum

of ϕ is attained at p, and we have ϕ(u) = ϕ(p). The definitions of ϕ and
ϕ show that ϕ(p) ≤ L(u, p) ≤ ϕ(u), so ϕ(u) = L(u, p) = ϕ(p) and [u, p] is
a saddle-point.

Note that since L(v, q) ≤ ϕ(v) for all v ∈ V, q ∈ W , we have ϕ(q) ≤
infv∈V ϕ(v) and hence the inequality

sup
q∈W

ϕ(q) ≤ inf
v∈V

ϕ(v) (29)

always holds. If [u, p] is a saddle-point, then ϕ(u) = L(u, p) = ϕ(p), so we
have

inf
v∈V

ϕ(v) ≤ ϕ(u) = ϕ(p) ≤ sup
q∈W

ϕ(q).
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Combining this with (29), we obtain

inf
v∈V

ϕ(v) = ϕ(u) = L(u, p) = ϕ(p) = sup
q∈W

ϕ(q),

and this yields (28).

Note that the upper extrema above is given by

ϕ(v) = sup
q∈W

L(v, q) =

{
J(v) if Bv = g,

+∞ if Bv 6= g,

so it follows that
inf
v∈V

(
sup
q∈W

L(v, q)
)

= inf
Bv=g

J(v).

If [u, p] is a saddle-point, the inf-sup equality

L(u, p) = min
v∈V

(
sup
q∈W

L(v, q)
)

shows that
J(u) = min

Bv=g
J(v),

that is, the first component u of a saddle point is characterized as a solution
of the constrained minimization problem (13). This is the primal problem
where we began.

Let’s consider the sup-inf equation

L(u, p) = ϕ(p) = max
q∈W

(
inf
v∈V

L(v, q)
)
. (30)

In order to characterize this equality, we assume in addition that A is
V -coercive. Then for each q ∈ W there is a unique solution vq of

vq ∈ V : Avq + B′q = f,

that is, vq is the solution of the minimization problem

ϕ(q) = L(vq, q) = inf
v∈V

L(v, q), q ∈ W.

Since vp = u, we have L(vp, p) = maxq∈W L(vq, q). The definitions of L
and vq show that

L(vq, q) = 1
2Avq(vq)− f(vq) + Bvq(q)− g(q) = −1

2Avq(vq)− g(q),
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so we see that the function defined by

K(q) ≡ 1
2Avq(vq) + g(q), q ∈ W,

is convex (since q 7→ vq is affine) and it is minimized at p, that is,

p ∈ W : K(p) = min
q∈W

K(q). (31)

This is the dual problem.
In order to characterize a solution of the dual problem (31), we compute

the derivative K ′(p) from the expansion

K(q) = 1
2(f − B′q)A−1((f − B′q) + g(q)

= 1
2fA

−1(f)− fA−1B′q + 1
2B

′qA−1B′q + g(q)

and then use the definition of vq to obtain in turn

K ′(p)(q) = (g − fA−1B′)(q) + B′pA−1B′q
= −Au(p)A−1B′q + g(q) = −B′q(u(p)) + g(q).

Thus we have

K ′(p) = −Bu(p) + g = −BA−1(f − B′p) + g,

and the solution p of the dual problem (31) is characterized by the equation

p ∈ W : BA−1(B′p− f) = −g in W ′. (32)

(Of course, we could obtain this directly from (17) since A is invertible.)
In summary, [u, p] is a solution of the saddle-point problem (27), and

this is equivalent to the mixed system (17), u is a solution of the primal
problem (13) with constraint, and p is a solution of the dual problem
(31). Also, u and p can be obtained from each other by means of the
first equation of the mixed system (17) when A is V -coercive and B′ is
bounding.
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