1 Constrained Optimization

Let B be an $M \times N$ matrix, a linear operator from the space \mathbb{R}^{N} to \mathbb{R}^{M} with adjoint B^{T}. For (column vectors) $\mathbf{x} \in \mathbb{R}^{N}$ and $\mathbf{y} \in \mathbb{R}^{M}$ we have $\mathbf{x} \cdot B^{T} \mathbf{y}=B \mathbf{x} \cdot \mathbf{y}$. This vanishes for all $y \in \mathbb{R}^{M}$ exactly when $\mathbf{x} \in \operatorname{Ker}(B)$, and this is equivalent to having \mathbf{x} perpendicular to $\operatorname{Rg}\left(B^{T}\right)$, the range of B^{T}. But this is the column space of B^{T} which is the row space of B, and \mathbf{x} perpendicular to the rows of B is equivalent to $B \mathbf{x}=\mathbf{0}$. Thus we have $\operatorname{Ker}(B)=\operatorname{Rg}\left(B^{T}\right)^{\perp}$, the orthogonal complement of the range of B^{T}, and it follows that $\operatorname{Ker}(B)^{\perp}=\operatorname{Rg}\left(B^{T}\right)$ and $\operatorname{Ker}\left(B^{T}\right)^{\perp}=\operatorname{Rg}(B)$. We begin by characterizing those linear operators on more general spaces with this property.

Let V and W be Hilbert spaces, and let $\mathcal{B}: V \rightarrow W^{\prime}$ be continuous and linear. Define the adjoint operator $\mathcal{B}^{\prime}: W \rightarrow V^{\prime}$ by $\mathcal{B}^{\prime} w(v)=\mathcal{B} v(w), \forall v \in$ $V, w \in W$. Then \mathcal{B}^{\prime} is continuous, and its adjoint is given by $\mathcal{B}^{\prime \prime}=\mathcal{B}$.

NOTE: We do not identify V and V^{\prime} by the Riesz map, since this map is frequently equivalent to a boundary-value problem. However, We will identify V and $V^{\prime \prime}$, since this involves the composition of the Riesz map followed by its inverse.

Let U be a subset of W. The annihilator of U is the set of functionals given by

$$
U^{0} \equiv\left\{f \in W^{\prime}: f(w)=0 \forall w \in U\right\}
$$

Then it follows that U^{0} is a closed subspace of W^{\prime}.

The Inf-Sup Condition

Let the continuous and linear operator $\mathcal{B}: V \rightarrow W^{\prime}$ be given as above. A direct computation shows that

$$
\begin{aligned}
\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0} & =\left\{f \in W^{\prime}: f(w)=0 \forall w \in \operatorname{Ker} \mathcal{B}^{\prime}\right\} \\
& =\left\{f \in W^{\prime}: f(w)=0 \forall w: \mathcal{B}^{\prime} w(v)=0 \forall v \in V\right\} \\
& =\left\{f \in W^{\prime}: f(w)=0 \forall w: \mathcal{B} v(w)=0 \forall v \in V\right\} \\
& \supset \mathcal{B}(V)=\operatorname{Rg} \mathcal{B} .
\end{aligned}
$$

so, we have $\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0} \supset \overline{\operatorname{Rg} \mathcal{B}}$. Suppose $f_{0} \in W^{\prime}$ but $f_{0} \notin \overline{\operatorname{Rg} \mathcal{B}}$. Then the separation theorem gives a $w^{*} \in W$ and $a \in \mathbb{R}$ such that $f_{0}\left(w^{*}\right)>a$ and $\mathcal{B} v\left(w^{*}\right) \leq a \forall v \in V$, hence $a \geq 0$ and $\mathcal{B} v\left(w^{*}\right)=0 \forall v \in V$. These show that $f_{0}\left(w^{*}\right) \neq 0$ and $\mathcal{B}^{\prime}\left(w^{*}\right)=0$, so $f_{0} \notin\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0}$.

Theorem 1.1. If $\mathcal{B}: V \rightarrow W^{\prime}$ is continuous and linear, then the closure of the range of \mathcal{B} is the annihilator of the kernel of \mathcal{B}^{\prime}, that is,

$$
\overline{\mathcal{B}(V)}=\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0} .
$$

Corollary 1.2. There exists a $\beta>0$ such that

$$
\begin{equation*}
\|\mathcal{B}(v)\|_{W^{\prime}} \geq \beta\|v\|_{V} \forall v \in V, \tag{1}
\end{equation*}
$$

if and only if \mathcal{B} is an isomorphism of V onto $\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0}$.
In this case, we say that \mathcal{B} is bounding.
Proof. From (1), we see that \mathcal{B} is injective and \mathcal{B}^{-1} is continuous, hence, that the range of \mathcal{B} is closed.

Remark 1.1. The condition (1) is equivalent to

$$
\sup _{w \in W} \frac{\mathcal{B} v(w)}{\|w\|_{W}} \geq \beta\|v\|_{V} \forall v \in V,
$$

and this is precisely the inf-sup condition

$$
\begin{equation*}
\inf _{v \in V} \sup _{w \in W} \frac{\mathcal{B} v(w)}{\|v\|_{V}\|w\|_{W}} \geq \beta>0 . \tag{2}
\end{equation*}
$$

Also, it follows easily that when additionally the adjoint \mathcal{B}^{\prime} is injective, the operator \mathcal{B} is an isomorphism onto W^{\prime}.

Corollary 1.3. The linear $\mathcal{B}: V \rightarrow W^{\prime}$ is an isomorphism if and only if it satisfies

- \mathcal{B} is bounded: there is a constant C_{B} such that

$$
\begin{equation*}
|\mathcal{B} v(w)| \leq C_{B}\|v\|_{V}\|w\|_{W}, \quad v \in V, w \in W \tag{3}
\end{equation*}
$$

- \mathcal{B} is bounding: (1) holds for some $\beta>0$, and
- for every $w \in W, w \neq 0$, there is a $v \in V$ with $\mathcal{B} v(w) \neq 0$.

Proof. The last condition implies that $\operatorname{Ker} \mathcal{B}^{\prime}=\{0\}$ so $\overline{\mathcal{B}(V)}=W^{\prime}$ by Theorem 1.1, and Corollary 1.2 shows \mathcal{B} is an isomorphism. The reverse implication is clear.

Finally, we apply Corollary 1.2 to \mathcal{B}^{\prime} to obtain the equivalence of the first two parts of the following.

Theorem 1.4. Assume $\mathcal{B}: V \rightarrow W^{\prime}$ is continuous and linear. The following are equivalent:

- The adjoint $\mathcal{B}^{\prime}: W \rightarrow(\operatorname{Ker} \mathcal{B})^{0}$ is an isomorphism.
- \mathcal{B}^{\prime} is bounding:

$$
\begin{equation*}
\inf _{w \in W} \sup _{v \in V} \frac{\mathcal{B}^{\prime} w(v)}{\|v\|_{V}\|w\|_{W}} \geq \beta>0 \tag{4}
\end{equation*}
$$

- The restriction to the orthogonal complement $\mathcal{B}:(\operatorname{Ker} \mathcal{B})^{\perp} \rightarrow W^{\prime}$ is an isomorphism, and

$$
\begin{equation*}
\|\mathcal{B} v\|_{W^{\prime}} \geq \beta\|v\|_{V}, \quad v \in(\operatorname{Ker} \mathcal{B})^{\perp} . \tag{5}
\end{equation*}
$$

- $\mathcal{B}: V \rightarrow W^{\prime}$ is a surjection.

Proof. If the first condition holds, then for some $\beta>0$ we have

$$
\begin{equation*}
\left\|\mathcal{B}^{\prime} w\right\|_{V^{\prime}} \geq \beta\|w\|_{W}, \quad w \in W . \tag{6}
\end{equation*}
$$

Thus, for each $v \in(\operatorname{Ker} \mathcal{B})^{\perp}$ we pick $w \in W$ with $\mathcal{B}^{\prime} w(z)=(v, z)_{V}, z \in V$. From (6) we get $\|v\|_{V}=\left\|\mathcal{B}^{\prime} w\right\|_{V^{\prime}} \geq \beta\|w\|_{W}$. Setting $z=v$ above we obtain the equality in

$$
\begin{equation*}
\sup _{u \in W} \frac{\mathcal{B} v(u)}{\|u\|_{W}} \geq \frac{\mathcal{B} v(w)}{\|w\|_{W}}=\frac{(v, v)_{V}}{\|w\|_{W}} \geq \beta\|v\|_{V} . \tag{7}
\end{equation*}
$$

This shows $\mathcal{B}:(\operatorname{Ker} \mathcal{B})^{\perp} \rightarrow W^{\prime}$ satisfies the conditions of Corollary 1.2, so it is an isomorphism.

Assume $\mathcal{B}:(\operatorname{Ker} \mathcal{B})^{\perp} \rightarrow W^{\prime}$ is an isomorphism and (5) holds. Then we have

$$
\begin{equation*}
\|w\|_{W}=\sup _{v \in \operatorname{Ker} \mathcal{B}^{\perp}} \frac{\mathcal{B}^{\prime} w(v)}{\|\mathcal{B} v\|_{W^{\prime}}} \leq \sup _{v \in \operatorname{Ker} \mathcal{B}^{\perp}} \frac{\mathcal{B} v(w)}{\beta\|v\|_{V}} . \tag{8}
\end{equation*}
$$

This shows that (4) is satisfied, so the first three items are equivalent.
Finally, note that each $v \in V$ can be written $v=v_{0}+v_{\perp}$ with $v_{0} \in \operatorname{Ker} \mathcal{B}$ and $v_{\perp} \in(\operatorname{Ker} \mathcal{B})^{\perp}$ and $\left\|v_{\perp}\right\|_{V}=\inf \left\{\|v+z\|_{V}: z \in \operatorname{Ker} \mathcal{B}\right\}$. Thus, the third and fourth parts are equivalent by the open mapping theorem.

Remark 1.2. In this case, the estimate

$$
\begin{equation*}
\|\mathcal{B} v\|_{W^{\prime}} \geq \beta \inf _{z \in \operatorname{Ker} \mathcal{B}}\|v+z\|_{V}, \quad v \in V \tag{9}
\end{equation*}
$$

holds, and (9) can be written in terms of the norm

$$
\|\tilde{v}\|_{V / \operatorname{Ker} \mathcal{B}}=\inf _{z \in \operatorname{Ker} \mathcal{B}}\|v+z\|_{V}
$$

on the quotient space $\tilde{V}=V / \operatorname{Ker} \mathcal{B}$.

The Closed Range Theorem

Lemma 1.5. If $\mathcal{B}: V \rightarrow W^{\prime}$ has closed range, $\operatorname{Rg} \mathcal{B}$, then its adjoint $\mathcal{B}^{\prime}: W \rightarrow V^{\prime}$ has closed range, $\operatorname{Rg} \mathcal{B}^{\prime}$.

Proof. Suppose \mathcal{B}_{1} is just \mathcal{B} regarded as an operator from V to the Hilbert (sub)space $\operatorname{Rg} \mathcal{B}=\overline{\operatorname{Rg} \mathcal{B}}$. To compute the adjoint $\left(\mathcal{B}_{1}\right)^{\prime}:(\operatorname{Rg} \mathcal{B})^{\prime} \rightarrow V^{\prime}$, let $g_{1} \in(\operatorname{Rg} \mathcal{B})^{\prime}$ and note that it can be extended to a $g \in W^{\prime \prime}=W$. Then for each $v \in V$ we have $\left(\mathcal{B}_{1}\right)^{\prime} g_{1}(v)=\left\langle\mathcal{B}_{1} v, g_{1}\right\rangle=(\mathcal{B} v, g)=\mathcal{B}^{\prime} g(v)$, so $\left(\mathcal{B}_{1}\right)^{\prime}\left(g_{1}\right)=\mathcal{B}^{\prime}(g)$, and we have shown that $\operatorname{Rg} \mathcal{B}_{1}^{\prime}=\operatorname{Rg} \mathcal{B}^{\prime}$. Hence, it suffices to assume $\operatorname{Rg} \mathcal{B}=W^{\prime}$. But if \mathcal{B} is a surjection, then \mathcal{B}^{\prime} is bounding and has a closed range.

This applies as well to \mathcal{B}^{\prime}, so we obtain the following summary.
Theorem 1.6. The following are equivalent:

- $\mathcal{B}: V \rightarrow W^{\prime}$ has closed range
- $\mathcal{B}(V)=\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{0}$
- $\sup _{u \in W} \frac{\mathcal{B} v(u)}{\|u\|_{W}} \geq \beta \inf _{z \in \operatorname{Ker} \mathcal{B}}\|v+z\|_{V}, \quad v \in V$,
- the adjoint $\mathcal{B}^{\prime}: W \rightarrow V^{\prime}$ has closed range
- $\mathcal{B}^{\prime}(W)=(\operatorname{Ker} \mathcal{B})^{0}$
- $\sup _{v \in V} \frac{\mathcal{B} v(w)}{\|v\|_{V}} \geq \beta \inf _{z \in \operatorname{Ker} \mathcal{B}^{\prime}}\|w+z\|_{V}, \quad w \in W$,

A very special but important case of Corollary 1.3 is the following.
Corollary 1.7. Assume that the linear operator $\mathcal{A}: V \rightarrow V^{\prime}$ is continuous and V-coercive: there is an $\alpha>0$ such that

$$
\begin{equation*}
\mathcal{A} v(v) \geq \alpha\|v\|_{V}^{2}, \quad v \in V \tag{10}
\end{equation*}
$$

Then $\mathcal{A}: V \rightarrow V^{\prime}$ is an isomorphism: for each $f \in V^{\prime}$ there is a unique $u \in V$ for which $\mathcal{A} u=f$, and moreover $\|u\|_{V} \leq \alpha^{-1}\|f\|_{V^{\prime}}$.

This shows the equation $\mathcal{A} u=f$, i.e.,

$$
\begin{equation*}
u \in V: \quad \mathcal{A} u(v)=f(v) \forall v \in V \tag{11}
\end{equation*}
$$

is well-posed: for each $f \in V^{\prime}$, (11) has a unique solution that depends continuously on f.

The Mixed Formulation

Let V and W be Hilbert spaces, and let $\mathcal{A}: V \rightarrow V^{\prime}$ and $\mathcal{B}: V \rightarrow W^{\prime}$ be continuous and linear. Let $f \in V^{\prime}$ and $g \in \mathcal{B}(V) \subset W^{\prime}$ be given.

Suppose that \mathcal{A} is symmetric and non-negative. Then the equation (11) characterizes the solution of the minimization problem

$$
\begin{equation*}
u \in V: \quad \frac{1}{2} \mathcal{A} u(u)-f(u) \leq \frac{1}{2} \mathcal{A} v(v)-f(v) \forall v \in V \tag{12}
\end{equation*}
$$

If we minimize subject to a constraint, $\mathcal{B} v=g$, then this becomes

$$
u \in V, \mathcal{B} u=g:
$$

$$
\begin{equation*}
\frac{1}{2} \mathcal{A} u(u)-f(u) \leq \frac{1}{2} \mathcal{A} v(v)-f(v) \forall v \in V \text { with } \mathcal{B} v=g \tag{13}
\end{equation*}
$$

We shall assume $g \in \operatorname{Rg}(\mathcal{B})$. The set $\{v \in V: \mathcal{B} v=g\}$ is convex, in fact, a translate of $\operatorname{Ker} \mathcal{B}$, so the constrained minimum is characterized by

$$
\begin{equation*}
u \in V: \quad \mathcal{B} u=g \text { and } \mathcal{A} u-f \in(\operatorname{Ker} \mathcal{B})^{0} \tag{14}
\end{equation*}
$$

Consider the problem (14) without assuming \mathcal{A} is symmetric. If \mathcal{A} is V-coercive on $\operatorname{Ker} \mathcal{B}$, then there exists a unique solution. To see this, let $u_{g} \in V$ with $\mathcal{B} u_{g}=g$. Then we seek $u_{0}=u-u_{g}$ for which

$$
u_{0} \in \operatorname{Ker} \mathcal{B}: \mathcal{A} u_{0}+\mathcal{A} u_{g}-f \in(\operatorname{Ker} \mathcal{B})^{0}
$$

But Corollary 1.7 applied to the restriction of \mathcal{A} to $\operatorname{Ker} \mathcal{B}$ shows there is exactly one such u_{0}. Thus, there is a unique solution to the constrained equation

$$
\begin{equation*}
u \in V: \quad \mathcal{B} u=g \text { and } \mathcal{A} u(v)=f(v) \forall v \in \operatorname{Ker} \mathcal{B} . \tag{15}
\end{equation*}
$$

Note that the addition of the constraint equation for \mathcal{B} corresponds to a relaxation of the equation for \mathcal{A}.

If additionally \mathcal{B}^{\prime} is bounding, then $\mathcal{A} u-f$ belongs to the range of \mathcal{B}^{\prime}, so there exists a unique solution of the mixed formulation, a pair

$$
[u, p] \in V \times W: \mathcal{B} u=g \text { and } \mathcal{A} u+\mathcal{B}^{\prime} p=f .
$$

The vector $p \in W$ realizes the relaxation of the equation in V^{\prime}, and we shall see that it is the Lagrange multiplier for the constraint, $\mathcal{B} u=g$.

Theorem 1.8. Assume that the linear operators $\mathcal{A}: V \rightarrow V^{\prime}, \mathcal{B}: V \rightarrow W^{\prime}$ are continuous from the indicated Hilbert spaces V, W to their duals, and

- \mathcal{A} is non-negative and it is V-coercive on $\operatorname{Ker} \mathcal{B}$: there is an $\alpha>0$ such that

$$
\begin{equation*}
\mathcal{A} v(v) \geq \alpha\|v\|_{V}^{2}, \quad v \in \operatorname{Ker} \mathcal{B} . \tag{16}
\end{equation*}
$$

- \mathcal{B}^{\prime} is bounding, i.e., it is injective and

$$
\inf _{q \in W} \sup _{v \in V} \frac{|\mathcal{B} v(q)|}{\|v\|_{V}\|q\|_{W}} \geq \beta>0 .
$$

Then for every $f \in V^{\prime}$ and $g \in W^{\prime}$ the mixed system

$$
\begin{align*}
u \in V, p \in W: \mathcal{A} u+\mathcal{B}^{\prime} p & =f \in V^{\prime}, \\
\mathcal{B} u & =g \in W^{\prime}, \tag{17}
\end{align*}
$$

has a unique solution in $V \times W$, and it satisfies the estimate

$$
\begin{equation*}
\|u\|_{V}+\|p\|_{W} \leq K\left(\|f\|_{V^{\prime}}+\|g\|_{W^{\prime}}\right) . \tag{18}
\end{equation*}
$$

Proof. We have shown above that the system (17) has a unique solution. Let's obtain the precise form of the estimate (18). First, u_{g} can be chosen from $\left(\operatorname{Ker} \mathcal{B}^{\prime}\right)^{\perp}$ with $\left\|u_{g}\right\|_{V} \leq \frac{1}{\beta}\|g\|_{W^{\prime}}$. Then u_{0} is obtained with
the estimate $\left\|u_{0}\right\|_{V} \leq \frac{1}{\alpha}\left(\|f\|_{V^{\prime}}+\left\|\mathcal{A} u_{g}\right\|_{V^{\prime}}\right)$. Finally, p satisfies $\|p\|_{W} \leq$ $\frac{1}{\beta}\left(\|f\|_{V^{\prime}}+\|\mathcal{A} u\|_{V^{\prime}}\right)$. Combining these, we find

$$
\begin{array}{r}
\|u\|_{V} \leq \frac{1}{\alpha}\left(\|f\|_{V^{\prime}}+\frac{1}{\beta}\left(\|\mathcal{A}\|_{\mathcal{L}\left(V, V^{\prime}\right)}+\alpha\right)\|g\|_{W^{\prime}}\right) \\
 \tag{20}\\
\|p\|_{W} \leq \frac{1}{\beta}\left(\|f\|_{V^{\prime}}+\|\mathcal{A}\|_{\mathcal{L}\left(V, V^{\prime}\right)}\|u\|_{V}\right)
\end{array}
$$

Here's the result from [1] with an additional operator.
Theorem 1.9. Assume that the linear operators $\mathcal{A}: V \rightarrow V^{\prime}, \mathcal{B}: V \rightarrow$ $W^{\prime}, \mathcal{C}: W \rightarrow W^{\prime}$ are continuous from the indicated Hilbert spaces V, W to their duals, and

- \mathcal{A} is non-negative and V-coercive on $\operatorname{Ker} \mathcal{B}$: there is an $\alpha>0$ such that

$$
\begin{equation*}
\mathcal{A} v(v) \geq \alpha\|v\|_{V}^{2}, \quad v \in \operatorname{Ker} \mathcal{B} \tag{21}
\end{equation*}
$$

- \mathcal{C} is non-negative, symmetric, and
- \mathcal{B}^{\prime} is bounding, i.e., it is injective and

$$
\inf _{q \in W} \sup _{v \in V} \frac{|\mathcal{B} v(q)|}{\|v\|_{V}\|q\|_{W}} \geq \beta>0
$$

Then for every $f \in V^{\prime}$ and $g \in W^{\prime}$ the system

$$
\begin{array}{r}
u \in V, p \in W: \quad \mathcal{A} u+\mathcal{B}^{\prime} p=f \in V^{\prime} \\
-\mathcal{B} u+\mathcal{C} p=g \in W^{\prime} \tag{22}
\end{array}
$$

has a unique solution in $V \times W$, and it satisfies the estimate

$$
\begin{equation*}
\|\mathbf{u}\|_{V}+\|p\|_{W} \leq K\left(\|f\|_{V^{\prime}}+\|g\|_{W^{\prime}}\right) \tag{23}
\end{equation*}
$$

Here's the more general case from [2].
Theorem 1.10. Assume that the linear operators $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are continuous as indicated from the Hilbert spaces V, W to their duals, and

- \mathcal{A} is non-negative and invertible on $\operatorname{Ker} \mathcal{B}$, i.e.,

$$
\begin{align*}
& \inf _{\mathbf{u} \in \operatorname{Ker} \mathcal{B}} \sup _{\mathbf{v} \in \operatorname{Ker} \mathcal{B}} \frac{\mathcal{A} \mathbf{u}(\mathbf{v})}{\|\mathbf{u}\|_{V}\left\|_{\mathbf{v}}\right\|_{V}} \geq c_{0}>0 \tag{24}\\
& \inf _{\mathbf{v} \in \operatorname{Ker} \mathcal{B}} \sup _{\mathbf{u} \in \operatorname{Ker} \mathcal{B}} \frac{\mathcal{A} \mathbf{\mathcal { u }}(\mathbf{v})}{\|\mathbf{u}\|_{V}\|\mathbf{v}\|_{V}} \geq c_{0}
\end{align*}
$$

- \mathcal{C} is non-negative, symmetric, W-coercive on $\operatorname{Ker} \mathcal{B}^{\prime}$, i.e.,

$$
\begin{equation*}
\mathcal{C} q(q) \geq c_{0}\|q\|_{W}^{2}, q \in \operatorname{Ker} \mathcal{B}^{\prime} \tag{25}
\end{equation*}
$$

- \mathcal{B} has closed range, i.e.,

$$
\sup _{\mathbf{v} \in V} \frac{|\mathcal{B} \mathbf{v}(q)|}{\|\mathbf{v}\|_{V}} \geq c_{0}\|q\|_{W / \operatorname{Ker} \mathcal{B}^{\prime}},
$$

Then for every $f \in V^{\prime}$ and $\mathbf{g} \in \operatorname{Rg} \mathcal{B}$ the system (22) has a solution which is unique in $V \times W /\left(\operatorname{Ker} \mathcal{B}^{\prime} \cap \operatorname{Ker} \mathcal{C}\right)$, and it satisfies the estimate

$$
\begin{equation*}
\|\mathbf{u}\|_{V}+\|p\|_{W / \operatorname{Ker} \mathcal{B}^{\prime}} \leq K\left(\|f\|_{V^{\prime}}+\|g\|_{W^{\prime}}\right) . \tag{26}
\end{equation*}
$$

Saddle-point and Lagrangian

In this section we shall assume that $\mathcal{A}: V \rightarrow V^{\prime}, \mathcal{B}: V \rightarrow W^{\prime}$ are continuous and linear and that \mathcal{A} is symmetric and non-negative: $\mathcal{A}=$ $\mathcal{A}^{\prime} \geq 0$. Also $f \in V^{\prime}$ and $g \in W^{\prime}$ are given. Define the energy functional $J: V \rightarrow \mathbb{R}$ by

$$
J(v)=\frac{1}{2} \mathcal{A} v(v)-f(v), \quad v \in V,
$$

and the Lagrangian $\mathcal{L}: V \times W \rightarrow \mathbb{R}$ as

$$
\mathcal{L}(v, q)=J(v)+\mathcal{B} v(q)-g(q), \quad[v, q] \in V \times W .
$$

Note that the derivatives of $\mathcal{L}(v, q)$ with respect to v and q are given by $\mathcal{L}_{v}(v, q)=\mathcal{A} v-f+\mathcal{B}^{\prime} q$ and $\mathcal{L}_{q}(v, q)=\mathcal{B} v-g$, respectively, and these vanish at $[u, p]$ when the system (17) is satisfied. This relates the constrained minimization problem to an extremum over a linear space, namely, the saddle-point problem

$$
\begin{equation*}
[u, p] \in V \times W: \mathcal{L}(u, q) \leq \mathcal{L}(u, p) \leq \mathcal{L}(v, p) \forall v \in V, q \in W . \tag{27}
\end{equation*}
$$

That is, a solution of the saddle-point problem is a critical point of the Lagrange function.

Theorem 1.11. The pair $[u, p] \in V \times W$ is a solution of the saddle-point problem (27) if and only if it is a solution of the mixed system (17).

Proof. For each $q \in W$ the functional $v \mapsto \mathcal{L}(v, q)$ is convex, so it takes a minimum at u exactly when $\mathcal{A} u+\mathcal{B}^{\prime} q=f$. The second inequality of (27) is equivalent to the first equation of (17), and the first inequality of (27) is equivalent to $(\mathcal{B} u-g)(q-p) \leq 0$ for all $q \in W$, that is, $\mathcal{B} u=g$.

If \mathcal{A} is $\operatorname{Ker} \mathcal{B}$-coercive and \mathcal{B}^{\prime} is bounding, then there is exactly one such solution pair.

We shall denote the infimum over a set by the minimum 'min' when it is attained by at least one element of that set. Similarly we denote the supremum by maximum 'max' when it is realized on that set.

Theorem 1.12. The pair $[u, p]$ is a solution of the saddle-point problem (27) if and only if

$$
\begin{equation*}
\min _{v \in V}\left(\sup _{q \in W} \mathcal{L}(v, q)\right)=\max _{q \in W}\left(\inf _{v \in V} \mathcal{L}(v, q)\right) \tag{28}
\end{equation*}
$$

and this quantity is equal to $\mathcal{L}(u, p)$.
Proof. Denote the upper and lower extrema by

$$
\bar{\varphi}(v)=\sup _{q \in W} \mathcal{L}(v, q), \quad \underline{\varphi}(q)=\inf _{v \in V} \mathcal{L}(v, q) .
$$

(These can take the values $+\infty$ and $-\infty$, respectively.)
Suppose (28) and that the minimum of $\bar{\varphi}$ is attained at u, the maximum of $\underline{\varphi}$ is attained at p, and we have $\bar{\varphi}(u)=\underline{\varphi}(p)$. The definitions of $\bar{\varphi}$ and $\underline{\varphi}$ show that $\underline{\varphi}(p) \leq \mathcal{L}(u, p) \leq \bar{\varphi}(u)$, so $\bar{\varphi}(u)=\mathcal{L}(u, p)=\underline{\varphi}(p)$ and $[u, p]$ is a saddle-point.

Note that since $\mathcal{L}(v, q) \leq \bar{\varphi}(v)$ for all $v \in V, q \in W$, we have $\underline{\varphi}(q) \leq$ $\inf _{v \in V} \bar{\varphi}(v)$ and hence the inequality

$$
\begin{equation*}
\sup _{q \in W} \underline{\varphi}(q) \leq \inf _{v \in V} \bar{\varphi}(v) \tag{29}
\end{equation*}
$$

always holds. If $[u, p]$ is a saddle-point, then $\bar{\varphi}(u)=\mathcal{L}(u, p)=\underline{\varphi}(p)$, so we have

$$
\inf _{v \in V} \bar{\varphi}(v) \leq \bar{\varphi}(u)=\underline{\varphi}(p) \leq \sup _{q \in W} \underline{\varphi}(q) .
$$

Combining this with (29), we obtain

$$
\inf _{v \in V} \bar{\varphi}(v)=\bar{\varphi}(u)=\mathcal{L}(u, p)=\underline{\varphi}(p)=\sup _{q \in W} \underline{\varphi}(q),
$$

and this yields (28).
Note that the upper extrema above is given by

$$
\bar{\varphi}(v)=\sup _{q \in W} \mathcal{L}(v, q)=\left\{\begin{array}{l}
J(v) \text { if } \mathcal{B} v=g, \\
+\infty \text { if } \mathcal{B} v \neq g,
\end{array}\right.
$$

so it follows that

$$
\inf _{v \in V}\left(\sup _{q \in W} \mathcal{L}(v, q)\right)=\inf _{\mathcal{B} v=g} J(v) .
$$

If $[u, p]$ is a saddle-point, the inf-sup equality

$$
\mathcal{L}(u, p)=\min _{v \in V}\left(\sup _{q \in W} \mathcal{L}(v, q)\right)
$$

shows that

$$
J(u)=\min _{\mathcal{B} v=g} J(v),
$$

that is, the first component u of a saddle point is characterized as a solution of the constrained minimization problem (13). This is the primal problem where we began.

Let's consider the sup-inf equation

$$
\begin{equation*}
\mathcal{L}(u, p)=\underline{\varphi}(p)=\max _{q \in W}\left(\inf _{v \in V} \mathcal{L}(v, q)\right) . \tag{30}
\end{equation*}
$$

In order to characterize this equality, we assume in addition that \mathcal{A} is V-coercive. Then for each $q \in W$ there is a unique solution v_{q} of

$$
v_{q} \in V: \mathcal{A} v_{q}+\mathcal{B}^{\prime} q=f,
$$

that is, v_{q} is the solution of the minimization problem

$$
\underline{\varphi}(q)=\mathcal{L}\left(v_{q}, q\right)=\inf _{v \in V} \mathcal{L}(v, q), q \in W .
$$

Since $v_{p}=u$, we have $\mathcal{L}\left(v_{p}, p\right)=\max _{q \in W} \mathcal{L}\left(v_{q}, q\right)$. The definitions of \mathcal{L} and v_{q} show that

$$
\mathcal{L}\left(v_{q}, q\right)=\frac{1}{2} \mathcal{A} v_{q}\left(v_{q}\right)-f\left(v_{q}\right)+\mathcal{B} v_{q}(q)-g(q)=-\frac{1}{2} \mathcal{A} v_{q}\left(v_{q}\right)-g(q),
$$

so we see that the function defined by

$$
K(q) \equiv \frac{1}{2} \mathcal{A} v_{q}\left(v_{q}\right)+g(q), \quad q \in W,
$$

is convex (since $q \mapsto v_{q}$ is affine) and it is minimized at p, that is,

$$
\begin{equation*}
p \in W: K(p)=\min _{q \in W} K(q) . \tag{31}
\end{equation*}
$$

This is the dual problem.
In order to characterize a solution of the dual problem (31), we compute the derivative $K^{\prime}(p)$ from the expansion

$$
\begin{aligned}
& K(q)=\frac{1}{2}\left(f-\mathcal{B}^{\prime} q\right) \mathcal{A}^{-1}\left(\left(f-\mathcal{B}^{\prime} q\right)+g(q)\right. \\
&=\frac{1}{2} f \mathcal{A}^{-1}(f)-f \mathcal{A}^{-1} \mathcal{B}^{\prime} q+\frac{1}{2} \mathcal{B}^{\prime} q \mathcal{A}^{-1} \mathcal{B}^{\prime} q+g(q)
\end{aligned}
$$

and then use the definition of v_{q} to obtain in turn

$$
\begin{aligned}
K^{\prime}(p)(q)=\left(g-f \mathcal{A}^{-1} \mathcal{B}^{\prime}\right) & (q)+\mathcal{B}^{\prime} p \mathcal{A}^{-1} \mathcal{B}^{\prime} q \\
& =-\mathcal{A} u(p) \mathcal{A}^{-1} \mathcal{B}^{\prime} q+g(q)=-\mathcal{B}^{\prime} q(u(p))+g(q) .
\end{aligned}
$$

Thus we have

$$
K^{\prime}(p)=-\mathcal{B} u(p)+g=-\mathcal{B} \mathcal{A}^{-1}\left(f-\mathcal{B}^{\prime} p\right)+g,
$$

and the solution p of the dual problem (31) is characterized by the equation

$$
\begin{equation*}
p \in W: \mathcal{B A}^{-1}\left(\mathcal{B}^{\prime} p-f\right)=-g \text { in } W^{\prime} . \tag{32}
\end{equation*}
$$

(Of course, we could obtain this directly from (17) since \mathcal{A} is invertible.)
In summary, $[u, p]$ is a solution of the saddle-point problem (27), and this is equivalent to the mixed system (17), u is a solution of the primal problem (13) with constraint, and p is a solution of the dual problem (31). Also, u and p can be obtained from each other by means of the first equation of the mixed system (17) when \mathcal{A} is V-coercive and \mathcal{B}^{\prime} is bounding.

References

[1] Dietrich Braess. Finite elements. Cambridge University Press, Cambridge, 1997. Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German original by Larry L. Schumaker.
[2] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

